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Abstract

The ratio of Na+ and K+ is an important determinant of the magnitude of Na+ toxicity and

osmotic stress in plant cells. Traditional analytical approaches involve destructive tissue

sampling and chemical analysis, where real-time observation of spatio-temporal experi-

ments across genetic or breeding populations is unrealistic. Such an approach can also

be very inaccurate and prone to erroneous biological interpretation. Analysis by Hyper-

spectral Imaging (HSI) is an emerging non-destructive alternative for tracking plant

nutrient status in a time-course with higher accuracy and reduced cost for chemical

analysis. In this study, the feasibility and predictive power of HSI-based approach for

spatio-temporal tracking of Na+ and K+ levels in tissue samples was explored using a

panel recombinant inbred line (RIL) of rice (Oryza sativa L.; salt-sensitive IR29 x salt-tol-

erant Pokkali) with differential activities of the Na+ exclusion mechanism conferred by

the SalTol QTL. In this panel of RILs the spectrum of salinity tolerance was represented

by FL499 (super-sensitive), FL454 (sensitive), FL478 (tolerant), and FL510 (super-tol-

erant). Whole-plant image processing pipeline was optimized to generate HSI spectra

during salinity stress at EC = 9 dS m-1. Spectral data was used to create models for Na+

and K+ prediction by partial least squares regression (PLSR). Three datasets, i.e., mean

image pixel spectra, smoothened version of mean image pixel spectra, and wavelength

bands, with wide differences in intensity between control and salinity facilitated the pre-

diction models with high R2. The smoothened and filtered datasets showed significant

improvements over the mean image pixel dataset. However, model prediction was not

fully consistent with the empirical data. While the outcome of modeling-based prediction

showed a great potential for improving the throughput capacity for salinity stress pheno-

typing, additional technical refinements including tissue-specific measurements is nec-

essary to maximize the accuracy of prediction models.
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Introduction

High-throughput and high-resolution physiological phenotyping has become a much greater

limitation (more than genotyping) in characterizing large populations for genetic studies as

well as individual plant selection in breeding. Accurate scaling of quantitative variation is criti-

cal for understanding the interaction between the genotype and the environment (GxE) in

phenotypic expression [1]. While physiological profiling of a smaller subset of individuals in a

population present only minor challenges and poses virtually no limitation in terms of resolu-

tion, dealing with much larger populations that are often required for trait dissection by QTL

mapping or Genome-wide Association Studies (GWAS) tend to be more time-consuming,

resource-intensive, and subject to inaccuracies and inconsistencies [2].

Physiological phenotyping for salinity tolerance is a critical step in dissecting the genetic

basis of such quantitative and polygenic trait. For instance, differential uptake of Na+ by plant

cells through non-selective K+ channels as measured by Na+/K+ ratio is an important measure

of salinity stress injuries as it reflects the extent of cellular toxicity [3]. Variation in Na+/K+

ratio between individuals across a genetic population is evaluated by examining the differences

in tissue ion content by destructive sampling, and further by direct chemical analysis in the

laboratory [4–6]. While it is a standard procedure, chemical analysis of a large number of indi-

viduals across a genetic population tends to be labor intensive, costly, and prone to inaccura-

cies and inconsistencies that could undermine the biological significance of the data.

Furthermore, destructive tissue sampling does not allow a continuous observation of physio-

logical and morphological changes in a spatio-temporal scale when treatment effects should be

monitored during the course of plant growth and development.

Imaging-based approaches for non-destructive physio-morphometric profiling has recently

offered a more robust and high-throughput alternative for assessing quantitative differences

across a genetic population. These approaches allow profiling of individuals in real-time, per-

mitting simultaneous or parallel investigation of multiple physiological, biochemical, and mor-

phological parameters in every single individual across the population in a single experiment

[7]. For example, numerous studies have employed a high-throughput phenotyping strategy

for simultaneous screening of the effects of salinity, drought, and disease-causing pathogens

within the same genetic populations of rice (Oryza sativa L.) and upland cotton (Gossypium
hirsutum L.) [8–12]. These studies facilitated the identification of quantitative trait loci (QTL)

for tolerance, which was made possible by the high digital resolution and quantitativeness of

the overall physiological and developmental state of each individual plant in the segregating or

recombinant population [13].

Accumulation of Na+ and K+ in plant tissues under salinity stress is typically determined by

chemical analysis through flame photometry [4]. As this approach involves destructive tissue

sampling, simultaneous measurements of other parameters on the same individual plant

becomes a major limitation that confounds the correlation of other traits with Na+/K+, which

can only be addressed with increased number of individual plant replicates for every single

genotype in the data matrix. Furthermore, destructive sampling of tissues for chemical analysis

creates discontinuous observations as the same individual plant in a population could not be

observed throughout developmental stages for robust biological interpretation of spatio-tem-

poral changes due to stress effects.

