
erotonin or 5-hydroxytryptamine (5-HT) is a
small indolamine (MW 176.2) widely distributed through-
out the animal (from ascidies to human)1-4 and plant5,6

kingdoms. In mammals, a gut-stimulating factor called
enteramine, distinct from subtance P, was reported in
1940.7-9 Eight years later, a vasoconstrictor factor named
serotonin was isolated from the serum.10 It was subse-
quently demonstrated that enteramine and serotonin
were the same chemical entity, ie, 5-HT. The biological
activity of 5-HT in peripheral nerves and brain was
described a few years later.11-15 Additionally, developmen-
tal studies reveal that 5-HT occurs early during fetal life
and plays a role in morphogenesis as well as in neural traf-
ficking.16,17

Among the large variety of chemical messengers acting
in nerve cell signaling, 5-HT is the focus of much inter-
est due to its implication in almost every physiological
function (eating, reward, thermoregulation, cardiovas-
cular regulation, locomotion, pain, reproduction, sleep-
wake cycle, memory, cognition, aggressiveness, responses
to stressors, emotion, and mood) and in several human
pathologies. Thus, dysfunction of the serotonergic sys-
tems is thought to be associated with irritable bowel syn-
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Brain serotonergic circuitries interact with other neuro-
transmitter systems on a multitude of different molecu-
lar levels. In humans, as in other mammalian species,
serotonin (5-HT) plays a modulatory role in almost every
physiological function. Furthermore, serotonergic dys-
function is thought to be implicated in several psychiatric
and neurodegenerative disorders. We describe the neu-
roanatomy and neurochemistry of brain serotonergic cir-
cuitries. The contribution of emergent in vivo imaging
methods to the regional localization of binding site
receptors and certain aspects of their functional con-
nectivity in correlation to behavior is also discussed. 5-HT
cell bodies, mainly localized in the raphe nuclei, send
axons to almost every brain region. It is argued that the
specificity of the local chemocommunication between 
5-HT and other neuronal elements mainly depends on
mechanisms regulating the extracellular concentration
of 5-HT, the diversity of high-affinity membrane recep-
tors, and their specific transduction modalities.   
© 2010, LLS SAS Dialogues Clin Neurosci. 2010;12:471-487.
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drome,18 restless legs syndrome,19 sudden infant death
syndrome,20,21 autism,22 headache,23 insomnia,24 anxiety,25

depression,26 anorexia,27,28 schizophrenia,29 Parkinson’s
disease,30 and Alzheimer’s disease.31,32 At the present
time, most of the anxiolytic/antidepressant compounds
such as tricyclic and tetracyclic antidepressants, selective
serotonin reuptake inhibitors (SSRIs),33,34 azapirones,35

setron antiemetics,36 and triptans used to relieve
migraine,37 all target the serotonergic systems. Besides a
well-known dopaminergic component, atypical neu-
roleptics (eg, olanzapine, clozapine, quetiapine, arip-
iprazole) interact with serotonergic receptors (ie, 
5-HT1A, 5-HT2A-2C, 5-HT6 and 5-HT7).38-40 Finally,
psychotropic drugs including LSD, mescaline, cocaine,
and amphetamines powerfully alter 5-HT functions via
5-HT1A, 5-HT2A receptors41,42 and monoaminergic
transporters.43-45

5-HT is massively synthesized in the gastrointestinal tract
(mainly in enterochromafin cells), whereas only a small
percentage is produced within the nervous system.46,47

There is some evidence that 5-HT synthesis, release by
calcium-dependent exocytosis, selective reuptake by an
energy-dependent membrane transporter, metabolism
and reuptake in vesicles operate in all the neuronal ele-
ments of the 5-HT neurons (ie, soma, dendrites, axons,
and terminals), together participating in 5-HT home-
ostasis.48,49 The widespread distribution of 5-HT axons and
terminals throughout the neuraxis (Figure 1), the fre-
quent nonsynaptic neurotransmission (called diffuse or
volume neurotransmission48,50-52), as well as the abundance
of 5-HT receptors (Table I) contribute to explaining the
complex relationships between 5-HT and other neuro-
transmitter and neurohormonal systems. 
The main goal of this review is to discuss the most salient
features concerning the neuroanatomy of the seroton-
ergic neurotransmission, ie, the serotonergic circuitries
in the human brain. In the first instance, proteins such as

enzymes, transporters, and receptors more specifically
devoted to the serotonergic functions will be described.
Methodological limits of the classical postmortem
approaches in the human and new 5-HT in vivo imaging
modalities will also be considered. At the present time,
more than 100 000 scientific publications concern 5-HT
(PubMed). Wherever possible, we have tried to include
up-to-date references dealing with the human brain.

The main molecular protagonists in 
5-HT neurotransmission

From tryptophan to serotonin

In the brain, neuron subpopulations have a set of enzymes
permitting the two-step synthesis of 5-HT from its pre-
cursor tryptophan, an essential aminoacid provided by
nutrients and actively cotransported with other neutral
large amino acids from the blood to the brain.53 The con-
sequences of tryptophan depletion or loading on physi-
ological functions, including memory, cognition, mood,
facial expression of emotion, and sleep, have been
reported in detail elsewhere.53-56 Contrasting with the
peripheral glandular serotonergic systems (eg, the ente-
rochromafin cells or the pineal gland) that uses a first
tryptophan hydroxylase form (TPOH1), 5-HT synthesiz-
ing neurons in the brain express another tryptophan
hydroxylase (TPOH2) recently evidenced from knockout
studies in mice.57 The respective sequences of these isoen-
zymes revealed 30% heterology, offering the perspective
of a selective modulation by appropriate drugs in central
or peripheral pathologies.57 Some 5-HT-related neu-
ropsychiatric disorders are possibly correlated with
genetic variants of TPOH2.57-61 Additionally, recent analy-
ses indicate that TPOH1 polymorphisms could increase
susceptibility to schizophrenia62 and suicidal behavior.63

