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Abstract: Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden
cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT)
in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science,
the molecular mechanisms of apoptosis in methamphetamine-dependent rats are still unclear. The
present article aimed to investigate the changes in cardiac apoptosis markers in methamphetamine-
dependent rats in response to HIIT. Left ventricular tissue was used to evaluate caspase-3, melusin,
FAK, and IQGAP1 gene expression. Rats were divided into four groups: sham, methamphetamine
(METH), METH-control, and METH-HIIT. METH was injected for 21 days and then the METH-HIIT
group performed HIIT for 8 weeks at 5 sessions per week. The METH groups showed increased
caspase-3 gene expression and decreased melusin, FAK, and IQGAP1 when compared to the sham
group. METH-HIIT showed decreased caspase-3 and increased melusin and FAK gene expression
compared with the METH and METH-control groups. The IQGAP1 gene was higher in METH-HIIT
when compared with METH, while no difference was observed between METH-HIIT and METH-
control. Twenty-one days of METH exposure increased apoptosis markers in rat cardiac tissue;
however, HIIT might have a protective effect, as shown by the apoptosis markers.
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1. Introduction

Methamphetamine (METH) is a sympathomimetic amine that can be consumed by
smoking, inhalation, ingestion, or injection [1]. Chronic METH use causes cardiomy-
opathy [2] with increased cardiac cells apoptosis, which might lead to heart failure and
death [3].

Some molecular markers related to apoptosis factors are proteases called caspases,
which degrade the nuclear and cytoskeletal proteins, resulting in cell death [4,5]. Among the
members of the caspase family, caspase-3 expression has been shown to induce transient
depression in cardiac function and abnormal nuclear and myofibrillar ultrastructural
damage, leading to increases in infarct size and a pronounced susceptibility to death in
rats [6].

Melusin is a chaperone protein expressed specifically in cardiac and skeletal mus-
cles [7]. Melusin helps to regulate natural heart rhythm and contraction, as well as
reduce infiltration of inflammatory cells, fibrosis, and cardiomyocyte apoptosis, thus
helping to preserve heart morphology and function [8,9]. In cardiomyocytes, melusin
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interacts with other signaling proteins that work in these pathways, including focal ad-
hesion kinase (FAK), IQ-motif-containing GTPase activating protein 1 (IQGAP1), c-Raf,
mitogen-activated/extracellular signal–regulated protein kinase kinases 1/2 (MEK1/2),
extracellular-signal-regulated kinase 1/2 (ERK1/2), and phosphatidylinositol 3 kinase
(PI3K) [10,11]. FAK and IQGAP1 are both integrin pathway proteins. FAK is involved
in the activation of ERK1/2 in response to mechanical stretch, and IQGAP1 is a scaf-
fold protein capable of binding to many other proteins, including c-Raf, MEK1/2, and
ERK1/2, facilitating their sequential phosphorylation [10]. Previous studies have shown
that FAK and IQGAP1 with melusin have protective effects against myocardial damage
and apoptosis [12–14].

Previous studies have shown that 14 days of METH injection (1 to 5 mg/kg) reduced
protein expression of melusin, FAK, and IQGAP1, and increased cleaved caspase-3 expres-
sion in rats [15]. Based on this, it can be suggested that melusin might be a mediator of car-
diac tissue damage induced by METH. On the other hand, non-pharmacological methods,
especially exercise training, has been shown to prevent and treat different cardiovascular
diseases [16] and to prevent cardiomyocyte death in many different circumstances [17–19].
Among the different exercise modalities, high-intensity interval training (HIIT) has been
gained increased attention for its potential cardiovascular benefits [20–22].

The mechanisms of exercise-induced cardio protection, especially against apoptosis,
are not fully understood; however, molecular analysis might help to explore the potential
mechanisms, such as apoptosis-related protein expression, decreased release of mitochon-
drial apoptogenic factors, and changes in reactive oxygen species (ROS) and antioxidant
status [23]. In this regard, Lu et al. [24] analyzed the effects of HIIT on apoptosis, oxidative
stress, and metabolism in rats with an infarcted myocardium, showing reduced caspase-3
gene expression. In contrast, Banaei et al. [25] showed that rats with myocardial ischemia–
reperfusion injury showed no reduction in caspase-3 protein in response to HIIT. Moreover,
Wolff et al. [26] observed that 10 weeks of training on a treadmill increased the melusin
mRNA concentration in rats with myocardial infarction and pericardiectomy.

