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Scientific research communities can be represented as heterogeneous or

multidimensional networks encompassing multiple types of entities and relationships.

These networks might include researchers, institutions, meetings, and publications,

connected by relationships like authorship, employment, and attendance. We describe

a method for efficiently and flexibly capturing, storing, and extracting information from

multidimensional scientific networks using a graph database. The database structure is

based on an ontology that captures allowable types of entities and relationships. This

allows us to construct a variety of projections of the underlying multidimensional graph

through database queries to answer specific research questions. We demonstrate this

process through a study of the U.S. Biological Threat Reduction Program (BTRP), which

seeks to develop Threat Reduction Networks to build and strengthen a sustainable

international community of biosecurity, biosafety, and biosurveillance experts to address

shared biological threat reduction challenges. Networks like these create connectional

intelligence among researchers and institutions around the world, and are central to

the concept of cooperative threat reduction. Our analysis focuses on a series of seven

BTRP genome sequencing training workshops, showing how they created a growing

network of participants and countries over time, which is also reflected in coauthorship

relationships among attendees. By capturing concept and relationship hierarchies,

our ontology-based approach allows us to pose general or specific questions about

networks within the same framework. This approach can be applied to other research

communities or multidimensional social networks to capture, analyze, and visualize

different types of interactions and how they change over time.

Keywords: collaboration, connectional intelligence, bioinformatics, global health, ontology, social network, threat

reduction network

INTRODUCTION

Since the 1990s, Cooperative Threat Reduction (CTR) programs of the United States and other
countries have been implemented as high return-on-investment approaches for reducing the threat
of infectious diseases and epidemics at modest cost (Smithson, 2016). These programs seek to
build international networks of infectious disease laboratories, professionals, and scientists in order
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to increase the world’s ability to detect and diagnose infectious
disease outbreaks. In this paper, we focus on the application
and impact of the Biological Threat Reduction Program (BTRP),
a CTR program within the Defense Threat Reduction Agency
(DTRA) of the U.S. Department of Defense. This program seeks
to build research communities which it calls Threat Reduction
Networks (TRNs).

Programs like BTRP need ways of quantifying and visualizing
the impact of their network-building efforts. While bibliometric
and other approaches using public data can be helpful in
this regard, many scientific research networks come together
around a much wider array of collaborations and interactions,
including meeting and workshop attendance; interactions within
and among institutions, departments, and regions; collaborations
on projects and proposals; participation in informal networks of
like-minded specialists; and ongoing relationships with sponsors
and funding agencies.

In order to capture these diverse aspects of research
networks like TRNs, it is helpful to describe them as networks
that include multiple types of nodes and multiple types of
relationships, which are sometimes called multidimensional or
heterogeneous networks (Contractor et al., 2011; terminology
is discussed in more detail below). Based on data provided
to us by BTRP, we were able to construct such a network,
where types of nodes include projects, meetings, people,
organizations, groups, documents, and research topics; and
possible relationships include authorship, affiliation, attendance,
and residence, among others.

Working with multidimensional graphs of this sort is
challenging because they can quickly become very complex,
creating problems for visualization and analysis. To cope with
this complexity, it is helpful to be able to sort, filter, and
project elements of the resulting graph so that particular
aspects of the network can be extracted for analysis and
visualization, while maintaining the integrity of the entire
underlying graph data. The main contribution of this paper is
to demonstrate a method for storing, manipulating, visualizing,
and analyzing multidimensional graphs using an ontology-based
graph database. To do this, we created an ontology, SCINET,
that includes the necessary entities and relationships to describe
a multidimensional scientific research network; encoded BTRP
source documents using this ontology structure; stored the
resulting data in a graph database; and used database queries to
construct appropriate subgraphs for visualization and analysis.

Themain goal of this paper is to describe the development and
use of our ontology-based graph database approach in sufficient
detail so that others may adapt and extend this approach to
their needs in studying similar networks. To do this, we provide
some context on TRNs and scientific networks in general; review
related research in ontologies and multidimensional networks;
describe our ontology and database development process in
detail; and finally provide a basic example of how this approach
can be used to study one particular aspect of a TRN, namely
how attendance at a series of workshops built up a network of
researchers over time. We hope that this will provide a useful
overview of our approach, as well as some insights on TRNs that
may be of interest to the CTR community.

BACKGROUND AND RELATED RESEARCH

Importance of Scientific Collaboration for
Reducing Infectious Disease Threats
Science is an increasingly collaborative enterprise. Studies
have shown a consistent increase in collaboration across
multiple fields over the past 30–40 years, as indicated
by the average number of authors per publication and
numerous other indicators (Sonnenwald, 2007; Leahey, 2016;
Wagner et al., 2017). Collaborations are also increasingly
international, in part due to the diminishing role of proximity
as a prerequisite for collaboration, driven by the increasing
prevalence of air travel as well as communication technology
(Leydesdorff and Wagner, 2008; Hoekman et al., 2010; Storme
et al., 2017). Collaboration has many benefits in terms
of solving more complex problems, overcoming increasing
scientific specialization, sharing resources, producing more
impactful results, and in general facilitating the production
and dissemination of knowledge (Sonnenwald, 2007; Bozeman
et al., 2013; Leahey, 2016). Collaborations also help developing
countries build capacity and connections to the international
scientific community (Owusu-Nimo and Boshoff, 2017). This
growth in collaboration creates an increasingly large and well-
connected scientific network across the globe (Leydesdorff et al.,
2013). While coauthorship data provide documentation of this
increasingly connected network, connectivity is driven by many
other activities, including both formal and informal meetings as
well as conferences and workshops that bring dispersed research
communities together to meet face-to-face (Sonnenwald, 2007;
Storme et al., 2017).

Given the benefits of collaboration, governmental agencies
and organizations actively seek to foster and strengthen science
networks, including those involved in global health, where
investments in network-building activities are seen as efficient
and effective measures for increasing research capacity (Nelson
et al., 2018). Global health programs are (1) establishing
strong international collaborative research networks (Fair et al.,
2016), (2) building capacity for research in partner countries
through training (Johnson et al., 2015), and (3) increasing
networks of support for biosafety and biosecurity across regions
and among countries that support the International Health
Regulations (Standley et al., 2015). Measuring the return on
investment for scientific networks, in particular TRNs, is a
critical need for sponsoring agencies to show the value of these
networks for reducing the threat of infectious diseases globally
(Fair et al., 2016).

Emerging infectious diseases (EIDs) are a significant threat to
global health, with ∼75% of these caused by zoonotic pathogens
(Taylor et al., 2001; Woolhouse and Gowtage-Sequeria, 2005).
With the complexity of multiple hosts and vectors in a rapidly
changing environment, there is an increased need for all
countries to use the best science and technology for diagnosis,
detection, and reporting on EIDs, especially those involving
dangerous pathogens. In 2020, the world is experiencing first
hand a zoonotic infectious disease pandemic caused by a
coronavirus that most likely emerged from bats (Andersen et al.,
2020). The program of BTRP and their created networks of
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scientists were developed specifically to reduce the threat of
infectious diseases. Achieving the goal of increasing disease
detection, diagnostics, and reporting capabilities worldwide
requires countries with highly developed capabilities in these
areas to share their expertise and create training opportunities for
new infectious disease professionals in the latest advancements
in biosurveillance. In a previous study on the outcomes from a
CTR training, a high return on investment was demonstrated
for a single workshop with participants from several countries
(Fair et al., 2016). The authors of the study focused on
a 1-week training in bat surveillance methods that covered
proper capture and handling of bats, sampling approaches,
and the latest molecular techniques for identifying infectious
pathogens such as coronaviruses. Not only did the participants
get training in biosafety and the newest molecular techniques,
but a small TRN emerged from the workshop, leading to
several collaborations and partnerships that developed research
proposals, standard operating procedures, and two scientific
papers. This is just one example of how the active encouragement
and development of TRNs can increase the spread of cutting-
edge biosurveillance methods, as well as coordination among
infectious disease researchers among countries to address the
challenges of pathogens.