5-hydroxytryptophan formed during the first rate-limit-
ing step by TPOH1 or TPOH2 is then transformed into
5-HT via an aromatic L-amino acid decarboxylase
(AADC) also present in catecholaminergic neurons.
Rare AADC point mutations reported in humans result
in deficiency of catecholamines and serotonin with
severe neuropsychiatric symptoms.64

In the nervous system, 5-HT is mainly metabolized by the
monoamine oxidase A (MAOA) and a 5-HT half-life of
only a few minutes is reported.65 Thus, reciprocal 5-HT
exchanges between the central nervous system (CNS) and
other tissues appear to be limited, although a brain 5-HT
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Selected abbreviations and acronyms
5-HIAA 5-hydroxyindolacetic acid
5-HT 5-hydroxytryptamine
SERT serotonin membrane transporter
TPOH tryptophan hydroxylase
VGLUT vesicular glutamate transporter
VMAT vesicular monoamine transporter

See also the Appendix for an explanation of some of the terms
used in the text
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Figure 1. Schematic sagittal view of the human brain showing the distribution of the serotonergic systems. The raphe nuclei containing the majority of
the serotonergic cell bodies appear in purple. It is readily seen that these nuclei are exclusively located in the brain stem. The axons issued from
them are drawn in red. The trajectories and extensive branching of the axons until the main terminal areas are illustrated. The densities of the
serotonergic axonal networks in these terminal areas are given by the colored boxes. X, dorsal motor n of the vagus nerve; ACN, accum-
bens n; Amy, amygdala; cc, corpus callosum; Ce, cerebellum; CPu, caudate-putamen; Cx, cortex; DH, dorsal horn spinal cord; DRN, dorsal
raphe n; Fcx, frontal cortex; Hip, hippocampus; Hyp, hypothalamus; IPN, interpeduncular n; LC, locus coeruleus; LS, lateral septum; MRN,
median raphe n; n, nucleus; NTS, n of the solitary tract; OB, olfactory bulb; PAG, periaqueductal gray; RMg, raphe magnus n; RO, raphe obscu-
rus n; Rpa, raphe pallidus; RPo, raphe pontis n; SN, subtantia nigra; Tha, thalamus; VH, ventral horn; VTA, ventral tegmental area
Adapted from ref 129: Nieuwenhuis R. Monoamines: Chemoarchitecture of the Brain. Berlin, Germany: Springer Verlag; 1985:33-41. Copyright © Springer
Verlag, 1985
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efflux through the blood-brain barrier was observed in rat
species.66 Abnormality in 5-HT metabolites, especially low
5-hydroxyindolacetic acid (5-HIAA) levels in the cere-
brospinal fluid (CSF) was correlated with suicidality and
severity of aggressive behaviour.67,68 Furthermore, an asso-
ciation between CSF 5-HIAA and cholesterolemia was
described in certain suicidal patients.69,70 Although largely
conjectural, the neurobiological basis of these observa-
tions might be found in the evolution history, a propensity
to aggressive behavior in man being related to an ances-
tral adaptative response to a low-cholesterol diet occur-
ring during starvation and famine.71

Serotonin transporter

The main physiological role of a 5-HT transporter is the
clearance of released 5-HT from the extracellular space,
and thus the control of the duration and magnitude of neu-
rotransmission via 5-HT receptors. Although an active
concentrating mechanism of 5-HT by human platelets was
already mentioned by Hardisty and Stacey in 1955,72 selec-
tive 5-HT uptake into nerves was only reported at the end
of the 1960s. Later, it was observed that certain neuronal
subpopulations in brain selectively concentrate exogenous
tritiated monoamines by uptake.73-75 The binding of anti-
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5-HT Locus Aminoacid Human brain Putative functions Related clinical interests Ref

receptor length regions

5-HT1A 5q11.2-q13 422 Raphe n hyp, hip, amy, 5-HT activity, Anxiety/depression, 25,147,171

CPu, Cx, Fcx thermoregulation, neurodegenerative disorders,

feeding, stress, pain, schizophrenia

mood, emotion, cognition, 

learning, memory…

5-HT1B 6q13 390 SN /VTA, ACN, CPu, 5-HT activity,mood, Anxiety/depression, migraine 131,138,172

(5-HT1Dß) ventral pallidum, Cx feeding

5-HT1D 1p36.3-34.3 343 CPu, , ventral pallidum, Fcx 5-HT activity, mood, feeding Anxiety/depression, migraine 173

5-HT1E 6q14-q15 365 CPu, Hyp, Cx (?) (?) See 174

5-HT1F 3p13-p14.1 366 Ce, Hip, Cx Mood, emotion Migraine 175

5-HT2A 13q14-q21 471 Dorsal vagal complex, Mood, respiratory control, Schizophrenia, anxiety/ 110,160,176

hypoglossal n, inferior feeding, nociception depression, Tourette’s syndrome,

olvary complex, Thal, Alzheimer’s didease, anorexia/

CPu, Cx, FCx bulimia, drug abuse, pain

5-HT2B 2q36.3-q37.1 481 Ce (?), LS (?), Hyp (?) Cx (?) Brain development (?), Drug abuse, anxiety (?) 177

feeding (?)

5-HT2C Xq24 458° Choroid plexus, Ce, DRN, Mood, impulsivity, Anxiety/depression, 178

SN, Hyp, Amy, Hip, CPu, feeding, locomotor schizophrenia,

ACN, Cx activity drug abuse, obesity

5-HT3A-E 11q23.1-27.1 510* Dorsal vagal complex, Vomiting reflex, mood, Nausea, anxiety/depression 103,104

subunits (5-HT3A) Hip, Amy, CPu

5-HT4 5q34-q36 402* Hyp, Hip, ACN, CPu Feeding, reward, cognition Anorexia, drug abuse, 139,171,

Alzheimer’s disease 179,180

5-HT5A 7q34-q36 357 Ce, Hyp, Thal, Hip, Cx Circadian rhythm, sleep, Schizophrenia (?) 181

mood, cognition anxiety/depression (?)