Considering the medical and social burden of METH use, it would be important to
explore the molecular aspects of potential strategies to prevent damage to health [27],
especially to the heart. Therefore, the aim of the present study was to investigate the effects
of 8 weeks of HIIT on caspase-3, melusin, FAK, and IQGAP1 gene expression in cardiac
tissue of METH-dependent rats.

2. Materials and Methods
2.1. Study Design and Animals

The present study is experimental and fundamental research. The study was approved
by the University Ethics Committee and followed ethical principles regarding how to work
with laboratory animals. Forty-five male Wistar rats, weighing between 180 and 220 g,
were purchased from an animal farm. We opted to use only male rats because the hormonal
fluctuations that occur in females might interfere with our intervention and tests. Rats
were kept at room temperature (21 ± 2 ◦C) and 40–60% humidity under a 12-h sleep–wake
cycle and free access to standard food pellets and water. Rats were divided into four
groups—sham, METH, METH-control, and METH-HIIT—using a simple random method
(lottery), as shown in Figure 1.

2.2. METH Injection

During 21 consecutive days, rats from the METH, METH-control, and METH-HIIT
groups were injected with 5 mg/kg METH dissolved in physiological saline solution
(0.9% sodium chloride) [15,28]. The sham group received 0.5 mL of physiological saline
solution After 21 days, rats from the METH and sham groups were sacrificed and heart
tissue was extracted. METH-HIIT and METH-control continued the intervention for eight
more weeks.
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Figure 1. Study design. METH: methamphetamine; HIIT: high-intensity interval training.

2.3. Exercise Training Protocol

The METH-HIIT group underwent a one-week familiarization period before starting
the training intervention. During this period, rats exercised on a treadmill for 10 min at
10 to 20 m/min per session [25]. Electric shock (0.5 mA) was also used for stimulating
rats to run. Two days after the last familiarization session, they performed a maximum
incremental treadmill test. The test started at 10 m/min and increased 3 m/min every
3 min [29]. HIIT was performed at 85% of the maximum speed with no inclination. HIIT
was performed five days per week for eight weeks on a rodent treadmill, as shown in
Table 1.

Each training session started with six minutes of warm-up and ended with six minutes
cool down at 8 m/min. Rats in the METH-control group were placed on a turned-off
treadmill 5 times a week for 5 to 10 min per session to have the same environmental stress
conditions as the METH-HIIT group.

2.4. Tissue Extraction

Tissue extraction was performed at two moments. First, after 21 days of METH or
sham injection for the sham and METH groups. Second, 24 h after the last training session
for the METH-control and METH-HIIT groups. Rats were anesthetized with CO2 gas and
then sacrificed by decapitation. The hearts were immediately excised, and then the left
ventricle was separated. Left ventricular tissue samples were transferred to microtubes,
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frozen in liquid nitrogen, and stored at −70 ◦C to evaluate the caspase 3, melusin, FAK,
and IQGAP1 genes’ expression.

Table 1. Characteristics of the high-intensity interval training.

Weeks 1 2 3 4 5 6 7 8

Number of intervals 4 4 4 4 4 4 4 4

Effort duration (min) 2 2 2 2 2 2 2 2

Effort velocity
(m/min) 22 24 26 28 30 32 34 36

Rest duration 2 2 3 3 4 4 4 4

Rest velocity (m/min) 10 10 11 11 12 12 13 13

2.5. Primer Design and Synthesis

The primer sequences of the caspase-3, melusin, FAK, IQGAP1, and GAPDH (Glyceraldehyde-
3-Phosphate Dehydrogenase) genes used in this study were designed by Primer-Blast (NCBI)
online software (Table 2) and synthesized by Sinaclon Co., Tehran, Iran.

Table 2. Primer sequences in this research.

Gene Name Forward Primer Reverse Primer

Caspase-3 5′-GCAGCAGCCTCAAATTGTTGACTA-3′ 5′-TGCTCCGGCTCAAACCATC-3′

Melusin 5′-GGGTGAAGGCCAGTCAAACT-3′ 5′-TGCTCCACGTTTATGACCCC-3′

FAK 5′-CTTAATCTGGCCAGGACGGT-3′ 5′-GAAGCACGGTTTGAGAGGTG-3′

IQGAP1 5′-ACAATCTGGAGACGCAAGCA-3′ 5′-AGCTGCTCTCGGTTATACGC-3′

GAPDH 5′-CAACTCCCTCAAGATTGTCAGCAA-3′ 5′-GGCATGGACTGTGGTCATGA-3′

FAK: focal adhesion kinase; IQGAP1: IQ-motif-containing GTPase activating protein 1; GAPDH: glyceraldehyde-
3-phosphate dehydrogenase.