By strengthening connections and trust, scientific networks
increase connectional intelligence among researchers around
the world. As defined by Dhawan and Saj-Nicole (2015),
connectional intelligence is “the capability to consistently deliver
breakthrough innovation and results by harnessing the value
of relationships and networks.” Threat reduction requires
connectional intelligence that fosters innovation to solve highly
complex challenges, quickly marshal resources and knowledge,
enable interdisciplinary science breakthroughs, and develop
future leaders globally to work together to reduce the threat
of infectious diseases. Social network analysis approaches are
essential tools for measuring connectional intelligence within
scientific networks, including TRNs. Being able to track the
return on investment of science networks or trainings is
critical for understanding how best to sustain and support
these networks.

Threat Reduction Networks
The increasing complexity and irregularity of threats to
national and global health security has led to new and novel
countermeasures. Social networks can both contribute to and
combat emerging threats facing the world. For example, terror
networks have evolved to be highly connected globally, which
increases their reach and potential threat (Sageman, 2004). On
the other hand, emerging infectious diseases, which continue to
increase globally (Jones et al., 2008; Rosenberg et al., 2018), have
been shown to be successfully mitigated through collaborative
social networks of infectious disease laboratories, professionals,
and scientists (Albiger et al., 2018). Networks of scientists and
laboratories are considered primary tools for increasing the
capability to detect and diagnose infectious disease outbreaks.

The mission of BTRP is to reduce the threat posed by
pathogens and diseases of security concern, related materials and
expertise, and terrorist acquisition and use of biological weapons.

To do this, BTRP works collaboratively with partner countries,
international and non-governmental organizations, academia,
and the U.S. interagency to strengthen biosecurity, biosafety, and
disease surveillance competencies that enable partner countries
to more effectively detect, diagnose, report, and contain disease
outbreaks. Robust research networks are critical for preventing
outbreaks, epidemics, and potential pandemics, as well as
for combatting the nefarious use of biological agents. Within
this context, BTRP created defined communities of scientists
called TRNs to strengthen and build a sustainable community
of biosecurity, biosafety, and biosurveillance capabilities and
practitioners. TRNs provide a coordinating function among
scientists, institutions, and regional partners to address shared
biological threat reduction challenges. These networks are similar
in construct to the U.S. National Science Foundation’s Research
Coordinated Networks, which are designed to bring scientists
together around a topic or field. TRNs are typically built around
a specific topic, such as bat-borne zoonotic infectious diseases,
as a way to support meetings, collaborations, and relationship
building. Another role of TRNs can be to develop training and
strengthen capabilities in countries to create sustainable networks
of scientists to support each other after initial funding ends. The
motivation behind the creation of TRNs can be characterized
by the phrase “if we wait until the first day of an outbreak to
exchange business cards, the pathogen has already won.”

The primary objectives of research-focused TRNs, as defined
by BTRP, are to (1) convenemulti-disciplinary researchers, health
implementers, policy makers, and funding authorities to identify
and prioritize research needs and gaps; (2) characterize the
distribution, prevalence, and ecology of infectious disease threats;
(3) identify, evaluate, and implement sustainable consensus or
“gold standard” assays and case definitions to determine if
better standards are needed for detection in laboratory and
clinical settings; and (4) increase awareness of infectious disease
threats amongst at-risk populations, clinicians, laboratory staff,
and national decision makers to encourage better surveillance,
prevention, detection, and response. TRNs also serve as a forum
for sharing of data, Standard Operating Procedures, and samples
between researchers.

Social Network Analysis
Social network analysis, particularly based on bibliometric data,
is recognized as an important way of documenting the structure
of scientific communities (Newman, 2001a,b, 2004; Barabási
et al., 2002; Yan and Ding, 2009; Rafols et al., 2010; Abbasi et al.,
2012; Yan andGuns, 2014; Li et al., 2017; Zhang et al., 2017, 2018).

In its most basic form, social network analysis focuses on
networks composed of a single type of node, connected by
a single type of link or edge, with edges often weighted by
intensity. For example, in such a network, the nodes might
be scientists, edges might indicate that two scientists have
collaborated on at least one journal article, and each edge might
be assigned a weight corresponding to the number of papers
they co-authored. However, as larger and more complex network
datasets have become available, researchers have begun to ask
more sophisticated questions that cannot always be addressed in
the context of a single dimension of interaction. For studying
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FIGURE 1 | An example of a multidimensional, multipartite network with

workshop, person, and document layers. Documents are connected to people

by “creator” links, while workshops are connected to people by

“contributor” links.

scientific collaboration, for example, we might want to include
additional nodes like research institutes, countries, conferences,
or objects of study; and we might want to use edges to capture
additional types of relationships, for example that two journal
articles refer to the same organism, or that two conferences are
linked by a number of common participants (Contractor et al.,
2011; Kas et al., 2012).

Ontologies and Multidimensional Networks
For maximum flexibility, it can be helpful to represent these
diverse relationships within a single graph consisting of multiple
types of nodes and multiple types of edges, a multidimensional
network using the terminology proposed by Contractor et al.
(2011) (other terms like heterogenous networks or multimodal
networks are sometimes used to describe this type of network,
but may also be applied to graphs with only one type of node
and multiple types of edges; the terminology used by Contractor
et al. provides more precision). This kind of network can also
be thought of as a form of multilayer network, because the
types of nodes can be considered as different layers in the graph
(Boccaletti et al., 2014; Kivelä et al., 2014; Mcgee et al., 2019).

In this article, we map collaborations and interactions
within the BTRP community as a multidimensional network.
More specifically, our network is structured in the form of a
multipartite graph, in which each type of node can have a direct
connection only to nodes of a different type (Figure 1). For
example, there cannot be a direct link between two people in our
network; two people can only be linked if they have some other
entity in common, like a paper they co-authored or a conference
they both attended. The advantage of this structure is that it
makes it possible to easily generate subgraphs of specific node
and edge types relevant to a particular research question through
a process of projection (Horvát and Zweig, 2013). For example,
we might want to project the author-document network onto
the authors, which would create a network of authors linked
by edges that represent co-authorship, or onto the documents,

which would create a network of documents linked by edges
that indicate authors in common. Or we might want to go a
step further and project an author-document-institution network
onto institutions—for example to show how universities are
connected via professors who co-author papers with professors
at other universities.

This flexibility comes at a cost, however; the multiple node
and edge types in a multidimensional, multipartite network can
lead to complex graphs that are difficult to navigate, understand,
and visualize. To manage this complexity, it is helpful to have
a systematic way of categorizing types of nodes and edges and
the possible ways they can connect with other types of nodes
and edges. This requires a semantic model of their relationships,
which can be captured in the form of an ontology, which in this
context refers to a systematic way of categorizing and mapping
the types of entities and relationships in a particular domain
(Arp et al., 2015; Powell, 2015). As an example, a prominent
ontology in the biomedical world is the Gene Ontology, which
captures the possible relationships between cellular components,
molecular functions, and biological processes, and provides an
underlying structure for many biological databases (Ashburner
et al., 2000; The Gene Ontology Consortium, 2018). Here, our
domain of analysis is the bioscience research community, so
the main entities we are concerned with are things like authors,
publications, conferences, and research institutions—although
to capture the community’s research activity, we also include
biological entities like hosts, pathogens, and diseases. We provide
more specifics on this ontology below.