In this study, we evaluated the potential of Hyperspectral Image (HSI) analysis as a non-

invasive approach for quantifying the Na+ and K+ accumulated in plant tissues during salinity

stress using a comparative panel of recombinant inbred lines (RILs) of rice representing a gra-

dient of salinity tolerance, derived from a cross between the salt-sensitive indica cultivar IR29

and salt-tolerant aus cultivar Pokkali [14]. The principle of HSI is governed by characteristic
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signatures of macromolecular or elemental absorption of radiation in genetically, developmen-

tally, and/or physiologically distinct individuals, which is then used as an index to determine

the quantity, spatial distribution, and temporal fluxes of the absorbing macromolecule or ele-

ment within an individual plant [15,16]. HSI has also been applied for evaluating overall plant

health, growth and nutritional status in large population studies through the ‘normalized dif-
ference vegetation index’ (NDVI) or ‘photochemical reflectance index’ (PRI) [17]. The wide

range of spectral wavelengths used in HSI analysis makes it possible to capture different

aspects of plant physiological and biochemical properties through the integration of wave-

lengths from visible (400–700 nm), near-infrared (NIR; 750–1400 nm), and short wavelength

infrared (SWIR; 1400–3000 nm) [18].

HSI has been used to discriminate foliar biochemical status between plant species, and

to evaluate the effects of abiotic and biotic stresses on plant health and vigor. The most

common example is the measurement of nitrogen and chlorophyll contents as indices of

overall plant health and vigor [19–23]. More recently, HSI-based physiological profiling

has been applied to investigate the levels of elemental macronutrients and micronutrients

in a number of crop species [24,25]. In this study, we applied the same principles of HSI to

establish models for predicting Na+ and K+ levels in rice plants subjected to salinity stress

using three different spectral datasets created by different methods of data normalization.

Using the IR29 x Pokkali RIL comparative panel, we evaluated the physiological and biolog-

ical significance of the predictive models and their potential applications as proxy to direct

chemical analysis in large population studies. We uncovered the refinements that are neces-

sary for a robust application of HSI-based modeling for the estimation and prediction of

Na+ and K+ levels for future applications in large-population studies in plant genetics and

breeding.

Methods

Experimental design and hyperspectral imaging

RILs representing different levels of salinity tolerance were selected from the IR29 X Pokkali

F8 population. As previously described, this minimal comparative panel included the parents

IR29 (salt-susceptible) and Pokkali (salt-tolerant), and the transgressive segregants FL510

(super-tolerant), and FL499 (super-sensitive), and two individuals representing the parental

phenotypic range, FL478 (tolerant) and FL454 (susceptible) [14]. Briefly, to establish the plants

for HSI experiments, dehulled seeds were first disinfected with ethanol (70% v/v) and bleach

solution (50% v/v) before germination in 0.5X Murashige-Skoog (MS) agar for 4 to 5 days.

Seedlings (n = 10 for each genotype) were subsequently established in hydroponics using the

Turface MVP1 as solid media in Yoshida nutrient solution [26]. Five plants each (n = 5) were

used for the control and salinity stress experiments. Treatment plants were exposed to elevated

levels of salt after establishment for 14-days and observed through the Scanalyzer 3D imaging

platform (LemnaTec, GmbH, Aachen, Germany) at the facility of the University of Nebraska-

Lincoln for a total of 19 days. Salinity stress treatment was administered by adding NaCl:CaCl2

solution (270 mM NaCl:9.9 mM CaCl2), which increased the EC (electrical conductivity) of

the nutrient solution to 4.5 dS m-1 (~45 mM NaCl). This initial salinity treatment was escalated

the next day to EC = 9 dS m-1 (~90 mM NaCl) and maintained at that level through the dura-

tion of the experiment [14,27].

The HSI datasets used in modeling were from previously published phenomics study

[14,28] (Dryad/doi:10.5061/dryad.2jm63xsrm) where observations were generated through an

established protocol that employed an extended VNIR (visible and NIR) push-broom type

imaging spectrometer camera (Headwall Photonics, Fitchburg, MA, USA) [24]. In this dataset,
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images were taken from the side view of the plant, with a spectral range of 550 to 1700 nm

(green-red region to proximal part of SWIR), and spectral interval of 4.77 nm for individual

images. In total, each plant had 243 pictures corresponding to the spectral range for each day

throughout the duration of the salinity stress experiments. Plants were imaged daily during the

afternoon (1400 H to 1600 H) for a total of eighteen (18) times for a period of nineteen (19)

days, with the exception of day-7, for which no images were collected due to unforeseen tech-

nical issues in the imaging system. This observation period encompasses the V4 (early tiller-

ing) to V12 (maximum tillering) stages of rice development [14].