2.6. RNA Extraction and cDNA Synthesis

RNA extraction was performed using TRIzol solution (Yekta Tajhiz Azma, Tehran,
Iran) according to the manufacturer′s protocol for all samples. For this purpose, 50 mg of
left ventricular tissue was lysed in TRIzol solution. For extracting the RNA, chloroform
and isopropanol was used, which was then washed with 75% ethanol. All samples were
analyzed by a Picodrop device (Picodrop limited, Hinxton, UK) to evaluate the quantity
and quality of the RNA extracted. The cDNA synthesis was performed by the reverse
transcription method from RNA extracted using a cDNA synthesis kit (Cat No: YT4500,
Yekta Tajhiz Azma, Tehran, Iran) and based on the cDNA synthesis protocol included in
the kit.

2.7. Real Time RT-PCR

Genes expression levels was measured by Real-Time PCR (qRT-PCR) (Rotor Gene Q,
Qiagen, Germany). Real Q Plus 2x Master Mix Green-high Rox™ (Ampliqon, Denmark),
cDNA, and synthesized primers were used for this step. The temperature profile was
as follows: initial denaturation at 95 ◦C for 15 min followed by 40 consecutive cycles of
denaturation at 95 ◦C for 10 s, annealing at 60 ◦C for 20 s, and extension at 72 ◦C for 20 s.
The amplification curve of each PCR reaction was normalized with the amplification curve
of the GAPDH reference gene. The 2−∆∆CT formula was also used to determine the gene
expression in the present study.

2.8. Statistical Analysis

A Shapiro–Wilk test was used to check the normality of the data. Welch′s ANOVA
test was used to examine the differences between groups and Dunnett′s T3 multiple
comparisons test was used to determine the differences between pairs of groups. All
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the statistical analyses were performed using GraphPad Prism software, version 8, and a
p-value < 0.05 was considered significant.

3. Results

The result of the Welch′s ANOVA showed a significant difference between the sham,
METH, METH-control, and METH-HIIT groups for caspase-3 (p = 0.0014), melusin (p < 0.0001),
FAK (p < 0.0001), and IQGAP1 (p < 0.0001) genes expression.

Dunnett′s T3 multiple comparisons showed that caspase-3 gene expression signif-
icantly increased for the METH group when compared to the sham group (p = 0.0266).
Caspase-3 expression in METH-HIIT was significantly lower than in METH (p = 0.0381) and
METH-control (p = 0.0319). The METH-control group’s caspase-3 expression was higher
than that of the sham group (p = 0.0193) (Figure 2a).
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Figure 2. Effects of METH injection and HIIT program on the gene expression levels in the left
ventricle (the data are presented as the mean ± SEM): (a) caspase-3 gene expression; (b) melusin
gene expression; (c) FAK gene expression; (d) IQGAP1 gene expression. *, significant differences
between the METH and sham groups; #, significant differences between the METH-control and
sham groups; †, significant differences between the METH-HIIT and METH groups; ‡, significant
differences between the METH-HIIT and METH-control groups; £, significant differences between the
METH-control and METH groups. METH: methamphetamine; HIIT: high-intensity interval training;
FAK: focal adhesion kinase; IQGAP1: IQ-motif-containing GTPase activating protein 1.
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Melusin gene expression was significantly decreased for METH when compared to
the sham group (p < 0.0001). Cardiac melusin gene expression was higher in METH-HIIT
compared to METH (p = 0.0062) and METH-control (p = 0.0058). Melusin gene expression
for METH-control was lower than for the sham group (p < 0.0001) (Figure 2b).

Dunnett′s T3 multiple comparisons showed that METH had significantly lower FAK
gene expression when compared with the sham group (p < 0.0001). FAK gene expression
was significantly increased in the METH-HIIT group compared with METH (p = 0.0063)
and METH-control (p = 0.0324). The expression of this gene in the METH-control group
was lower than for the sham group (p = 0.0226) (Figure 2c).

Dunnett′s T3 multiple comparisons test showed that after 21 days of METH injection,
IQGAP1 gene expression in the METH group was significantly reduced when compared to
the sham group (p < 0.0001). After 8 weeks of HIIT, IQGAP1 expression in METH-HIIT was
significantly higher than in METH (p = 0.0254), but similar to METH-control (p = 0.4569).
IQGAP1 gene expression was higher in the METH-control group than in METH (p = 0.0409)
and lower than the sham group (p = 0.0121) (Figure 2d).