A number of studies have pointed out the advantages
of ontology-based networks for social network analysis and
visualization, in particular as a basis for selecting and visualizing
only certain types of relationships within the network (Shen
et al., 2006; Wu and Li, 2009; Chen et al., 2010; Ahmed
et al., 2014; Boudebza et al., 2015). However, we are not
aware of any previous effort to systematically implement such
an ontology in the form of a graph database to analyze a
particular research community, as we do here. Due to missing
data and other limitations of our current BTRP dataset, in
this paper we limit our focus to visual representation and
descriptive analysis of a subset of BTRP-supported genomics
and bioinformatics training participants. However, we believe
our ontology-driven graph database approach provides a
usable, scalable solution for storing, analyzing, and visualizing
multidimensional networks that can be extended and automated
for future analysis efforts.

MATERIALS AND METHODS

Ontology and Database Development
Sci-Net is our term for the overall framework we have developed
for analyzing scientific social networks. It comprises (1) an
ontology that defines possible entities and relationships (which
we call the SCINET ontology), (2) a collection of data describing
the social network, and (3) a semantic database that implements
the ontology structure and allows us to query the social network
on multiple dimensions.
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Creating the Ontology
To develop an ontology for this study, we relied on information
technology and standards developed over decades as part of the
Semantic Web effort—a term coined by Tim Berners-Lee, the
inventor of the World Wide Web, to brand an international
collaboration to develop standards for semantically annotating
content on the internet. The sophisticated knowledge modeling
and management tools that emerged from the Semantic Web
collaboration are collectively referred to as semantic technology.
Semantic technology and standards allow ontologies to be
shared, so that complex ontologies can be created from them.
Information encoded using ontologies takes the form of a
knowledge graph or semantic network (Sowa, 1992).

In developing the SCINET ontology, we leveraged a number
of existing ontologies for key concepts and relationships. The Sci-
Net dataset describes a network of social relationships involving
agents such as organizations, groups, and people, and the
activities (e.g., projects, workshops, meetings) in which they
participate. It is the confluence of people and their affiliated
institutions, and the activities in which they engage, that fosters
collaborative work. Therefore, the key entities and relationships
of an appropriate ontology must be able to describe both social
networks and collaborative workflows. Since we are interested
in research collaborations, our ontology must also incorporate
ontologies that cover the relevant research topics.

With these requirements in mind, the SCINET ontology
synthesizes the following ontologies and vocabularies:

• Dublin Core Metadata Terms (DC-Terms): Relationships
for annotating documents and identifying their creators
and subjects.

• Friend of a Friend (FOAF): Concepts identifying documents,
persons, organizations, groups and group membership.

• The Bibliographic Ontology (BIBO): An ontology for
describing creative works that extends existing ontologies for
annotation such as DC-Terms.

• W3C Organization Ontology (ORG): A FOAF extension for
describing formal organizations and their structure, a standard
of the World Wide Web Consortium (W3C).

• NCBI Taxonomy (NCBI): A comprehensive controlled
vocabulary for the classification of organisms used in Sci-Net
to identify hosts, pathogens, and vectors in relationship to
diseases as subjects of research collaborations.

• The Disease Ontology (DO): An ontology of diseases that
references the International Classification of Diseases (ICD)
standard, but is more suitable to annotating topics than
the ICD.

• ISO 3166: An international, standard vocabulary for
identifying geographic regions (e.g., countries) and subregions
(e.g., states, provinces).

• The Abstract Process Ontology (APRO): A high-level ontology
for describing process flows developed at Los Alamos and
extended in Sci-Net to describe workflow activities, their
participants, and the products that result from them.

• Time Ontology (TIME): An ontology of temporal concepts, a
standard of theW3C, used to register the time and duration of
events and activities in the SCINET ontology.

SCINET customizes, extends, and combines all these ontologies
to provide comprehensive coverage for the kind of network
we describe in this paper. A high-level schematic of the main
concepts and relationships in the ontology is shown in Figure 2.
The main sections of the ontology are the shaded regions in the
schematic. We see in the lower left of the schematic, in blue, the
entities used in static social network analysis. Mainly adopted
from the FOAF ontology and Dublin Core Terms, they involve
various types of agents such as persons, organizations, and groups
and their interrelations. In SCINET, agents are actors, i.e., their
role is to enable actions, or in workflow terms, to participate
in activities. The workflow portion of the ontology, the section
shaded yellow in the upper middle portion of the diagram, shows
that an activity is a kind of process, one in which human agents,
either as individuals or in the aggregate, are the main enablers,
and that a process is a kind of event, one during which a process
unfolds. Projects and meetings are specific kinds of activities
in the ontology. Although not shown, activities are elaborated
further, with programs being a kind of activity that may involve
one or more projects. Also, meetings can include specific kinds
like workshops and conferences. Although it was not necessary
for our current purposes, many of the static elements of the
ontology, such as organizations or membership relationships,
could also in principle have a temporal element, i.e., a beginning
and an end.

Workflow activities produce artifacts. In research activities,
the main class of artifacts is documents. Document artifacts
(depicted at the bottom of Figure 2, shaded gray) are further
elaborated as specific kinds such as journal articles, conference
proceedings, reports, and so on. These classes are borrowed from
the BIBO ontology.

The subject portion of the SCINET ontology is shaded
green in the lower right of the schematic. Because the Sci-
Net framework was developed to model research collaborations
related to emerging global diseases, the subjects most relevant to
the ontology are diseases, hosts, pathogens, and vectors, as well
as the regions in which they may be found, or in which research
projects were chosen to focus. It is worth noting that, except for
specific subject areas, most of the concepts and relationships in
SCINET would apply to any field of collaborative research. It is
mainly the subject ontologies that would change when SCINET
is extended to new research areas.

Data Capture
For purposes of managing the data collection, Sci-Net data falls
into one of two sub-collections:

• Supporting Data—the data that create the context for the
research network. These include the NCBI taxonomy of
organisms, the disease classification hierarchy, and countries
and their subregions, as well as useful groupings of regions
such as continents, and certain geopolitical groupings (e.g.,
the World Health Organization (WHO) regions). These data
seldom change and rarely need to be updated once captured.

• Research Data—these are the data that comprise the networks
of people, organizations, activities, events, and documents that
are the main focus of interest in Sci-Net. These data change

Frontiers in Research Metrics and Analytics | www.frontiersin.org 5 June 2020 | Volume 5 | Article 3

https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Ambrosiano et al. Ontology-Based Graphs

FIGURE 2 | An outline of the SCINET ontology. The ontology brings together several types of entities familiar in workflow analysis such as actors, actions, and

artifacts. Each of these can be linked to particular subjects.

more frequently. Additions to the database are typically
entities in this category.

For the supporting data, some ontologies and vocabularies
were easily acquired from well-managed sources in a readily-
imported form. Acquiring data from other sources required
varying degrees of web scraping and data wrangling.

Research data was obtained primarily from reports and
internal documentation provided to us by BTRP. These included
annual reports and meeting and workshop reports, which
contained research project abstracts; lists of journal publications
and manuscripts authored by BTRP participants; and lists of
workshop participants. In addition, we drew on a Frontiers
Research Topics edited volume featuring 24 contributions from
BTRP participants (Fair et al., 2017). We focused on these BTRP-
specific data sources because they captured many projects and
relationships that might not yet have translated into journal
publications. In addition, since we did not have access to a
complete list of BTRP participants and their affiliations, focusing
on these sources gave us a way of limiting our scope to BTRP-
relevant work.