5-HT6 1p36-p35 440 Hip, CPu, Cx, Cognition, learning, Alzheimer’s disease, 171,182

olfactory tubercle memory, feeding dementia, obesity

5-HT7 10q21-q24 479* Raphe n., Hyp, Tha, Mood, sleep, cognition Anxiety/depression, schizophrenia. 183

Hip, Amy, Cx

Table I. Serotonin (5-HT) receptors in the human brain: distribution, putative functions, and related pathologies. Pre-RNA *splicing and ° editing vari-
ants. For review see also refs 98 to100. X, dorsal motor n of the vagus nerve; ACN, accumbens n; Amy, amygdala; cc, corpus callosum; Ce,
cerebellum; CPu, caudate-putamen; Cx, cortex; DRN, dorsal raphe n; Fcx, frontal cortex; Hip, hippocampus; Hyp, hypothalamus; LS, lateral
septum; MRN, n, nucleus; SN, subtantia nigra; Tha, thalamus; VTA, ventral tegmental area
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depressants to neurons, platelets, gastrointestinal, pul-
monary, and placental brush-border membranes bearing
a serotonin transporter (SERT or 5-HTT) was then
demonstrated.76,77 More than 30 years later, a large family
of neurotransmitter sodium symporters was identified by
molecular cloning.44 Contrary to metabotropic receptors
displaying seven transmembrane domains, the predictive
topology of monoamine transporters indicated 12 trans-
membrane domains, a large extracellular loop, and intra-
cellular N and C terminal sequences. The identification of
the human SERT sequence as an antidepressant and a
cocaine-sensitive transporter78 in 1993 was just preceded
by the description of γ-aminobutyric acid (GABA) and
noradrenaline transporter sequences. Interestingly, in 1991,
Hoffman and coworkers had already reported a SERT
sequence from a rodent leukemia cell line.79 SERT homol-
ogous sequences were also described in invertebrates such
as Drosophila, suggesting that this gene is phylogenetically
ancient.80 In humans as well as in other mammalian
species, SERT mRNA expression in the brain is restricted
to 5-HT cell bodies.81,82 The unique SERT gene includes 14
exons encoding both a short and a long variant in humans
and is localized in the long arm of chromosome 17.78

Several polymorphisms, especially in the promoter region
of SERT, are presumed to be associated with psychiatric
illness including depression, anxiety, cognitive impairment,
eating disorders, alcohol dependence, and primary insom-
nia.83-87

A transcription factor, Pet-1, influences TPOH2 and
SERT expression levels in the rodent brain. It was
demonstrated that Pet-1-null mice have severe defi-
ciency in 5-HT signaling associated with anxiety-like and
aggressive behaviors.88 However, the role of the human
ortholog gene FEV (Fifth Edwin Variant) is less well
established.89 Furthermore, it was recently reported that
the level of SERT expression is under influence of a
microRNA (MiR-16) upregulated by antidepressants
such as fluoxetine.90

As described for other monoamine transporters, reup-
take of 5-HT by SERT is ATP-dependent. It was sug-
gested that SERT-associated proteins (a variety of phos-
phatase and phosphokinase proteins, nNOS and several
others) could regulate the transporter velocity, its down-
regulation by intracellular sequestration, and its surface
membrane targeting.77,91

Following its reuptake into the neuronal elements by
SERT, 5-HT can be degraded by MAO associated with
the mitochondrial membranes. Alternatively, 5-HT is

packaged into vesicles by a (H+)-dependent carrier
called vesicular monoamine transporter 2 (VMAT2)
also present in other monoaminergic neurons. The fac-
tors leading to the packaging rather than degradation of
5-HT within 5-HT neurons remain to be elucidated. Very
intriguing is the recent report of vesicular-filling synergy
in serotonergic neurons, a mechanism previously found
in certain cholinergic neurons.81 Thus, it was observed
that half of the neocortical and hippocampal subsets of
5-HT neuronal elements lacking SERT coexpress
VMAT2 and the vesicular glutamate transporter
VGLUT3 on the same vesicles. It was further demon-
strated that vesicular glutamate uptake via VGLUT3
allows 5-HT vesicular filling by VMAT2, fostering 5-HT
release from tonically active terminals involved in vol-
ume transmission. Serotonergic fibers and terminals
coexpressing VGLUT3 and VMAT2 but lacking reup-
take by SERT could represent sites of powerful regula-
tory mechanisms in 5-HT neurotransmission (for further
details see ref 81). VMAT2 is targeted by several psy-
choactive drugs such amphetamines, tetrabenazine, and
reserpine, which finally facilitate 5-HT depletion within
neurons by its release in the extracellular space.49

Specific haplotypes in the VMAT2 gene are possibly
associated with depression symptoms.92 They are also
presumed to be protective in Parkinson’s disease93 and
alcoholism.94

Serotonin receptors

The first evidence for 5-HT/tryptamine receptors and
their desensitization were reported in the guinea-pig
ileum during the 1950s. According to their sensitivity to
morphine or dibenzyline, 5-HT/tryptamine receptors
were called M and D, respectively. It was further sug-
gested that M receptors also act in the nervous system.95