Image capture and processing, ion content modeling, and statistical

analysis

Image processing included three steps–masking, cropping, and pixel counting. Masking

removed the non-plant pixels from the images acquired by HSI. Mask was created for each

image group folder using images captured from the red-orange band (~615 nm) and the mid-

dle of the NIR region (~1117 nm) that was selected arbitrarily to create NDVI images. These

images were used to eliminate the majority of non-plant pixels that could provide noises on

the data.

To capture the exact plant area, images were further cropped and cleaned through the

removal of non-plant pixels (i.e., bucket, stand, background) from the raw image data-

sets. Mean pixel intensities were counted first through the pixel intensities for every

pixel used to establish the means, such that even the background pixels with zero (0)

intensities were counted. Secondly, mean pixel intensities were also counted by using

only the non-zero pixels to minimize the contribution of background pixels to the over-

all mean. The first approach had issues with plant sizes affecting the intensity, since the

number of background pixels with zero intensity lowered the mean, while the second

method did not.

The pixel intensities of each image folder were assembled to create the reflective spectrum

for each plant on a given day. Using the prospectr package, the reflective spectra were modified

in some of the analyses by smoothening the curves to remove background noises [29]. The

spectra were smoothened via gap-derivative smoothing approach, which combined the gap-

segment filtering and the derivatization of the spectra to reduce noise and smoothen the

curves, which was an important aspect of enhancing the data consistency for prediction.

Ion content models were created using the partial least squares regression (PLSR) of the

image spectra from the last day of the experiment (18 days after salinity stress or DAS), and

empirical Na+ and K+ content measurements made on the same samples via flame photometry

(described in the next section). Samples from the last day of imaging were used for empirical

quantification of Na+ and K+ contents to limit the damage being made to the plants during the

imaging period. Mechanical damage may elicit different responses that may be picked up by

HSI, leading to erroneous spectra being created. Samples taken on the last day of the experi-

ment were also theoretically the most divergent between the two treatments, as a result of lon-

gest duration of exposure to salinity stress. Thus, the correlations made between the spectra

and the ion contents quantified through flame photometry were expected to be highly con-

trasting between the treatments.

Being a commonly used method for establishing predictive models in chemometrics stud-

ies, the PLS regression analysis was used in this study for a number of reasons [30]. First, the

strength of this method lies in its capacity to analyze large datasets with inherent noises or

those with highly collinear variables, such as absorbance spectra. Second, in comparison to

other regression methods such as stepwise regression analysis or the use of normalized
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difference vegetation indices (NDVI), PLSR utilizes more data-points rather than discarding

majority of the data available, making its output more robust [31].

The pls package in ‘R’ was used in the regression modeling [32]. A total of forty-eight (48)

samples were used for training the model. To maximize the accuracy of the model, a total of

twenty-four (24) samples (i.e., half of the total dataset) were used to construct a PLSR model,

which was tested against the remaining samples (i.e., the other half of the total dataset). At the

same time, the number of components that gave the best prediction were determined by the

root mean squared error of prediction (RMSEP). The coefficient of linear regression (R2) value

was used to assess the accuracy of prediction. This process was repeated 100,000-times to get

the model with the lowest RMSEP, highest R2 value, and the number of components (out of

10) that created these parameters. The model was applied to the rest of the spectral dataset to

establish estimates of the daily ion content in each genotype in the comparative RIL panel.

Graphical representations of analysis outputs were created using the ‘ggplot’ package [33].

Chemical analysis of ion content by flame photometry

Independent experiment identical and parallel to the experiment performed for HSI data col-

lection was performed to collect samples for chemical analysis of Na+ accumulation by flame

photometry. Plants of the exact same RILs used for HSI experiments were grown for 14 days

in nutrient solution, after which they were exposed to salinity stress by adding NaCl:CaCl2

solution (270 mM NaCl:9.9 mM CaCl2) to increase the EC of the nutrient solution to 4.5 dS m-

1 (~45 mM NaCl). Like in the HSI experiments, salinity was further elevated after 24 hours to

EC = 9 dS m-1 (~90 mM NaCl) and maintained at that level for 18 days. Control experiment

without salt amendment was performed concurrently under the same conditions in the green-

house. Shoot samples were collected 6, 12, and 18 days after salinity stress exposure to establish

the temporal profile of ion accumulation, with three (3) biological replicates per genotype and

for each treatment at each sampling date.

The established protocol of Munns et al. [4] was slightly modified and used as reference for

this procedure. Shoot tissues (100 mg) were pulverized and weighed into 15 mL tubes, and

then suspended in 10 mL of 0.5 M nitric acid (HNO3). Mixture was gently shaken in an oven

at 37˚C for 72 hours, and then centrifugated at 4000 rpm for 20 minutes. This step was neces-

sary to separate the plant debris from the solution and avoid clogging the flame photometer.