The diverse and non-standardized nature of our research data
sources created some challenges, however. Most significantly, it
required us to manually encode much of the information in these
documents as triples to populate the database. As we did this
encoding, we also manually maintained canonical lists of people,
organizations, and events, creating unique identifiers to facilitate
disambiguation of these entities where their names had several
variants. It would be desirable to automate these processes in
the future. In addition, many of our data sources provided only
partial snapshots of the BTRP network at particular moments in
time, meaning that some types of information and some time

periods were sampled in much more detail than others. This is
one reason why our analysis in the present paper focuses on
attendance at sequencing workshops, which was an aspect of the
network that was very well-documented.

Database Development
The kind of database best suited to the Sci-Net project is variously
called a semantic database, a graph database, or a triple store.
The database is semantic because queries on the database are
guided by ontologies; it is a graph database because the set of
all instances of concepts and relationships stored in the database
forms a directed graph; and it is a triple-store because the data
is logically equivalent to a collection of subject-predicate-object
triples. It is the predicate-based logic of these triples that gives
semantic databases superior power and flexibility over relational
databases in analyzing semantic networks. For this effort, we
used the GraphDB semantic graph database, which makes use
of the Resource Description Framework (RDF) standard for
representing triples (http://graphdb.ontotext.com).

Extracting data from a semantic database or triple-store
involves forming queries based on the W3C standard for RDF
data called SPARQL (pronounced “sparkle”) which stands for
SPARQL Protocol and RDF Query Language. SPARQL queries
are based on the fact that an ontology, along with the data
organized and stored in relation to it, is a graph whose edges
are logical facts, or subject-predicate-object triples, encoded in
RDF or its equivalent. For example, the triples: (fair_jeanne, type,
Person), (fair_jeanne, name, “Jeanne Fair”), and (fair_jeanne,
alias, “Jeanne M. Fair”) describe one of the authors as belonging
to the class Person and give her preferred name along with
an alias.
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SPARQL is a simple logical protocol where relevant triples are
listed with variables standing in for the information desired. The
database resolves the query by returning all the triples that satisfy
the missing values of the variables. For example, the following
query will return the identifiers for all triples whose subject is in
the class Person, along with those objects that define the subject’s
name and any aliases associated with them:

select ?person ?alias where {
?person rdf:type foaf:Person ;

foaf:name ?name
optional{?person scinet:alias
?alias. }}

Prefixes like “foaf” indicate to which sub-ontology the concept
or relation belongs. The portion in braces represents patterns
for triples that the query will attempt to match against triples
in the database. While the variables (terms prefixed with “?”)
appearing after “select” are those desired to be returned, usually
in tabular form. A graph can be constructed from the results. A
set of triples (i.e. a graph) can be obtained directly by using the
keyword “construct” instead of “select” in a somewhat different
format. In either case, the graph would comprise a number of
isolated subgraphs whose center is the ID of a person and whose
edges connect the ID to either a preferred name or an alias. This
illustrates the power of ontology-based network representations:
A few standard queries are all that is required to extract a network
from heterogeneous linked data.

Using Database Queries to Construct
Networks
The possible forms of the triples in the Sci-Net database can be
inferred from Figure 2 by connecting any of the concepts there
through the relationships shown. For this paper, we were mainly
interested in how a series of workshops might bring together
researchers from various countries and organizations, and how
those relationships might change over time. With this in mind,
we chose the following main entities:

• scinet:Meeting
• foaf:Person
• org:Organization
• foaf:Group
• scinet:Country
• foaf:Document

where the prefixes indicate the ontologies from which these
concepts were drawn. Using predicates from the ontologies, the
triples (relationships) of principal interest were:

• (Document, dc:creator, Person)—i.e., publications and their
authors,

• (Person, org:memberOf, Group)—personal affiliations with
research groups,

• (Person, org:memberOf, Organization)—organization
affiliations,

• (Person, scinet:hasLocation, Country)—country of residence,
and

• (Person, scinet:contributorTo, Meeting)—meeting attendees.

These specific entities and relationships were chosen to enable us
to build networks of people annotated by group, organization,
and country affiliation, and linking them to the meetings they
attended. Focusing on a series of meetings, specifically the
sequence of workshops sponsored by Los Alamos National
Laboratory (LANL) over a period of several years, provided
the opportunity to see how the networks evolved over time. In
this context, the main relationship for inferring interpersonal
connectivity was meeting attendance, i.e., two persons were
assumed to be connected if they attended the same meeting.

To illustrate the utility of an ontology-based approach, the
following example shows how we extracted, from a much larger
set of persons, only those who attended a sequencing workshop:

select distinct ?person ?personName
?workshop ?workshopName ?country
?countryName ?region ?regionName

where {
?workshop rdf:type scinet:Workshop;

rdfs:label ?workshopName.
filter(regex(?workshopName,“sequencing”))
?person rdf:type foaf:Person;

foaf:name ?personName;
scinet:contributorTo ?workshop;
scinet:hasLocation ?country.

?country a scinet:Country;
foaf:name ?countryName.

?region a scinet:Region;
foaf:name ?regionName.

?region apro:contains ?country;
apro:containedIn scinet:who_regions.

}

This query returns the entire graph of meeting participants, the
workshops they attended, resident country, and in this case, the
WHO region of the country.

Rather than form more complex queries to build related
subgraphs, we imported this graph into Python programs
and used the NetworkX graph analysis package for further
analysis (Hagberg et al., 2008). This allowed us more control in
manipulating the graph and provided several standard output
formats for visualization.

RESULTS

Our analysis focuses on the impact of a series of international
genomics and sequencing training workshops for biosurveillance
conducted by LANL. BTRP has supported participation in
these workshops by country partner scientists and laboratorians
since 2012. Each year, the training includes experience in
both laboratory-based sequencing and bioinformatics for
pathogen detection, and participants choose which section
they attend. This annual course runs for 1 week with a
typical participation of 25 researchers from 10+ countries.
Since 2013, a total of 180 participants (126 unique) from
21 countries have taken part in these events. They are
generally scheduled to coincide with a Sequencing, Finishing,
and Analysis for the Future scientific conference. These
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workshops fill a crucial training need. Reduction in the costs
of genomic sequencing and the creation of bioinformatic
analysis methods has led to a democratization of sequencing
technologies for application to biosurveillance. While detection
of microbial pathogens has been accomplished with PCR assays,
new advances in sequencing technologies can now be used to
investigate whole genomes of microbes, characterize complete
microbiomes, and determine co-infected hosts. Furthermore,
phylogenetic relationships, transcriptomics, and gene function
can be characterized for individual pathogens. These rapid
breakthroughs in genomics applied to biosurveillance require
advanced training in sequencing laboratory techniques and
bioinformatics. Post-graduate degree programs in infectious
diseases and microbiology only a few years ago may not have
offered sequencing opportunities or experience.

The Sequencing Workshop Network
We describe the networks that were derived from our analysis of
the LANL sequencing workshops from 2013 to 2019. Summary
statistics for this data are shown in Table 1. The following figures
(Figure 3 through Figure 6) are a series of multidimensional,
multipartite graphs showing the cumulative growth of the
network between 2013 and 2019. Each figure builds on the graph
depicted in the previous figure, adding new nodes and edges
to capture the additional entities and relationships that were

TABLE 1 | Summary statistics for all workshops (2013–2019).