The presence of 5-HT receptors in the brain was
deduced from electrophysiological and pharmacological
investigations in the cat lateral geniculate nucleus. Thus,
it was demonstrated that lysergic acid diethylamide
(LSD) directly influences central 5-HT receptors. Based
on binding experiments of [3H]5-HT and [3H]spiroperi-
dol, two distinct 5-HT receptor populations (5-HT1 and
5-HT2) were described in rodent and bovine brain mem-
branes.96 On pharmacological criteria, four brain 5-HT 1
receptor subtypes (5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D)
and a peripheral 5-HT3 serotonin receptor were then
described in rodents.97 From 1987 to the present time,
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more than 15 5-HT receptors grouped into seven fami-
lies were identified by various cloning strategies and
characterized as distinct entities encoded by distinct
genes (Table I). Additional pre-RNA splicing and edit-
ing variants were further demonstrated for 5-HT2C, 5-
HT3A, 5-HT4, and 5-HT7 receptors.98 The same 5-HT
receptor diversity was also observed in humans (Table I)
and other mammalian species, although interspecies dif-
ferences in their neuroanatomical distribution or their
pharmacological profiles were noted. 
With a few exceptions, the 5-HT receptor subtypes are
expressed in the nervous system98-100 as well as in the gas-
trointestinal tract.46,47,101,102 5-HT3 receptors103,104 are
ionotropic receptors formed by a pentamer of subunits
(mainly 5-HT3A and B), whereas the other 5-HT recep-
tors are metabotropic (G-protein coupled receptors)
activating a large variety of signaling pathways.105,106 As
expected, the growing number of 5-HT receptor sub-
types stimulates the development of selective interactive
compounds of potential interest as therapeutic agents
and, more recently, radiopharmaceutical tracers for in
vivo imaging. It can be noted that the in silico design (ie,
computer simulation) of these compounds gains more
and more importance (for example see ref 107). 
5-HT receptor subtypes more often coexist in the brain
areas enriched in 5-HT-neuronal elements (Table I,
Figure 1). In the human brain, like in other species, the
substantia nigra, the hippocampal formation, the hypo-
thalamus, the amygdala, the striatum, and the frontal
cortex display a large set of 5-HT receptors. Their rela-
tive densities show great variation among the brain
areas, some of them being highly expressed in a
restricted number of regions (eg, 5-HT3, 5-HT4, 5-HT6).
Our knowledge of the anatomical distribution of 5-HT
receptors in the human brain is not exhaustive, since
selective ligands or specific antibodies for certain 5-HT
receptor subtypes are not yet available (eg, 5-HT1E, 5-
HT2B, 5-HT5A receptors). Consequently, their distrib-
ution is only based on their respective mRNA expres-
sion obtained by in situ hybridization histochemistry, and
thus remains less well characterized. 
From pharmacological characterization in human and
basic studies in animal models there is evidence that 5-HT
receptor density at the surface of the neuronal elements
and their activity vary. A sustained stimulation of 5-HT
receptors by agonist or endogenous 5-HT results in atten-
uated receptor responsiveness (or desensitization), intra-
cellular sequestration (or internalization) and receptor

recycling back to the membrane (eg, see refs 108, 109).
Such mechanisms involve the activation of protein kinase
C, phospholipase D and binding to arrestin proteins,
uncoupling the transduction by G-protein subunits.105,106

When stimulated by released 5-HT or 5-HT agonists,
somatodendritic 5-HT1A autoreceptors in the raphe nuclei
and 5-HT1B/1D autoreceptors in 5-HT terminal areas rep-
resent a powerful feedback mechanism, decreasing both
the firing of the 5-HT neurons and the release of the neu-
rotransmitter. Besides other neuroplastic changes, long-
term desensitization and sequestration of these 5-HT
receptor subtypes could be implicated in the delayed
response of anxiolytic/antidepressants (SSRIs, buspirone,
etc). Perhaps of special interest in psychosis, heterologous
desensitization of 5-HT1A receptors by 5-HT2A receptor
activation and close relationships between 5-HT, SERT,
and 5-HT2A receptor densities were recently demon-
strated in the living human brain.110 Desensitization is not
restricted to metabotropic receptors. Indeed desensitiza-
tion of 5-HT3 receptor channels following sustained stim-
ulation may play a critical physiological role in the regu-
lation of neuronal excitability via this receptor.111

Intriguingly, homodimerization between 5-HT receptors
(eg, 5-HT2A, 5-HT2C, 5-HT4 receptors) or even het-
erodimerization, an aggregate of two unrelated recep-
tors, such as a 5-HT2A/ metabotropic glutamate recep-
tor 2 dimerized complexes integrating both 5-HT and
glutamate signaling, were reported in the human cor-
tex.112 Furthermore, this complex could increase the
affinity of 5-HT2A receptors for hallucinogenic com-
pounds such as LSD.113 It was also recently reported that
the internalization of CRF1 receptors by a CRF agonist
enhances 5-HT2A signaling and anxiety-related behav-
ior by recycling this receptor to the plasma membrane
from an intracellular pool.114,115 Finally, a variety of pro-
teins including β-arrestins, serine/threonine protein
kinases, protein phosphatase and tensin homolog, cal-
pactin, and PDZ proteins interact with 5-HT receptor
subtypes, modifying their functional activity.105,116 They
represent putative new targets for treatment of mood
disorders and addiction.
Thus, the status and function of 5-HT receptors in the brain
depend on a multiplicity of factors including crosstalk with
other homologous and heterologous receptors.106

As illustrated in Figure 2, 5-HT availability in the extra-
cellular space and target receptor functions are regu-
lated at multiple levels, some of them being closely
linked (eg, 5-HT1A, 5-HT1B/1D feedback mechanisms).
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Anatomical organization of 
5-HT circuitries in the brain