The supernatant was diluted to 2% concentration (i.e., 0.1 mL of sample + 4.9 mL of deionized

H2O) to reduce the ion content of the solution within the detection ranges of the flame pho-

tometer below saturation, and thus within the linear level. A standard curve (40 ppm, 30 ppm,

20 ppm, 10 ppm, 5 ppm, and 1 ppm) was created from 1000 ppm Na+ and K+ standard solu-

tions for quantifying the ion contents of the samples, and as a quality check for the procedure.

Results

Filtered and optimized datasets

The comparative genotypic panel used in this study was comprised of the salt-sensitive indica
cultivar IR29 (parent), salt-tolerant and SalTol-donor aus landrace Pokkali (parent), and four

of their derived recombinant inbred lines (F8-RILs) representing the spectrum of salinity toler-

ance within the parental range (i.e., FL454 = SalTol-negative, and salt-sensitive like IR29;

FL478 = SalTol-positive and salt-tolerant like Pokkali), and outside the parental range (i.e.,
FL499 = SalTol-negative and more sensitive than IR29 and FL454 hence super-sensitive; FL510

= SalTol-positive but more tolerant than Pokkali and FL478 hence super-tolerant) [14]. Two

identical subsets of plants representing the genotypic comparative panel were grown in parallel

under normal (control) condition, and salinity stress condition that progressed from EC = 4.5
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dS/m for one (1) day to EC = 9 dS/m for another 17 days. Hyperspectral images of each indi-

vidual in the parallel control and salinity stress experiments were captured at a bandwidth

range of 550 nm to 1700 nm (green-red region to proximal part of SWIR). The daily spectral

traces for each plant based on mean pixel intensity described in previously published work

[14] are shown in Fig 1. Data showed that the spectra contain many inconsistencies, which

could adversely affect the accuracy of regression models for prediction. Two possible solutions

to this issue were tested, first by smoothening the spectral data with a gap-segment derivatiza-

tion method (Fig 2), and second by selection of specific wavelengths with the highest differ-

ences in pixel intensity (Fig 3). The smoothening process removed small crests and troughs in

the spectra and emphasized the wavelength segments with high differences in intensity [29].

On the other hand, selection of specific wavelengths with the highest differences in pixel inten-

sity was more straightforward. Wavelengths with a difference between control and salinity that

are higher than the third quartile of the entire pixel intensity dataset were used. This approach

appeared to have improved the regression model by removing potentially uninformative wave-

lengths. However, both approaches also appeared to have the drawback of removing data-

points that are highly likely to be bona fide observations that can be legitimately used in model-

ing. The smoothened dataset reduced the number of data-points per plant from 243 to 223

(8.23% reduction), and the quartile-derived set included only 61 of the total wavelengths (75%

reduction) for analysis.

Fig 1. Spectral graphs using mean pixel intensities according to genotype and days after salinity treatment. Average pixel intensity for each image at a given

wavelength was used to create spectral graphs for each day (x-axis) and for each genotype (y-axis). Non-zero pixel intensities were used to prevent bias due to higher

number of pixels with zero (0) value during the earlier stages of plant growth.

https://doi.org/10.1371/journal.pone.0270931.g001
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Correlation between hyperspectral and wet-lab measurements

To test the validity of the trends in ion accumulation that was revealed by HSI, parallel control

and salinity experiments identical to the set-up used for image capture was performed for

chemical analysis of tissue Na+ and K+ contents 6, 12, and 18 days after salinity stress (DAS;

Fig 4A and 4B). While Na+ levels were elevated relative to K+ in all genotypes under salinity

stress, Na+/K+ ratio was significantly higher among the salt-sensitive genotypes (recipient par-

ent IR29, FL454, FL499) than the salt-tolerant genotypes (donor parent Pokkali, FL478, FL510;

Fig 4C). Changes in Na+ levels under stress started as early as 6 DAS, especially in the sensitive

genotypes (Fig 4A). In contrast, in all genotypes, decline in K+ levels started at 12 DAS (Fig

4B). Increase in Na+ concentration coincided with the onset of growth stagnation, which was

observed most prominently in the sensitive genotypes [14]. In contrast, in the tolerant geno-

types, decline in growth rate was attenuated until 2 to 3 days after the sensitive genotypes had

shown drastic declines in growth rate. In the sensitive genotypes, difference in growth between

control and salinity were much larger compared to the tolerant genotypes. This indicates that

the accumulation of Na+ had a very significant effect on the plant’s health in the sensitive geno-

types, while the tolerant lines had other mechanisms that appeared to be effective in mitigating

the toxicity of elevated salt.