Data type Number

Workshops 7

Participants 126

Countries 21

Organizations 58

BTRP Groups 2

Documents 137

added to the network since the previous time step. These graphs
were produced using Gephi graph visualization software (Bastian
et al., 2009). The full 2019 graph was laid out using a force-
directed graph layout algorithm; earlier versions of the graph
were then generated by filtering out the nodes and edges from
later years, while retaining the same layout as the 2019 graph
for visual consistency. The size of the nodes (persons, countries,
and workshops) in each of these figures indicates their degree
(i.e., the total number of edges connected to the node). We have
left only the person nodes unlabeled in these figures to simplify
labeling and preserve anonymity. The network from the initial
2013 workshop is shown in Figure 3. Since this is the first in the
series, it is a small network with 13 people and only four countries
represented: South Africa, Kenya, Georgia, and the United States.

With the addition of links from two more workshops in the
series, the network becomes more complex and takes on more
structure. Figure 4 shows how the network has grown by 2015.
We can see that the number of participating countries has grown
considerably and many more organizations are represented.
A major research collaboration group, the Western Asia Bat
Research Network (WAB-Net), was established, bringing a
number of new participants to the workshop, mainly from
Georgia. There also appear to be several people who have
attended multiple workshops in the series.

Two more workshops were completed by 2017, and as
Figure 5 shows, the number and diversity of participating
countries and organizations has increased. This trend continues
through 2019 as shown in the final network (Figure 6). This
figure shows the complete network encompassing all seven
workshops, which includes 21 countries and 126 participants.
From this final network, Georgia emerges as the country with the
highest degree. These figures can also help identify countries that
have not been as well-represented since their initial meeting, such
as Liberia, Egypt, and Tanzania.

The change in participation in the research networks over
time is shown in Figure 7. Here we have plotted the number of
participants, countries, and organizations over the period from

FIGURE 3 | The network associated with the LANL 2013 sequencing workshop. In this figure and the ones to follow, information about persons (yellow nodes) has

been anonymized by leaving them unlabeled.
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2013 to 2019. We see an increase in each category over time,
with the number of participants and organizations seeing the
greatest growth rates, while the number of countries grows at a
slower rate.

FIGURE 4 | By 2015, with the addition of two more workshops in the series,

the network becomes more complex, with several new participating

countries appearing.

The Workshop Co-attendance Network
The multidimensional network visualizations presented above
are one way of getting a sense of how the workshops have
brought people together. It is clear from these how a diverse
set of countries and organizations became interlinked as the
number of participants grew over the time. It is also of interest to
see and analyze the network of interactions between individual
participants. Based on our dataset, there are various ways that
participants can be linked to each other indirectly, via their
shared connections to other entities. To capture the influence
of the workshops, we chose to focus on the network defined
by co-attendance at workshops, i.e., creating a person-person
link whenever two individuals both attended the workshop in a
given year. Since even the larger workshops were comparatively
small, we believe networks derived from co-attendance should be
reasonable indicators of potential interaction.

The co-attendance social network is shown in Figure 8, again
visualized with a force-directed layout algorithm using the Gephi
software package. The nodes represent individual participants,
and their colors show in which region their organization
is located. Nodes are scaled by their betweenness centrality,
answering the question of how likely one is to encounter that
node while traversing an arbitrary path from one node to another
in the network. Figure 9 shows the betweenness statistics for the
20 participants with highest betweenness centrality scores. Of
these 20 participants, 9 are from the European Region and 7
are from the African Region, suggesting that participants from
these countries play a particularly important role in connecting
the community. More specifically, Figures 8, 9 suggest there are
a relatively small number of participants (especially p9, p14, and
p27) whose betweenness centrality is high compared to others.

FIGURE 5 | In the 2017 network it is evident that the number of participants and the diversity of countries and organizations has continued to grow.
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FIGURE 6 | The network for the entire series of workshops from 2013 through 2019.

FIGURE 7 | Growth of the network over time, showing the cumulative number

of participants, countries, and organizations from 2013 to 2019.

These individuals, who all attended more than one meeting,
are key bridges that bring the larger network together. They
have the potential to serve as conduits of information across the
network, possibly putting them in a position of influence within
the community. Having a limited group of people attendmultiple
meetings, giving them high betweenness centrality, is an efficient
way of achieving network-wide connectivity while continuing to
expand and diversify meeting participation.

It is also interesting to see that two tightly connected sub-
networks seem to comprise the network as a whole (Figure 8).
The smaller cluster on the left side of the graph corresponds
to the most recent (2019) workshop, which is connected to the
large network by only two individuals, p9 and p14, who had
participated in previous workshops. The larger cluster on the
right of the figure encompasses all of the previous workshops,

which appear to have had more participants in common. This
means that p9 and p14, who are from Cambodia and Ethiopia,
respectively, play a key role as connections between the 2019
workshop participants and the rest of the network. This structure
indicates that the 2019 workshop attracted an unusually high
number of new participants compared to previous workshops,
which have more overlap with each other in terms of attendance.

More cumulative network statistics are shown in Table 2.
Unsurprisingly, these show a general increase in the number
of links between participants as the network grows; by 2019,
a person who participated in at least one of these workshops
over the years made a connection to an average of 34 other
participants, with a final network diameter (the longest distance
between any two participants) of 3, both potentially useful
metrics for the community-building success of the workshops.

Coauthorship Networks Among Workshop
Participants
In order to understand how workshop participation was related
to other forms of collaboration and networking, we conducted
a bibliometric analysis of coauthorship on journal publications
among workshop participants. To do this, we looked only at
the subset of participants who had coauthored a paper with at
least one other workshop participant between 2014 and 2019.
The complete graph of these coauthorship relationships is shown
in Figure 10. This figure was drawn in Gephi using a force-
directed layout, with node size indicating degree; links between
participants are unweighted, i.e., they do not reflect the number
of times participants were coauthors. Although it is not possible
to determine whether these coauthorship relationships were
driven by workshop participation, this does suggest that many
workshop participants are also connected in other ways within
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FIGURE 8 | The social network formed by participants who attended the same meeting. The colors represent the regional affiliation of the attendees. We use

anonymized, numerical participant labels here to facilitate comparison with Figure 9.

FIGURE 9 | The top 20 participants by betweenness centrality in the social

network of workshop participation.

the larger research community. However, we note that most of
the collaboration communities shown in Figure 10 are made up
of participants from a single region, and in fact many of them are
made up of participants from a single country. This indicates that

TABLE 2 | Cumulative network statistics for the workshop co-attendance network

from 2013 to 2019.

Year Total links Mean degree Network diameter

2013 78 12.0 1

2015 692 28.3 2

2017 1,435 34.6 3

2019 2,118 33.6 3

Number of links corresponds to the number of cases where two individuals attended at

least one workshop together. Mean degree is the mean number of people participants

were connected to by attending at least one workshop together. Network diameter is the

longest distance between participants based on co-attendance of workshops.

the workshops have not yet had a major impact on international
collaboration on publications, even if they may have fostered
other forms of international cooperation.

Statistics for the coauthorship network over time (Table 3)
provide some additional insight. Here, it is important to note
that the coauthorship network for each year is drawn from the
total population of workshop participants from all years, 2013
to 2019, who coauthored papers together. That is, if two people
who attended for the first time in 2019 wrote a paper together in
2014, this would be included in the network. The advantage of
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FIGURE 10 | Network of 2013–2019 workshop attendees who coauthored publications with other attendees during 2014–2019. Note that this graph includes all

workshop participants in this category as of 2019, so some links may reflect papers that were authored before the individuals in question actually attended a

workshop. Nodes are sized by degree (i.e., number of publication collaborators).