Morphological approaches in the brain

The respective scales of morphological approaches in the
brain are called in Figure 3. Thus, imaging of the human
living brain provides nowadays an incredible amount of
information on functionally linked regions and, accord-

ing to the availability of selective radiotracers, on milli-
metric clusters of binding sites. Morphological
approaches including immunohistochemistry, in situ
hybridization histochemistry and autoradiography allow
to visualize a nucleus like the dorsal raphe, as well as a
single labeled neuronal element of approximately one
micrometer in diameter (eg, an axon varicosity) in brain
tissue sections (Figure 3). Electron microscopy studies in
the human brain and, more often, in other mammalian
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Figure 2. The serotonergic neurotransmission depends on serotonin (5-HT) levels present in the extracellular space and on membrane receptors trig-
gering functional changes in neighbouring neuronal elements. 5-HT synthesis, release and reuptake are regulated by several mechanisms
including feedback inhibition by 5-HT1A, 5-HT1B/1D autoreceptors and α-2 adrenoceptors. Other mechanisms of regulation are receptor
dimerization and desensitization affecting their trafficking and functionality. See text for further details.
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species give ultrastructural details (eg, junctions between
neuronal elements or 5-HT1A receptor internaliza-
tion).117

Cellular mapping of 5-HT-producing neurons in the
CNS

Due to the postmortem instability of 5-HT118 and other
possible methodological bias,119 quantitative biochemi-
cal estimation of 5-HT in the human brain subdivisions
should be interpreted with caution, as illustrated by the
numerous discrepant data reported since the 1950s. For
the same reason, morphological approaches by
formaldehyde-induced fluorescence or immunohisto-
chemistry using antibodies against 5-HT are limited to
biopsies and fetal brain tissues. Most of the anatomical
studies in human are based on regional autoradiography
of SERT binding sites to selective radioligands and
immunohistochemical studies using antibodies against
TPOH, which represent more stable postmortem mark-
ers. Therefore, from these studies and those performed
in much detail in other species including rodents,120 cat,121

and nonhuman primates,122 it appears that the anatomy
of the serotonergic system has remained somewhat sim-
ilar between different species of mammals.
The 5-HT systems belong to the neuronal systems com-

posed of a restricted number of neurons emitting exten-
sively branched, non- or poorly myelinated axons that
innervate almost all brain nuclei. As first described in
human fetuses123,124 and later in adults by several
authors,125-129 the distribution of the 5-HT cell bodies
(approximately 350 000 cells) in the human brain is
restricted to the brain stem. As illustrated in Figure 1, a
large majority of them is concentrated along the midline
in the raphe nuclei, extending from the caudalmost level
of the medulla oblongata to mid-level of mesencephalon,
but a substantial number is located in the reticular for-
mation lateral to these nuclei. The 5-HT neurons form a
continuum of cells with loosely defined boundaries along
the raphe nuclei. On the basis of studies of cell body
localization and their respective projections, the 5-HT
neurons can be separated into two groups: a rostral
group located in the mesencephalic and rostral pons,
sending axons to the forebrain, and a caudal group lying
in the rostral pons and medulla oblongata, sending axons
in the brain stem and spinal cord (refs in ref 128) In
humans, the rostral group contains approximately 85%
of the 5-HT neurons. It is composed of neurons located
in four nuclei and one area, namely the interpeduncular,
the caudal linear, the dorsal raphe (DRN with 165 000
neurons) and the median raphe (MRN with 64 000 neu-
rons) nuclei. The additional area corresponds to the cau-
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Figure 3. Photographs illustrating the different scales provided by the different anatomical methods used to investigate the brain. In vivo imaging
allows regional analyses (from the whole brain to groups of neurons), whereas electron microscopy provides images of neuronal cell bod-
ies and is particularly useful to visualize axonal varicosities and their contacts with neighboring elements. In between are autoradiography,
in situ hybridization, and immunohistochemistry. DRN, dorsal raphe nucleus.
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dal mesencephalic and rostral pontine reticular forma-
tion. 5-HT neurons spread in this area were already
observed in the rat and cat species and their large num-
ber estimated in human (60 000 neurons).
The caudal group accounts for 15% of all the 5-HT neu-
rons. It is composed of 5-HT neurons located in three
raphe nuclei, namely the raphe magnus (30 000 neu-
rons), the raphe obscurus, and the raphe pallidus (1000
neurons), and in the ventral medullary reticular forma-
tion lying lateral to the raphe magnus and the pyramids.
As noted earlier, the rostral and caudal groups have sep-
arate afferent projections, with, however, some overlap-
ping in the brain stem and as far down as the spinal cord.
The trajectories of the efferent pathways have been
studied in laboratory animals, often combining retro-
grade tracing with immunohistochemistry. Thus, a rostral
and a ventral pathway emerge from the rostral group,
rapidly join ventrally and split again into a lateral pro-
jection running in the internal capsule to innervate the
lateral cortex and a longitudinal rostral projection run-
ning in the medial forebrain bundle to innervate the
hypothalamus, basal forebrain, septum, basal ganglia,
and amygdala. This rostral projection extends into the
cingulum and innervates the medial cortex and the hip-
pocampus.
The density of innervation in terminal areas reported in
certain human brain areas has been extensively studied
in cat and rodents. This density greatly varies from one
region to the other and also within a region (Figure 1).
In the cerebral cortex, the superficial layer receives more
axons than the other layers. A dense innervation is
observed in the ventromedial part of the caudate-puta-
men and in the globus pallidus. Ventral to them, the sub-
tantia innominata is also richly supplied in 5-HT termi-
nals. In the amygdala, the basal nucleus stands out for its
very high number of 5-HT axons. In humans, like in ani-
mals, the 5-HT axons innervating the cortex and the hip-
pocampus display two different morphologies.130 One
category of axons bears spaced small and elongated vari-
cosities while the other category displays closely spaced,
large, and round varicosities. It can be noted that the two
populations of axons show several interesting properties.
First, they are respectively issued from two different
raphe nuclei, the DRN and the MRN. Second, the small
varicose axons correspond to the numerous 5-HT axons
not engaged in true synaptic contacts. For example, it is
remarkable that only 5% of the varicosities display
synapses in the rat frontoparietal cortex.48 Thirdly, and

of special clinical interest, the small varicose axons are
more susceptible to degeneration caused by ampheta-
mine derivatives, like ecstasy.131 The caudal group of 5-
HT neurons sends axons both laterally in the reticular
formation and downwards in the spinal cord. In the
reticular formation, the 5-HT axons are particularly
abundant in the cranial motor nuclei (trigeminal, facial
and hypoglossal). In the spinal cord, the 5-HT axons ter-
minate in all subdivisions and along the whole length of
the cord. In the dorsal horn, the superficial layers are
densely innervated. In the intermediate gray, the pre-
ganglionic sympathetic neurons of the intermediolateral
column are densely surrounded by 5-HT axons. In the
ventral horn, the 5-HT axons are in close apposition to
the motor neurons, especially in primates.132