Partial Least Squares Regression (PLSR) models (n = 48) were constructed on the ion con-

centration measurements and corresponding HSI data during the last day of imaging. During

the last day of imaging, individual plants were destructively sampled without the compromis-

ing the integrity and quality of images since image capture was already completed. The total

Fig 2. Spectral graphs of the data cleaned by smoothening through gap-segment derivatization, presented by genotype across different durations of salinity

stress. Spectral data used to create Fig 1 was cleaned and smoothened using a moving average (gap-segment) and 1st degree derivatization, which emphasized the

peaks. This approach also removed the random changes in pixel intensity, which lead to smoother curves that emphasized real differences between treatments.

https://doi.org/10.1371/journal.pone.0270931.g002
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dataset was divided randomly into two subsets (50%-50% split), and utilized as ‘training data-
set’ and ‘test dataset’. By iterative and repeated resampling of the training dataset, the best fit

PLSR models were constructed until the best regression coefficient (R2) for the test dataset
with its best component number was determined. In testing the model to predict Na+ and K+

levels, the R2 values obtained for the PLSR projections were at a reasonable range.

The initial dataset on mean pixel intensity spectra (Fig 1) had R2 values of 0.746 and 0.916,

and CV (i.e., cross-validation estimate of the number of components for the best model) values

of 0.056 and 0.292 for Na+ and K+, respectively (Fig 5A and 5B). However, the trends estab-

lished by PLSR were not totally in agreement with the empirical measurements. Overall, Na+

contents in all genotypes showed a downward trend regardless of treatment (Fig 5C). Slight

deviations between treatments started between 9 DAS to 12 DAS in all genotypes except in the

super-tolerant FL510. The super-sensitive FL499 had the largest deviation between treatments.

The trends in K+ accumulation were essentially opposite of the trends in Na+ accumulation

(Fig 5D). Deviation between treatments were also observed in the same time period. However,

the accuracy for K+ accumulation is questionable due to the negative values predicted for ear-

lier time-points. It is possible that such deviations may have been due to the clustering of sam-

ples used in regression (Fig 5A and 5B). In addition to the inaccuracies in the regression

model, the range of values predicted for this dataset were much lower than what was observed

in the empirical measurements for both Na+ and K+ (Fig 4).

Fig 3. Spectral graphs based on wavelengths showing high magnitude of differences between treatments, presented by genotype across different

durations of salinity stress. This dataset was generated by calculating the quartiles of pixel intensities in each wavelength, after which only the wavelengths that

have a difference of more than the 3rd quartile between stress and control were selected. This approach intended to remove the wavelengths that may be non-

contributory for the creation of PLSR models, which can sufficiently distinguish between salinity and control. However, this method also removed a substantial

amount of data, which appeared to undermine the predictive power of the model.

https://doi.org/10.1371/journal.pone.0270931.g003
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Similar trends were observed for the other two datasets. For the smoothened dataset (Fig

2), R2 for Na+ and K+ were 0.845 and 0.881, with CV of 0.056 and 0.291, respectively (Fig 6A

and 6B). In general, the predicted values for Na+ increased especially during the earlier time-

points (Fig 6C). This was also true for the predicted K+ values, however, negative values were

still predicted (Fig 6D). Deviation between treatments were also smaller in this dataset com-

pared to the original dataset, perhaps because of the higher values in general. The regression

line for Na+ accumulation using this dataset was more evenly spread across the trendline com-

pared to the original dataset, which gives a better validation to the regression (Fig 6A). How-

ever, the regression line for K+ also clustered into two main groups, which appeared to be

causing the prediction of negative values (Fig 6B). Despite this, the range of values predicted

in this dataset matched better with the range of values determined experimentally (Fig 4). This

is probably due to the reduction of noise by smoothening, and greater emphasis of treatment

differences by derivatization. The similarity in the range of values increased the accuracy of the

model, making it viable for ion content prediction.

The third dataset filtered out 61 wavelengths with wider differences between control and

salinity across genotypes (Fig 3). For Na+ and K+, the R2 were 0.781 and 0.875, with CV of

0.066 and 0.294, respectively (Fig 7A and 7B). The trends for both ions remained mostly the

same with the other two datasets (Fig 7C and 7D). The scale of values was also more similar to

the first dataset for both ions. The points in the regression line of Na+ were also more evenly

spread out, like in the second dataset (Fig 7C). However, for K+, there was also an observed

clustering into two groups, which is consistent with the other datasets (Fig 7D). Similar to the

first model (Figs 1 and 5), this model appeared to underestimate the values of Na+ and K+

based on the total range. This indicates that while the uninformative wavelengths may have

been removed in this dataset leading to better R2 values, the informative wavelengths basically

gave the same prediction as what was seen in the initial dataset. This result shows that noise

reduction and emphasis on differences through derivatization is more important than just

removing uninformative data points. While the inaccuracy of the predicted values makes this

dataset less desirable for further analysis, it also shows consistency with the first data set. This

indicates that the process for creating models could be transferrable to other experiments but

would require pristine datasets to make accurate and usable prediction outputs.