4. Discussion

The present study aimed to investigate changes in cardiac apoptosis markers in METH-
dependent rats after eight weeks of high-intensity interval training. The results showed
that 21 days of METH injection increased the caspase-3 gene expression and decreased
the expression of melusin, FAK, and IQGAP1 genes. These results are in agreement with
Chen et al. [30] who showed that METH can stimulate cardiomyocyte apoptosis in vitro
and in vivo. Moreover, Liou et al. [3] suggested that chronic METH use increased cardiac
apoptosis. Sun et al. [15] showed that melusin and the proteins related to apoptosis, such as
FAK and IQGAP1, and its downstream effectors—phosphorylated AKT, ERK, and GSK3β—
decreased in isolated cardiomyocytes and cardiomyocytes of rats exposed to METH. Our
results bring additional support to the suggestion that melusin and its related proteins play
an important role in the apoptosis signaling pathway, such that increasing melusin gene
expression preserves anti-apoptotic pathways in cardiac tissue.

The mechanisms and pathological responses of the cardiovascular system to METH
use remain largely unknown. However, previous research suggest that METH can stimulate
catecholamines secretion, mitochondrial dysfunction and ROS production [31,32]. The
decrease in melusin in response to METH might be associated with catecholamines [15], im-
paired gene expression and protein synthesis. Moreover, ROS produced by mitochondrial
damage can also influence melusin.

Our results show that eight weeks of HIIT decreased the gene expression of caspase-3
but increased melusin, FAK, and IQGAP1 gene expression. However, IQGAP1 gene expres-
sion was not significantly increased in METH-HIIT when compared to the METH group.

To the best of our knowledge, no previous study has examined the apoptosis signaling
pathway in response to METH and HIIT. However, the results of the present study agree
with those of Delfan et al. [33], Lu et al. [24], and Wolff et al. [26]. Delfan et al. [33] and Lu
et al. [24] suggested that HIIT reduces caspase-3 gene expression in rat models of diabetes
and myocardial infarction. Additionally, Wolff et al. [26] showed that treadmill training
(15◦ inclination and 22 m/min) increases the melusin mRNA concentration in myocardial
infarction and pericardiectomy mice.

Decreased apoptosis might be related to increased phosphorylated AKT and ERK1/2,
increased phosphorylated GSK3β, and its inactivation by increasing these two factors.
These might lead to suppression of pro-apoptotic protein expression, such as BCL-2-
associated death promoter (BAD) and BCL-2-associated X protein (BAX), and increase
the anti-apoptotic protein expression, such as B cell leukemia-2 (BCL-2) [34]. Moreover,
BCL-2 family proteins control the integrity of the mitochondrial outer membrane and
prevent the release of apoptosis-stimulating proteins [32].

The increased melusin level in the left ventricle might be related to the mechanical
stress created on the heart during high-intensity exercise [26]. Melusin is a membrane
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receptor that connects the intracellular cytoskeleton with the extracellular matrix and
allows muscle cells to respond to mechanical stimulation [7]. A significant increase in
IQGAP1 gene expression was observed in the METH-control group compared to the METH
group, which is probably due to the improvement in heart tissue in rats due to lack of
methamphetamine use.

HIIT might also reduce cardiac apoptosis by reducing oxidative stress, increasing
antioxidant indices [24,35], and promoting a better autonomic balance [36]. Lu et al. [24]
showed that HIIT reduces the concentration of malondialdehyde (MDA) and increases
the antioxidant markers, such as superoxide dismutase (SOD) and glutathione peroxidase
(GPx), in rats with myocardial infarction. These results are associated with decreased genes
expression of caspase-3 and BAX and increased BCl-2 gene expression. Silva et al. [36]
showed that 8 weeks of HIIT promoted a reduction in cardiac sympathetic modulation,
which might lead to a reduction in catecholamine release. Another factor that may reduce
the rate of cardiac apoptosis due to HIIT is insulin-like growth factor-1 (IGF-1), as shown
by Delfan et al. [33].

The present study has limitations that researchers should consider in future studies:
not evaluating other indicators of the apoptosis signaling pathway, including AKT, ERK1/2,
and GSK3β; not evaluating proteins associated with apoptotic markers by the Western blot
method; do not have immunohistochemical data to show apoptosis. Moreover, it would be
interesting to perform future studies with larger sample sizes to confirm the results.

5. Conclusions

Molecular analysis suggested that HIIT seems to be a non-pharmacological method
to reduce cardiomyocyte apoptosis induced by METH. The present study might help to
pave the way for further and comprehensive research in this field. Based on the present
results, it is expected that addiction treatments and rehabilitation centers could use HIIT to
counteract cardiomyocyte apoptosis in METH users and similar clinical conditions.
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