In vivo imaging of the brain serotonergic systems

Structural and functional tomography through the living
brain is currently possible. Powerful tools, such as
positron emission tomography (PET), single photon
emission computed tomography (SPECT), magnetic res-
onance imaging (MRI), and pharmacological MRI
(phMRI),133-135 add new information on the functional
anatomy of the serotonergic systems in the human brain.
PET and SPECT neuroimaging respectively use
positron–emitting nuclides (18F, 11C) and gamma-emit-
ters (123I, 125I) coupled to a small heterocyclic com-
pound selective for one 5-HT receptor subpopulation,
SERT or MAO A.87,136,137 Since the radiotracer is injected
at trace level, 5-HT receptors or SERT can be localized
in vivo and their relative concentration/affinity esti-
mated from binding potential (BP). A submillimeter spa-
tial resolution is commonly reported in PET and SPECT
studies. However, at the present time very few radio-
tracers selective for SERT, 5-HT1A, 5-HT1B, 5-HT2A,
and 5-HT4 receptors are available.87,134,136-140 The design of
new radiopharmaceuticals for in vivo imaging is con-
strained by several criteria including brain penetrability,
target selectivity, and the absence of troublesome
radiometabolites.141 Additionally, when using radiola-
beled glucose analogs, PET and SPECT modalities pro-
vide information on blood flow and in some circum-
stances may reflect a local activity of nervous cells
following a specific pharmaceutical treatment (eg, anxi-
olytics, antidepressants). Offering a better spatial and
temporal resolution, phMRI represents another imaging
method based on the hemodynamic response to changes
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in neuronal activity induced by pharmacological manip-
ulations. This emergent imaging modality providing an
indirect measure of aggregated neuronal function could
have an important impact on future 5-HT research in
the living human brain.133,135

Despite the limited number of available radiotracers, in
vivo imaging of 5-HT function gains more and more
interest in basic research as well as in clinical medicine.
For example, recent publications suggest a lateralization
of 5-HT1A binding in language areas (auditory cortices)
and sex differences in cortical and subcortical brain
areas of healthy subjects.142 A selective interrelation
between 5-HT1A distribution, sex hormones, and
aggression score in humans was also demonstrated by in
vivo imaging and biochemical analyses.143 More intrigu-
ingly, PET imaging studies clearly indicate that 5-HT2A
receptor binding in the cortex is positively correlated to
the body mass index144 and the response in painful heat
stimulation.145 Furthermore, it was reported that an
inverse relationship between 5-HT2A receptor and
SERT BPs in the neocortex might be the result of inter-
individual differences in baseline 5-HT levels.110 Mainly
based on SERT binding, PET studies support a loss of
serotonergic pathway integrity in ecstasy users146 and
patients suffering from schizophrenia, Alzheimer’s and
Parkinson’s diseases, whereas they were more inconclu-
sive for assessing human depression,.137,147 Further, 5-HT
dysfunction due to certain genetic variations in SERT
and 5-HT receptor sequences is now detectable by func-
tional neuroimaging.87,148-150

Although not quite completely understood, these recent
data from living human brain imaging support and often
greatly extend, previous data obtained by conventional
postmortem investigations.

Serotonergic circuitries in function

Serotonergic circuitries chiefly include 5-HT-producing
neurons, 5-HT-autoreceptors (ie, somatodendritic 5-
HT1A receptors, 5-HT1B/1D receptors in terminal end-
ings) and other neurotransmitter or hormone receptors
including alpha-adrenoceptors, CRF receptors,
tachykinin receptors, estrogen receptor beta and more
recently demonstrated, oxytocin receptors151 involved in
neuronal firing and 5-HT release. Functionally connected
neuronal elements bearing 5-HT-heteroreceptors (often
called postsynaptic or perisynaptic receptors, see below)
are obviously another major component of the seroton-

ergic neurotransmission.100,152,153 Additionally, classical neu-
rotransmitters (eg, GABA, glutamate, dopamine, nora-
drenaline), peptidergic neuromodulators (eg, substance
P), and endocannabinoid coexpression within 5-HT neu-
rons also contribute to the serotonergic function.154,155

Considering that in several brain areas, including the neo-
cortex and the hippocampus, 5-HT wired neurotrans-
mission (WT) via true synapses coexists with volume
transmission (VT), the terms pre- and postsynaptic
should be used with caution. In fact, distances between
release sites and receptors are not of the same magni-
tude, generally a few nm for WT vs up to 10 µm for VT.
Thus, some authors consider that neuropsychoactive
drugs act rather as volume transmission signals.156

Due to ethical and methodological limitations, our
knowledge on neurotransmitter circuitries and their
interconnections in human CNS largely benefits from
that described with much detail in nonhuman primates
and other species including cat and rodents. In labora-
tory animal species, the anatomical distribution of brain
5-HT neurons was often completed by other approaches
such as transneuronal retrograde transport, selective
lesions, microdialysis, electrophysiology associated with
pharmacological manipulations, and more recently
developed wireless fast-scan cyclic voltametry, a promis-
ing tool for the in vivo monitoring of 5-HT in the
brain.157 Therefore, the circuitries of serotonergic neu-
rons in the human brain are mainly based on those
known in other mammals. In spite of obvious species dif-
ferences concerning the relative size and functional
development of certain brain structures (eg, certain neo-
cortical subdivisions, the olfactory system), behavioral
effects of neurological lesions or other disease processes
and neuroanatomopathological studies in human sug-
gest that on the whole, serotonergic circuitries serve
comparable basic functions among mammals. However,
contemporary neuroimaging technologies mentioned
above (especially functional and pharmacological MRI,
and PET) combined with behavioral approaches, offer a
variety of new opportunities for the investigation of the
limbic system in the living human brain.134,149,158,159 Thus,
recent articles report the exploration of the corticolim-
bic circuitries in relation to emotion and cognition.158,160,161