Discussion

The models created by PLSR yielded high R2 values that gave confidence to the trends revealed

despite having some minor inconsistencies. The values for K+ in the early time-points were

especially concerning, as they indicate negative concentrations. There is also an apparent dif-

ference with the trends revealed from the flame photometry data and those predicted by HSI.

Several factors may have contributed to these observations. One of them is the assumption

that the pixel measurements for whole plant are uniform throughout (i.e., from one organ to

another or from one tissue to another). However, experiments have shown that this may not

be the case, and different cells, tissues, or organs could have different ion concentrations due

Fig 4. Empirical measurements of tissue Na+ and K+ contents across different durations of salinity stress as

measured by flame photometry analysis. Plants were sampled at three evenly spaced time-points (6, 12, and 18 DAS).

Na+ content was stable under control condition but markedly elevated under salinity stress. Tolerant genotypes (i.e.,
donor parent Pokkali, FL510, FL478) had lower Na+ content compared to susceptible genotypes (i.e., recipient parent

IR29, FL454, FL499) throughout the duration of the experiment. This trend implies that the difference in Na+ content

started before the earliest sampling time-point (6 DAS). All genotypes showed a decreasing trend in K+ accumulation.

There was little difference in K+ content in first sampling time-point, which increased with exposure time. These

trends were similar across genotypes, implying that in terms of K+ accumulation, different genotypes appeared to have

the same response regardless of their inherent tolerance or sensitivity to salinity.

https://doi.org/10.1371/journal.pone.0270931.g004
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to both cell-to-cell and long distance transport mechanisms [34,35]. Thus, the tissues used for

flame photometry as well as the specific area used for image analysis and construction of spec-

tra need to be reassessed and synchronized in order to reduce the total variance and improve

accuracy. The image capture process may also present variabilities that reduce the consistency

of data, thus careful maintenance of the image capture process is necessary.

The smoothened and derivatized dataset had the best R2 value (0.845) for Na+ concentra-

tion. The low values for K+ in this dataset were also higher and closer to zero than the others

(Fig 6D). In addition, the R2 value for K+ concentration did not deviate much from the other

datasets, and it had the best spread of data-points of all the datasets (Fig 6B). This may be due

to the removal of noise that interferes with modeling. Differences are also emphasized through

the derivatization of the values. In comparison, filtering out wavelengths as applied to the third

dataset may be an improvement over the raw spectral data, but this may also result in the loss

of informative data-points. The tighter clustering of points in the K+ regression models for the

unprocessed spectra (Fig 4B) and filtered spectra (Fig 7B) may also have created inaccurate

models with high regression values. The tight cluster tend to reduce residual values and

increase R2, but less data-points at higher values means lower accuracy in predicting ion con-

centrations. Thus, the more evenly distributed data-points in the smoothened and derivatized

dataset (Fig 6B) can be assumed to be more accurate than the selected dataset. The accuracy of

this dataset is further supported by the similarity in the range of predicted values to the empiri-

cal dataset (Fig 4). In contrast, the other two datasets vastly underestimated the ion contents of

the sample by around 50% (i.e., up to 1.0 mmol g-1 DW for the empirical set, up to 0.5 mmol g-

1 DW for the predicted set), making their applications in actual experiments unrealistic.

The analysis may also necessitate the sampling and quantification of samples in the middle

of the temporal observation period (i.e., seven days after stress) to establish the relationship

between spectral data and ion quantities without having large disparities between stress and

control. K+ contents of plants under salinity vary greatly compared to normal conditions

[36,37]. This may also be contributory to the congregation of data points in the linear regres-

sion models for K+. In the case of the rice genotypes used in this study, the main difference

would seem to be in their Na+ accumulation patterns (Fig 4A), as all of them showed steady

downward accumulation of K+ under salinity (Fig 4B). This is in line with the previous obser-

vation that Pokkali confers strong potential for salt exclusion to its tolerant progenies FL510

and FL478, possibly through effects of the SalTol QTL [14,38].

The trends established by PLSR indicate that there may not be a wide difference between

the ion contents of plants under normal and saline conditions at the whole plant level. For

Na+, the overall concentration lowered through time. It was noticeable that the super-tolerant

FL510 had very similar values in the control and salinity experiments. Meanwhile, the others

had only small deviations, especially FL499, which was the most sensitive to salinity. Thus,

while differences are small at the whole plant level, it may be possible to differentiate genotypes

based on the deviation of Na+ concentration, especially during extended stress periods. The

trends shown by K+ accumulation also indicate that there is a definite maintenance of K+ con-

tent in the more superior genotypes like FL510. K+ content has been observed to decrease with