TABLE 3 | Network statistics for workshop participants’ publication coauthorship

network, 2014–2019.

Year Total

authors

Total

publications

Mean

degree

Number of

connected

components

Mean

component

size

Maximum

component

size

2014 19 10 2.00 7 2.71 6

2015 29 29 1.79 11 2.64 7

2016 44 60 1.86 15 2.93 9

2017 47 92 2.17 15 3.13 10

2018 48 115 2.25 14 3.43 14

2019 55 137 2.29 16 3.44 14

2019 statistics describe the graph shown in Figure 10. The data may include papers

that were authored before the individuals in question actually attended a workshop. Total

authors is the number of workshop participants who collaborated with other workshop

participants on publications and is cumulative over time. Total publications is the total

number of publications with two or more workshop participants as coauthors and is

cumulative over time. Mean degree corresponds to the average number of collaborators

per author. A connected component is a group of authors who are connected to each

other through coauthorship links but disconnected from the rest of the participants. Mean

component size is the average size of these connected groups. Maximum component

size is the number of people in the largest connected group of collaborators.

this approach is that, by observing the same group of attendees
over a period of several years, we are able to show the growth in
collaboration within this fixed-size group over time. As shown in
Table 3, the number of workshop participants with coauthorship

relationships increased from 19 to 55 from 2014 to 2019, and
this group had jointly contributed to 137 papers by 2019.
The number of network components linked by coauthorship
relationships increased from 7 in 2014 to 16 in 2019, with
the maximum component size growing from 6 to 14 over the
same period. Although it is not surprising that the number of
collaborations within a group might grow to some extent over
time, these statistics indicate that there is an active community of
collaborators among workshop participants who have continued
to work together over time. However, we do not know whether
these collaboration patterns were caused by workshop attendance
or may be related to workshop participation in some other way.

It is also notable that workshop participants who did coauthor
papers with each other had much higher average betweenness
centrality on the workshop attendance graph (Figures 8, 9) than
those who did not (104.63 vs. 18.00). This provides another
point of reference to suggest that people who attended workshops
in multiple years may have more influence within the BTRP
research community.

DISCUSSION

Strengthening Threat Reduction Networks
International scientific collaboration is a diverse and complex
social phenomenon. It encompasses different types of social,
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scientific, and professional networks spanning many countries,
and involving many groups and organizations. These networks
are engaged in many activities such as research projects,
meetings, workshops, and other events, producing research
products like journal articles, reports, and conference
presentations on many different subjects. These products
lead to further research, and are a strong incentive for forming
new collaborative relationships, causing the community of
researchers to grow.

In many cases, research networks can address challenges
and missions of sponsors faster and with a greater return on
investment than individual research teams (Fair and Fair, 2019).
One goal of BTRP in support of TRNs and other scientific
networks is to build collaborative networks of scientists that
can depend on each other to sustainably address the continuing
challenge of reducing the threat from dangerous infectious
diseases. Preventing epidemics depends on detecting, diagnosing,
and reporting on infectious diseases, which is better facilitated
through networks of scientists and institutions working together.
Through active collaboration and cooperation, the ultimate goal
of global health security can be strengthened and sustained. As
we write this paper, scientists within BTRP TRNs are playing a
critical role in diagnosing COVID-19, understanding the virus,
and assisting in the global response to this health crisis. The
relationships formed through these networks have proven to be
invaluable for sharing of information, samples, data, analyses,
and support in working tirelessly to mitigate the pandemic.

In this paper, we have focused on the role of one small set
of activities, a series of sequencing training workshops, in the
development of research networks. Our analysis shows how this
series of workshops, over a period of 7 years, continued to
attract new and diverse participants, building an increasingly
international network. At the same time, however, there were
enough repeat attendees from year to year that the network as
a whole remains connected across years. In particular, certain key
people who attendedmore than one workshop show up as having
high betweenness centrality, and play a key role in connecting the
overall network. This structure was not planned by the workshop
organizers, although it is perhaps not unusual for a series of
professional meetings on a particular topic. However, this finding
does suggest that if one of the goals of organizing workshops
like these is to build a larger network of potential collaborators,
organizers might want to deliberately plan for a mix of new and
repeat attendees in order to reach the largest possible number of
participants while maintaining links between events.

Ontology-Based Analysis of Social
Networks
The main goal of this paper was to demonstrate a
method for storing, manipulating, and visualizing complex
multidimensional research networks using an ontology-based
graph database. Based on an example of a series of training
workshops, we demonstrated how this method can be used
to extract a subset of the larger multidimensional network to
address a particular research or operational question, and showed
how we could flexibly create different visualizations to illustrate

features of interest. While this is a relatively straightforward
example, we believe this overall approach has great potential
for enabling more sophisticated studies of multidimensional
networks. The SCINET ontology, specifically, provides a set of
categories and relationships that could be applied or adapted to
the analysis of a wide range of scientific research networks.

The use of ontologies in social network analysis is a powerful
approach for exploring multiple types of possible links between
multiple types of entities in a multidimensional network. Because
ontologies capture meaning, it is possible to analyze relationships
in collaborative research across a range of different contexts: e.g.,
by country or organizational affiliation, by research topic, and
so on. Through use of database queries, the technology can be
used to filter information and build relationships in multiple
ways, depending on the research question and desired type of
analysis. By capturing concept and relationship hierarchies, this
approach also makes it possible to pose very general or very
specific questions within the same framework. For example, we
could look at the network created by events in general, or as we
did in this paper, focus on workshops alone. Alternatively, we
could have looked at collaboration networks around infectious
diseases in general, or only diseases that are caused by bacteria,
or only those that affect livestock. With a network like this, any
set of entities or relationships that can be extracted by a database
query creates a network to which the tools of network science
may be applied. Even though our current analysis only scratches
the surface of the potential of this approach, we believe this is
a potentially powerful and flexible set of tools that could have
widespread use in network analysis.

Limitations and Future Work
As discussed previously, our data set, though broad and diverse
in its coverage of BTRP research networks, was also uneven in
its coverage of events and time periods. As a result, we were
unable to address some research questions or make use of some
of the more complex types of analysis that could be facilitated by
our ontology-based approach. In addition, the diverse and non-
standardized data sources we drew from required a significant
manual coding effort to capture in database-ready triple format.
This type of effort is not required in many bibliometric studies,
where data is drawn from pre-existing bibliographic databases
where entities like authors, titles, and affiliations are provided
as distinct data fields, which facilitates automated data capture.
To make our data ingestion process more scalable, we hope to
implement more automated methods in the future. With this
type of data, however, automation will likely require use of
natural language processing tools that are capable of recognizing
and categorizing named entities, rather than more standard
bibliometric approaches. Other possible extensions of our work
include use of more quantitative network science metrics
and algorithms to characterize networks and development of
user-oriented tools to enable non-specialists, such as program
managers, to make use of our database to generate visualizations
and reports that can help them understand, build, and sustain
collaborative research networks.

Frontiers in Research Metrics and Analytics | www.frontiersin.org 13 June 2020 | Volume 5 | Article 3

https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Ambrosiano et al. Ontology-Based Graphs

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

JF and JA conceived of the overall idea. JA, WR, and MR
developed the ontology and its database implementation. JA, BS,
AB, andWR conducted analysis and produced visualizations. JA,
BS, AB, and JF wrote the manuscript.

FUNDING

This research was funded by the Defense Threat
Reduction Agency through Los Alamos National
Security, LLC, operator of the Los Alamos National
Laboratory under Contract No. DE-AC52-06NA25396
with the U.S. Department of Energy (2006-2018) and
Triad National Security, LLC (2018-Present), contract
# 89233218CNA000001.