Multimodal in vivo imaging studies add new information
on the medial prefrontal cortex and amygdala cou-
pling,160 providing an advanced knowledge on the brain
mechanism of certain pathophysiological effects of social
anxiety disorder.134
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As described above, 5-HT neurons send axons and ter-
minals throughout the entire brain and therefore can
potentially interact with almost all the other neuronal
systems via the diversity of 5-HT heteroceptors (ie,
receptors expressed by neurons that do not synthesize 5-
HT).100 Recent investigations in mice indicate that other
mechanisms could also contribute to the 5-HT signaling.
Thus, it was demonstrated that local infusion of fluoxe-
tine (a SSRI) in the dorsal raphe nucleus stimulates the
secretion of the protein S100-beta by 5-HT neurons pro-
jecting to the locus cereuleus. This protein downregulates
the microRNA miR-16 in noradrenergic neurons which
in turn switch on serotonergic functions.90

Reciprocally, classical neurotransmitters, especially
GABAergic, catecholaminergic, glutamatergic, choliner-
gic, and histaminergic systems, influence the serotonergic
neurotransmission at different sites, including the raphe
nuclei. It is well known that the raphe nuclei contain col-
lections of non-5-HT neuronal elements (eg, GABAergic,
glutamatergic, cholinergic, histaminergic, dopaminergic,
noradrenergic) interacting with 5-HT cell bodies via their
respective receptor subsets.162,163 Moreover, the richness in
heteroreceptors (eg, alpha2-adrenoceptors, glutamatergic,
histaminergic receptors) expressed by 5-HT terminals and
other local mechanisms (eg, vesicular-filling synergy)
mentioned above illustrate the extent of the reciprocal
chemocommunication between serotonergic circuitries
and other neurotransmitter networks. 
Other interactions of clinical importance concern the
interaction between serotonergic neurotransmission and
neuropeptidergic systems. It is well known that 5-HT influ-
ences the activity of the hypothalamo-pituitary-adrenal
axis at multiple levels, playing a role in stress-related dis-
orders. Thus, 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C
receptor agonists enhance CRH and ACTH secretion and,
consecutively, cortisol and other hormone levels in the
plasma.164,165 In turn, corticosteroids attenuate the activity
of 5-HT1A receptors in the dorsal raphe nucleus, the hip-
pocampal formation and the frontal cortex. Many other
interactions between the serotonergic and the peptidergic
systems (eg, ACTH, cholecystokinin, CART peptide, neu-
ropeptide Y, ghrelin) are implicated in the sleep-wake
rhythm and feeding. Other factors known to locally influ-
ence 5-HT neurotransmission are neurosteroids (eg, prog-
esterone in the hypothalamus),166 lipids,167 and neurotrophic
factors (eg, BDNF in the hippocampus).168

Although not exhaustive, most all of the reciprocal inter-
actions exemplified above involve specialized receptors.

Concluding remarks

It is conceivable that the list of molecular factors that act
in 5-HT circuitries is still incomplete. The discovery of
TPOH2 is less than 7 years old. Intriguingly, a very
recent study in double (TPOH1/TPOH2) knockout mice
mentioned a residual 5-HT synthesis, suggesting addi-
tional 5-HT synthetic pathway(s).169 Further, it can rea-
sonably be assumed that 5-HT receptor subtypes result-
ing from postranslational editing or alternative splicing
mRNA are not restricted to 5-HT2C, 5-HT3, 5-HT4, and
5-HT7 receptor families. There is also a growing list of
proteins playing a role in the regulation of SERT and 5-
HT receptor activity. Beyond the diversity of 5-HT
receptor subtypes, their crosstalk modalities, and their
local ability for adaptation, volume transmission demon-
strated in several brain regions adds to the complexity
of the serotonergic circuitries. Such complexity may
explain why small subpopulations of cell bodies sending
axons throughout the entire brain may produce such a
large spectrum of effects in brain functions. Molecular
and cellular studies in laboratory animal models (mutant
mice, Caenorhabditis elegans, cell lines) and postmortem
human brain have enabled us to explore the serotoner-
gic system and will certainly continue to do so.
Undoubtedly, improvement of the specificity and spa-
tiotemporal resolution of in vivo imaging modalities cou-
pled or not to pharmacological manipulations will also
significantly contribute to a better knowledge of 5-HT
circuitries, specifically in the living human brain. As
already mentioned, human brain structures associated
with emotional processing, attention, and some other
cognitive functions, are currently being investigated by
MRI. TEP modalities allow the visualization of recep-
tors including 5-HT receptors. A next step in functional
neuroimaging will be hybrid-scanner systems that com-
bine both technologies.170

Finally, our reviewing on brain serotonergic circuitries
has not taken into account the next level of complexity,
ie, the fact that the role of other neurotransmitters is not
limited to the modulation of 5-HT neuron activity.

Appendix—glossary

Autoreceptors/heteroreceptors 
Autoreceptors are membrane receptors expressed by
neurons that synthesize the neurotransmitter binding to
these receptors, eg, 5-HT1A or 5-HT1B localized on 5-
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HT neuronal elements. In contrast, heteroreceptors are
membrane receptors born by neurons that do not pro-
duce the corresponding neurotransmitter, eg, alpha2-
adrenoceptors on 5-HT neuronal elements.