Fig 5. Trends in ion accumulation predicted by PLSR and the corresponding linear regression of the PLSR model

created from the mean image pixel intensity. The accuracy of the model was tested by creating a scatterplot between the

samples not included in training the PLSR model, and their corresponding Na+ (A) and K+ (B) content predictions. While

the models for both ions had satisfactory R2 values, the data-points tend to cluster in two groups. The model was further

used to predict ion accumulation trends for Na+ (C) and K+ (D). Images taken during the last day of imaging were used in

conjunction with the empirical ion content values that were determined by flame photometry. Overall, the trends in Na+

and K+ accumulation were opposite. However, the trends are also opposite from what is expected based on flame

photometry. Despite this result, there is a definite deviation between salinity and control for both Na+ and K+.

https://doi.org/10.1371/journal.pone.0270931.g005
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Fig 6. Trends in ion accumulation predicted by PLSR and the corresponding linear regression for the dataset

cleaned by gap-segment derivatization. The initial dataset used for creating the ion accumulation model in Fig 2 was

smoothened and derivatized to the first degree. This approach removed the inconsistent peaks in the spectra, creating a

more consistent data distribution. The regression scatterplots for testing the model accuracy are shown for Na+ (A)

and K+ (B). For this dataset, the spread of data-points in the regression plot for Na+ was improved compared to the
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increasing magnitude of salt stress [39,40]. This may be contributory to the decrease in growth

as metabolic processes such as photosynthesis are perturbed [41,42]. Thus, maintenance of K+

or supplementation of K+ helps alleviate these symptoms [37,43].

Small differences across genotypes also point to how small alterations in the concentration

of Na+ and K+ at the whole plant level could severely hamper growth. However, this may also

indicate that there are other factors aside from ion accumulation that create osmotic and toxic-

ity effects under salinity. Thus, it may be necessary to look at other indices in conjunction with

ion accumulation to fully classify phenotypic variation. Specifically, spatial Na+ accumulation

patterns may be the critical determinant of tolerance. Similar findings were found by Ahmadi-

zadeh et al. [44], which showed how salt accumulates in older tissues first and such spatial

dynamics have been positively correlated with the magnitude of tolerance. More thorough

image analysis and ion quantitation will enable the study of spatial salt accumulation dynam-

ics. This will necessitate increasing the number of images and angles (i.e., spatial resolution)

taken to create more detailed accumulation profiles of different areas within the plant.

This study presents a possible non-destructive approach for salinity tolerance phenotyping.

While there are technical issues need to be resolved to further fine-tune and enhance the accu-

racy of prediction, the current results showed promise in distinguishing highly tolerant geno-

types from those that are susceptible (i.e., binary classification). Thus, this method can be used

to minimize flame photometry and destructive chemical analysis, substantially reducing costs,

and time for screening. It presents a viable option to scale-up phenotyping, which is a primary

bottleneck in accelerating the process of breeding crops for stress tolerance.

Conclusion

Hyperspectral imaging is rapidly emerging as a viable alternative to destructive chemical anal-

ysis of plant tissue samples in assessing plant injuries due to nutrient, osmotic, and ion toxicity

stresses. Its primary advantage of being able to perform quantitative tests on the same set of

samples from a population at a reduced cost makes it an extremely attractive method for plant

selection in genetic studies and plant breeding. It can also potentially offer ways to establish

continuous and real-time nutrient accumulation trends in intact plants. In this study, high R2

values were achieved between empirically derived ion quantities and HSI data. Both data filtra-

tion methods helped improve the model quality, with smoothening and derivatization leading

to better accuracy. However, technical issues such as inconsistencies between empirical data

and the model still remain. These issues could potentially be improved by increasing the reso-

lution of the images, focusing on specific plant areas (organs or tissues), and using such spatial

specificity for empirical measurements and also for reducing other potential sources of vari-

ability in the images. The analysis method should also be applied independently to additional

genetic populations that have been validated for segregation for salinity tolerance, in order to

validate its accuracy. In the current study, differences between sensitive and tolerant genotypes

were detected in terms of Na+ and K+ accumulation, especially for the transgressive RILs

FL499 (super-sensitive) and FL510 (super-tolerant). However, trends that are established differ

from what was initially hypothesized, especially since Na+ trends lowered and K+ continuously

increased under both treatments. Overall, HSI has the potential to significantly reduce the

previous dataset, while the regression plot for K+ had the same clustering as previously observed. The predicted ion

accumulation trends for Na+ (C) and K+ (D) are shown. As with Fig 2, the patterns of ion accumulation predicted by

the PLSR model showed an opposite trend to what was expected based on flame photometry data. The scales for the

prediction graphs had also changed compared with the initial dataset, as the predicted values were higher in general for

this dataset.

https://doi.org/10.1371/journal.pone.0270931.g006
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labor and cost needed for phenotyping of genetic populations for salinity tolerance. The accu-

racy of this method will certainly depend on additional refinements that requires spatially tar-

geted imaging of specific organs that act as sinks of excess ions. The need for spatially targeted

approach to imaging is justified by the dynamic nature of Na+ and K+ ions in planta as dictated

by cell-to-cell and long distance transport mechanisms.