ACKNOWLEDGMENTS

The authors are grateful for the advice and support of B.
Hornbein, P. Anderson, T. Errkila, and the Genomics Workshop
team members at Los Alamos National Laboratory. We also
thank the Biological Threat Reduction Program for ideas and
feedback and, in particular, M. Stokes, L. Brooks, C. Newman,
O. Gamboa, and D. Defenbaugh. We thank S. Heckethorn for
providing bibliometric data.

REFERENCES

Abbasi, A., Hossain, L., and Leydesdorff, L. (2012). Betweenness centrality
as a driver of preferential attachment in the evolution of research
collaboration networks. J. Informetr. 6, 403–412. doi: 10.1016/j.joi.2012.
01.002

Ahmed, E. B., Tebourski, W., Karaa, W. B. A., and Gargouri, F. (2014).
“ONTOSSN: scientific social network ontology,” in 15th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD) (Las Vegas, NV), 1–4.
doi: 10.1109/SNPD.2014.6888677

Albiger, B., Revez, J., Leitmeyer, K. C., and Stuelens, M. J. (2018). Networking
of public health microbiology laboratories bolsters Europe’s defenses against
infectious diseases. Front. Public Health. 6:46. doi: 10.3389/fpubh.2018.00046

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., and Garry, R.
F. (2020). The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452.
doi: 10.1038/s41591-020-0820-9

Arp, R., Smith, B., and Spear, A. (2015). Building Ontologies With Basic Formal

Ontology. Cambridge, MA: MIT Press.
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.

(2000). Gene ontology: tool for the unification of biology.Nat. Genet. 25, 25–29.
doi: 10.1038/75556

Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., and Vicsek, T.
(2002). Evolution of the social network of scientific collaborations. Phys. A 311,
590–614. doi: 10.1016/S0378-4371(02)00736-7

Bastian, M., Heymann, S., and Jacomy, M. (2009). “Gephi: an open source software
for exploring andmanipulating networks,” in International AAAI Conference on
Weblogs and Social Media (San Jose, CA).

Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardeñes, J.,
Romance, M., et al. (2014). The structure and dynamics of multilayer networks.
Phys. Rep. 544, 1–122. doi: 10.1016/j.physrep.2014.07.001

Boudebza, S., Azouaou, F., and Nouali, O. (2015). “Ontology-based approach
for temporal semantic modelling of social networks,” in 3rd International

Conference on Future Internet of Things and Cloud (Rome).
Bozeman, B., Fay, D., and Slade, C. P. (2013). Research collaboration in universities

and academic entrepreneurship: the-state-of-the-art. J. Tech. Trans. 38, 1–67.
doi: 10.1007/s10961-012-9281-8

Chen, L., Wei, S., and Qingpu, Z. (2010). “Semantic description of social
network based on ontology,” in 2010 International Conference on E-

Business and E-Government (Guangzhou), 1936–1939. doi: 10.1109/ICEE.
2010.489

Contractor, N. S., Monge, P. R., and Leonardi, P. M. (2011). Multidimensional
networks and the dynamics of sociomateriality: bringing technology inside the
network. Int. J. Commun. 5, 682–720.

Dhawan, E., and Saj-Nicole, J. (2015). Get Big Things Done: The Power of

Connectional Intelligence. New York, NY: St. Martin’s Press.
Fair, J., and Fair, J. (2019). “Viral forecasting, pathogen cataloging, and disease

ecosystemmapping: measuring returns on investments,” inGlobal Catastrophic
Biological Risks [Internet], eds T.V. Inglesby, A. A. Adalja (Cham: Springer
International Publishing), 75–83.

Fair, J. M., Carter, H. H., and Wolfe, N. (2017). Biological Engagement Programs:

Reducing Threats and Strengthening Global Health Security Through Scientific

Collaboration. Lausanne: Frontiers Media.
Fair, J. M., Stokes, M. M., Pennington, D., and Mendenhall, I. H. (2016). Scientific

collaborations: how do we measure the return on relationships? Front. Public
Health 4:9. doi: 10.3389/fpubh.2016.00009

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). “Exploring network structure,
dynamics, and function using NetworkX,” in Proceedings of the 7th Python in

Science Conference, eds G. Varoquaux, T. Vaught, and J. Millman (Pasadena,
CA), 11–15.

Hoekman, J., Frenken, K., and Tijssen, R. J. W. (2010). Research collaboration at
a distance: changing spatial patterns of scientific collaboration within Europe.
Res. Policy 39, 662–673. doi: 10.1016/j.respol.2010.01.012

Horvát, E.-Á., and Zweig, K. A. (2013). A fixed degree sequence model for the
one-mode projection of multiplex bipartite graphs. Soc. Netw. Analy. Min. 3,
1209–1224. doi: 10.1007/s13278-013-0133-9

Johnson, A., Akhundova, G., Aliyeva, S., and Strelow, L. (2015). Implementation
and evaluation of a training program as part of the cooperative
biological engagement program in Azerbaijan. Front. Public Health 3:228.
doi: 10.3389/fpubh.2015.00228

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., et al.
(2008). Global trends in emerging infectious diseases. Nature. 451, 990–993.
doi: 10.1038/nature06536

Kas, M., Carley, K. M., and Carley, L. R. (2012). Trends in science networks:
understanding structures and statistics of scientific networks. Soc. Netw. Analy.
Min. 2, 169–187. doi: 10.1007/s13278-011-0044-6

Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and
Porter, M. A. (2014). Multilayer networks. J. Complex Netw. 2, 203–271.
doi: 10.1093/comnet/cnu016

Leahey, E. (2016). From sole investigator to team scientist: trends in the
practice and study of research collaboration. Annu. Rev. Sociol. 42, 81–100.
doi: 10.1146/annurev-soc-081715-074219

Frontiers in Research Metrics and Analytics | www.frontiersin.org 14 June 2020 | Volume 5 | Article 3

https://doi.org/10.1016/j.joi.2012.01.002
https://doi.org/10.1109/SNPD.2014.6888677
https://doi.org/10.3389/fpubh.2018.00046
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/75556
https://doi.org/10.1016/S0378-4371(02)00736-7
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1007/s10961-012-9281-8
https://doi.org/10.1109/ICEE.2010.489
https://doi.org/10.3389/fpubh.2016.00009
https://doi.org/10.1016/j.respol.2010.01.012
https://doi.org/10.1007/s13278-013-0133-9
https://doi.org/10.3389/fpubh.2015.00228
https://doi.org/10.1038/nature06536
https://doi.org/10.1007/s13278-011-0044-6
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1146/annurev-soc-081715-074219
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Ambrosiano et al. Ontology-Based Graphs

Leydesdorff, L., and Wagner, C. S. (2008). International collaboration in
science and the formation of a core group. J. Informetr. 2, 317–325.
doi: 10.1016/j.joi.2008.07.003

Leydesdorff, L., Wagner, C. S., Park, H. W., and Adams, J. (2013). International
collaboration in science: The global map and the network. ArXiv 22.
doi: 10.3145/epi.2013.ene.12

Li, A., Cornelius, S. P., Liu, Y. Y., Wang, L., and Barabási, A. L. (2017).
The fundamental advantages of temporal networks. Science 358:1042.
doi: 10.1126/science.aai7488

Mcgee, F., Ghoniem, M., Melançon, G., Otjacques, B., and Pinaud, B. (2019). The
state of the art in multilayer network visualization. Comp. Graph. Forum 38,
125–149. doi: 10.1111/cgf.13610