Heterologous desensitization 
A sustained stimulation of a receptor by one agonist
results in a homologous desensitization of this receptor
(eg, 5-HT1A receptor desensitization by buspirone).
Heterologous desensitization occurs when the binding
of one agonist to a receptor subtype induces the attenu-
ation of another receptor signaling (eg, desensitization
of hypothalamic 5-HT1A receptors following 5-HT2A
activation, desensitization of 5-HT2A receptors by acti-
vation of 5-HT1A receptors in the same region). 

Homodimerization/heterodimerization 
Most membrane G protein-coupled receptors exist as
dimers or oligomers. A complex formed by two identical
receptors (eg, 5-HT2A/5-HT2A; 5-HT2C/5-HT2C recep-
tors) is called a homodimer, whereas a complex formed
by unrelated receptors is heterodimer (eg, 5-HT2A/
Glutamate receptor 2; 5-HT2A/D2 receptors).
Dimerization occurs during transport of newly formed
receptors to the cell surface. The homo- or heterodimeric
complexes influence the signaling and internalization of
receptors.

MicroRNAs
MicroRNA are small noncoding RNAs mediating post-
transcriptional gene regulation (mostly translational
repression). Thus, it was recently demonstrated that flu-
oxetine infusion in the dorsal raphe nucleus increases
the level of a microRNA called miR-16 and conse-
quently downregulates the mRNA and protein expres-
sion of the membrane serotonin transporter.

Somatodendritic receptors 
Somatodendritic receptors are localized on the mem-
brane of the cell bodies (soma) and dendrites of neurons,
eg, the somatodendritic 5-HT1A receptors in the dorsal
raphe nucleus.

Symporters
A family of membrane molecules coupling the trans-
membrane movement of a transmitter (monoamine or
amino acid) to the transport of ions (mainly Na+, K+ and
Cl-). Neurotransmitter transporters (also called neuronal
or membrane transporters) play a major role in the reg-
ulation of neurotransmission by energy-dependent reup-
take of the neurotransmitters from the extracellular
space. The neurotransmitter is then recycled by a vesic-
ular transporter (eg, monoamine vesicular transporters)
or degraded. 

Vesicular-filling synergy
Vesicular-filling synergy (or vesicular synergy) first
reported in cholinergic neurons was also detected in 5-
HT circuitries, especially in limbic areas (hippocampus,
prefrontal cortex). The coexpression of a vesicular glu-
tamate transporter (VGLUT3) and a vesicular
monoamine transporter (VMAT2) on the same vesicles
of 5-HT terminal subpopulations represents a local syn-
ergic mechanism between glutamate and 5-HT neuro-
transmitters. It was demonstrated that glutamate reup-
take stimulates vesicular 5-HT accumulation by
VMAT2. Thus, 5-HT transmission is locally tuned by glu-
tamate.

Wiring/volume neurotransmission 
In wiring neurotransmission the communication
between neurons operates via specialized junctional
complexes including synapses (intercellular space in the
synaptic cleft around 20 nm). The interneuronal com-
munication without junctional complexes is called dif-
fuse (or volume) neurotransmission and was identified
in serotonergic, catecholaminergic, cholinergic, and sev-
eral other transmitter systems. The neurotransmitter
released in the extracellular space reaches target recep-
tors localized up to several µm from the source (axon
varicosities or terminals). 5-HT volume neurotransmis-
sion is frequently observed in the neocortex, the hip-
pocampus, and several other brain areas. For more
details on the functional consequences see the refer-
ences indicated in the text. ❏
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Circuitos serotoninérgicos cerebrales

Los circuitos serotoninérgicos cerebrales interactúan
con otros sistemas de neurotransmisión en una infi-
nidad de diferentes niveles moleculares. En huma-
nos, como también en otras especies de mamíferos,
la serotonina (5HT) tiene un papel modulador en
casi todas las funciones fisiológicas. Además se pos-
tula que la disfunción serotoninérgica participa en
diversos trastornos psiquiátricos y neurodegenera-
tivos. Se describe la neuroanatomía y la neuroquí-
mica de los circuitos serotoninérgicos cerebrales.
También se discute la contribución de novedosos
métodos de imágenes in vivo para la localización
regional de sitios de unión de receptores y ciertos
aspectos de su conectividad funcional en relación
con la conducta. Los cuerpos de 5-HT, localizados
principalmente en los núcleos del rafe, envían axo-
nes a casi todas las regiones cerebrales. Se argu-
menta que la especificidad de la comunicación quí-
mica local entre 5-HT y otros elementos neuronales
depende principalmente de mecanismos que regu-
lan la concentración extracelular de 5-HT, de la
diversidad de receptores de membrana de alta afi-
nidad y de sus modalidades de transducción espe-
cíficas. 

Circuits sérotoninergiques centraux

Les circuits sérotoninergiques centraux sont le
théâtre d’une myriade d’interactions moléculaires
dévolues à leur communication. Chez l’homme
comme chez les autres espèces, la sérotonine (5-HT)
joue un rôle modulateur dans la presque totalité
des fonctions physiologiques. De plus, un dysfonc-
tionnement des systèmes sérotoninergiques est pré-
sumé impliqué dans diverses pathologies psychia-
triques et neurodégénératives. Nous décrivons en
détail les circuits sérotoninergiques centraux à par-
tir d’études neuroanatomiques postmortem. La
contribution des approches modernes in vivo per-
mettant la localisation régionale de récepteurs et
certains aspects de leur fonctionnalité corrélée à
des comportements sont aussi discutées. Les corps
cellulaires à 5-HT principalement localisés dans les
noyaux des raphés projettent des axones dans la
plupart des régions du cerveau. Ainsi la spécificité
de la communication chimique locale établie entre
les éléments neuronaux à 5-HT et les autres dépend
de mécanismes régulant la concentration extracel-
lulaire en 5-HT, de la diversité des récepteurs mem-
branaires de haute affinité et de leurs modalités de
transduction.
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