Acknowledgments

This research is part of the Bayer CropScience Endowed Chair in Plant Genomics. Real-time

digital phenotyping was performed using the LemnaTec facilities at the University of

Nebraska-Lincoln.

Author Contributions

Conceptualization: Benildo G. de los Reyes.

Formal analysis: Isaiah Catalino M. Pabuayon, Irish Lorraine B. Pabuayon, Glen L. Ritchie,

Benildo G. de los Reyes.

Funding acquisition: Benildo G. de los Reyes.

Investigation: Isaiah Catalino M. Pabuayon, Benildo G. de los Reyes.

Methodology: Isaiah Catalino M. Pabuayon, Irish Lorraine B. Pabuayon, Benildo G. de los

Reyes.

Project administration: Benildo G. de los Reyes.

Resources: Rakesh Kumar Singh.

Supervision: Benildo G. de los Reyes.

Validation: Isaiah Catalino M. Pabuayon, Benildo G. de los Reyes.

Visualization: Isaiah Catalino M. Pabuayon, Benildo G. de los Reyes.

Writing – original draft: Isaiah Catalino M. Pabuayon, Benildo G. de los Reyes.

Writing – review & editing: Isaiah Catalino M. Pabuayon, Benildo G. de los Reyes.

References
1. Kang MS. Using genotype-by-environment interaction for crop cultivar development. Adv Agron. 1997;

62:199–252.

2. Qiu R, Wei S, Zhang M, Li H, Sun H, Liu G, et al. Sensors for measuring plant phenotyping: A review. Int

J Agric Biol. 2018; 11(2):1–17.

3. Maathuis FJ, Amtmann A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot.

1999; 84(2):123–33.

Fig 7. Trends in ion accumulation predicted by PLSR and the corresponding linear regression graphs for the dataset

that included only the wavelengths with high mean difference between control and salinity. The dataset used in Fig 2

was filtered for wavelengths with substantial mean difference between control and salinity. Difference in the means of

control and salinity across genotypes were calculated and the third quartile values were used as threshold for selecting the

wavelengths. In total, 67 out of 243 bands were used for the PLSR model. As the wavelengths no longer form a continuous

selection of points like the other datasets in Figs 2 and 3, no additional smoothening and derivatization was necessary.

The regression scatterplot for Na+ (A) also showed an improved spread compared to the plots in Fig 2. However, its R2

value was lower compared to that in Fig 3. The regression scatterplot for K+ (B) showed clustering of points into two

groups in spite of high R2 value. Trends in ion accumulation for Na+ (C) and K+ (D) are shown, which appeared to be

more similar to those shown in Fig 2.

https://doi.org/10.1371/journal.pone.0270931.g007

PLOS ONE Image-based salinity stress phenotyping in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0270931 July 7, 2022 16 / 18

https://doi.org/10.1371/journal.pone.0270931.g007
https://doi.org/10.1371/journal.pone.0270931


4. Munns R, Wallace PA, Teakle NL, Colmer TD. Measuring soluble ion concentrations (Na+, K+, Cl−) in

salt-treated plants. In: Sunkar R, editor. Plant Stress Tolerance: Methods and Protocols. Totowa, NJ:

Humana Press; 2010. p. 371–82.

5. Asch F, Dingkuhn M, Dörffling K, Miezan K. Leaf K/Na ratio predicts salinity induced yield loss in irri-

gated rice. Euphytica. 2000; 113(2):109. https://doi.org/10.1023/A:1003981313160

6. Berger B, de Regt B, Tester M. Trait dissection of salinity tolerance with plant phenomics. In: Shabala

S, Cuin TA, editors. Plant Salt Tolerance: Methods and Protocols. Totowa, NJ: Humana Press; 2012.

p. 399–413.

7. Fahlgren N, Gehan MA, Baxter I. Lights, camera, action: high-throughput plant phenotyping is ready for

a close-up. Curr Opin Plant Biol. 2015; 24:93–9. https://doi.org/10.1016/j.pbi.2015.02.006 PMID:

25733069

8. Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, Santelia D, et al. High-throughput non-destruc-

tive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci.

2016; 7(1414). https://doi.org/10.3389/fpls.2016.01414 PMID: 27733855

9. Sugiura R, Tsuda S, Tamiya S, Itoh A, Nishiwaki K, Murakami N, et al. Field phenotyping system for the

assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle.

Biosys Eng. 2016; 148:1–10. https://doi.org/10.1016/j.biosystemseng.2016.04.010.
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