Nelson, M. I., Lloyd-Smith, J. O., Simonsen, L., Rambaut, A., Holmes, E. C.,
Chowell, G., et al. (2018). Fogarty International Center collaborative networks
in infectious disease modeling: lessons learnt in research and capacity building.
Epidemics 26, 116–127. doi: 10.1016/j.epidem.2018.10.004

Newman, M. E. (2001a). Scientific collaboration networks. II. Shortest
paths, weighted networks, and centrality. Phys. Rev. E 64:016132.
doi: 10.1103/PhysRevE.64.016132

Newman, M. E. (2001b). The structure of scientific collaboration networks. Proc.
Natl. Acad. Sci. U.S.A. 98:404. doi: 10.1073/pnas.98.2.404

Newman, M. E. (2004). Coauthorship networks and patterns of
scientific collaboration. Proc. Natl. Acad. Sci. U.S.A. 101:5200.
doi: 10.1073/pnas.0307545100

Owusu-Nimo, F., and Boshoff, N. (2017). Research collaboration in
Ghana: patterns, motives and roles. Scientometrics 110, 1099–1121.
doi: 10.1007/s11192-016-2221-x

Powell, J. (2015). A Librarian’s Guide to Graphs, Data and the Semantic Web.

Waltham, MA: Elsevier.
Rafols, I., Porter, A. L., and Leydesdorff, L. (2010). Science overlay maps: a new tool

for research policy and library management. J. Am. Soc. Inform. Sci. Tech. 61,
1871–1887. doi: 10.1002/asi.21368

Rosenberg, R., Lindsey, N. P., Fischer, M., Gregory, C. J., Hinckley, A. F., Mead,
P. S., et al. (2018). Vital signs: Trends tin reported vectorborne disease cases –
united States and territories, 2004–2016.MMWRMorb. Mortal. Wkly. Rep. 67,
496–501. doi: 10.15585/mmwr.mm6717e1

Sageman, M. (2004). Understanding Terror Networks. Philadelphia, PA: University
of Pennsylvania Press.

Shen, Z., Ma, K. L., Eliassi-Rad, T. (2006). Visual analysis of large heterogeneous
social networks by semantic and structural abstraction. IEEE Trans. Vis.

Comput. Graph. 12, 1427–1439. doi: 10.1109/TVCG.2006.107
Smithson, A. E. (2016). Why cooperative threat reduction still

matters—especially for biological dangers. Bull. At. Sci. 72, 322–331.
doi: 10.1080/00963402.2016.1216673

Sonnenwald, D. H. (2007). Scientific collaboration. Annu. Rev. Inform. Sci. Tech.

41, 643–681. doi: 10.1002/aris.2007.1440410121
Sowa, J. F. (1992). “Semantic networks,” in Encyclopedia of Artificial Intelligence,

2nd Edn., ed S. C. Shapiro (New York, NY: Wiley), 1493–1511.
Standley, C. J., Sorrell, E. M., Kornblet, S., Fischer, J. E., and Katz,

R. (2015). Implementation of the international health regulations

(2005) through cooperative bioengagement. Front. Public Health 3:231.
doi: 10.3389/fpubh.2015.00231

Storme, T., Faulconbridge, J. R., Beaverstock, J. V., Derudder, B., and
Witlox, F. (2017). Mobility and professional networks in academia:
An exploration of the obligations of presence. Mobilities 12, 405–424.
doi: 10.1080/17450101.2015.1116884

Taylor, L. H., Latham, S. M., and Woolhouse, M. E. (2001). Risk factors for
human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 983–989.
doi: 10.1098/rstb.2001.0888

The Gene Ontology Consortium (2018). The gene ontology resource: 20 years and
still going strong. Nucl. Acids Res. 47, D330–D338. doi: 10.1093/nar/gky1055

Wagner, C. S., Whetsell, T. A., and Leydesdorff, L. (2017). Growth of
international collaboration in science: revisiting six specialties. Scientometrics

110, 1633–1652. doi: 10.1007/s11192-016-2230-9
Woolhouse, M. E., and Gowtage-Sequeria, S. (2005). Host range and

emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847.
doi: 10.3201/eid1112.050997

Wu, P., and Li, S. (2009). “Social network visualization via domain ontology,”
in 2009 International Conference on Information Engineering and

Computer Science (Wuhan).
Yan, E., and Ding, Y. (2009). Applying centrality measures to impact analysis:

A coauthorship network analysis. J. Am. Soc. Inf. Sci. Tech. 60, 2107–2118.
doi: 10.1002/asi.21128

Yan, E., and Guns, R. (2014). Predicting and recommending collaborations:
an author-, institution-, and country-level analysis. J. Informetr. 8, 295–309.
doi: 10.1016/j.joi.2014.01.008

Zhang, Y., Zhang, G., Wang, X., and Lu, J. (2018). Predicting the dynamics
of scientific activities: a diffusion-based network analytic methodology. Proc.
Assoc. Inform. Sci. Technol. 51, 598–607. doi: 10.1002/pra2.2018.145055
01065

Zhang, Y., Zhang, G., Zhu, D., and Lu, J. (2017). Scientific evolutionary
pathways: Identifying and visualizing relationships for scientific
topics. J. Assoc. Inf. Sci. Tech. 68, 1925–1939. doi: 10.1002/asi.
23814

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest. The authors declare that this study received funding
from Los Alamos National Security, LLC (2006–2018) and Triad National Security,
LLC (2018-Present), operators of Los Alamos National Laboratory. The funder was
not involved in the study design, collection, analysis, interpretation of data, the
writing of this article or the decision to submit it for publication.

Copyright © 2020 Ambrosiano, Sims, Bartlow, Rosenberger, Ressler and Fair. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Research Metrics and Analytics | www.frontiersin.org 15 June 2020 | Volume 5 | Article 3

https://doi.org/10.1016/j.joi.2008.07.003
https://doi.org/10.3145/epi.2013.ene.12
https://doi.org/10.1126/science.aai7488
https://doi.org/10.1111/cgf.13610
https://doi.org/10.1016/j.epidem.2018.10.004
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1073/pnas.98.2.404
https://doi.org/10.1073/pnas.0307545100
https://doi.org/10.1007/s11192-016-2221-x
https://doi.org/10.1002/asi.21368
https://doi.org/10.15585/mmwr.mm6717e1
https://doi.org/10.1109/TVCG.2006.107
https://doi.org/10.1080/00963402.2016.1216673
https://doi.org/10.1002/aris.2007.1440410121
https://doi.org/10.3389/fpubh.2015.00231
https://doi.org/10.1080/17450101.2015.1116884
https://doi.org/10.1098/rstb.2001.0888
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1007/s11192-016-2230-9
https://doi.org/10.3201/eid1112.050997
https://doi.org/10.1002/asi.21128
https://doi.org/10.1016/j.joi.2014.01.008
https://doi.org/10.1002/pra2.2018.14505501065
https://doi.org/10.1002/asi.23814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles

	Ontology-Based Graphs of Research Communities: A Tool for Understanding Threat Reduction Networks
	Introduction
	Background and Related Research
	Importance of Scientific Collaboration for Reducing Infectious Disease Threats
	Threat Reduction Networks
	Social Network Analysis
	Ontologies and Multidimensional Networks

	Materials and Methods
	Ontology and Database Development
	Creating the Ontology
	Data Capture
	Database Development
	Using Database Queries to Construct Networks

	Results
	The Sequencing Workshop Network
	The Workshop Co-attendance Network
	Coauthorship Networks Among Workshop Participants

	Discussion
	Strengthening Threat Reduction Networks
	Ontology-Based Analysis of Social Networks
	Limitations and Future Work

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


