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Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone
receptor superfamily of ligand-activated transcription factors. Accumulating evidence
suggests that PPARs may play an important role in the pathogenesis of kidney
disease. All three members of the PPAR subfamily, PPARα, PPARβ/δ, and PPARγ,
have been implicated in many renal pathophysiological conditions, including acute
kidney injury, diabetic nephropathy, and chronic kidney disease, among others.
Emerging data suggest that PPARs may be potential therapeutic targets for renal
disease. This article reviews the physiological roles of PPARs in the kidney and
discusses the therapeutic utility of PPAR agonists in the treatment of kidney disease.
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INTRODUCTION

Peroxisome proliferator-activated receptors (PPARs), a group of nuclear hormone receptors, consist
of threeisotypes, i.e., PPARα, PPARβ/δ, and PPARγ (Xi et al., 2020). PPARs can regulate gene
transcription in either ligand-dependent or -independent manner. The target genes are critical for
fatty acid oxidation (FAO) and transportation, glucose metabolism, adipogenesis, cholesterol
transportation and biosynthesis, apoptosis, and the inflammatory response (Tyagi et al., 2011;
Derosa et al., 2018). Numerous studies employing experimental and clinical models have shown that
PPARs play important roles in lipid metabolism and energy homeostasis in the kidney (Tovar-
Palacio et al., 2012; Corrales et al., 2018) (Table 1). This review focuses on the roles of PPARs in renal
metabolism as well as therapeutic strategies targeting the activation of PPARs in kidney disease.

PPAR FAMILY

PPAR family proteins have four main functional segments: the N-terminal ligand-independent
transactivation domain (AF1, A/B domain), DNA-binding domain (DBD or C domain), co-factor
docking domain (D domain), and C-terminal E/F domain that includes the ligand-binding domain
(LBD) and ligand-dependent transactivation domain (AF2 domain; Figure 1) (Miyachi, 2021). The
LBD and C-terminal activation functional domain form a large ligand-binding pocket. After the
ligand-binding pocket interacts with a ligand, PPARs are translocated to the nucleus, either
homodimerize or heterodimerize with another nuclear receptor, the retinoid X receptor (RXR)
(Grygiel-Górniak, 2014). The PPRA or PPAR/RXR dimer binds to specific DNA response elements,
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peroxisome proliferator response elements (PPREs), to activate
gene transcription. The conserved DBD is the domain involved in
binding to PPREs (Berger and Moller, 2002). PPREs most
commonly consist of a direct repeat of hexameric core
recognition elements with a 1-bp spacer (DR1, 5′-
AGGTCANAGGTCA-3′) located in the promoter regions of
PPAR target genes (Dixon et al., 2021). After activation of the
PPAR/RXR complex at the PPRE, the PPAR/RXR heterodimer

can recruit diverse nuclear receptor co-factors, including
coactivators, such as PPARγ coactivator-1α (PGC-1α), or co-
repressors, such as the nuclear co-repressor and the silencing
mediator for retinoid and thyroid hormone receptors (Dowell
et al., 1999; Qi et al., 2000; Petr et al., 2018).

Although PPARs show a high degree of identity at the amino
acid level and very similar structures, each isoform has unique
tissue distribution, ligand selectivity, and biological functions

TABLE 1 | PPAR subtypes, chromosome location, expression site, and their functions in kidney diseases.

Subtype Chromosome Site of expression in
renal

Functions

PPARα 3 Proximal tubules Increase fatty acid oxidation
Anti-inflammation

Medullary thick ascending limbs Anti-apoptosis
Anti-necrosis

Podocytes Attenuate albuminuria
Improve insulin resistance

Glomerular mesangial cells Against oxidative stress
Against glomerular and tubulointerstitial fibrosis

PPARβ 22 Glomerular mesangial cells Increase fatty acid oxidation
Proximal tubule of the cortex and medulla Anti-inflammation
Stromal cells Against oxidative stress

Immune compatibility
PPARγ 6 Distal medullary collecting ducts Fatty acid oxidation

Increase glucose metabolism
Proximal and distal tubules Decrease insulin resistance

Anti-inflammation
Glomerular mesangial cells Anti-apoptosis

Antioxidant
Podocytes Activate autophagy

Against tubulointerstitial fibrosis
Renal vasculature Regulate immune system

TABLE 2 | Physiological and pathological implications in kidney of PPAR-null mice for the different isotypes.

Isotypes
of PPAR-null mice

Physiological and pathological implication

PPARα-null • PPARα-null mice exhibited significantly greater kidney dysfunction after I/R injury, as assessed by higher serum creatinine
levels and enhanced tubular necrosis Portilla et al. (2000)

• PPARα-null mice had worse kidney function and metabolic derangement in experimental polymicrobial sepsis. Tissue
mRNA expression of markers of kidney injury and inflammation were more elevated. Expression of enzymes associated
with FAO and fatty acid transport was lower Iwaki et al. (2019)

• Diabetic PPARα-null mice exhibited increased blood glucose, HbA1c, serum free fatty acid and triglyceride levels, and a
persistent increase in urine albumin excretion. The increase in type IV collagen and TGF-β in the glomeruli were more
prominent in diabetic PPARα-null mice Panchapakesan et al. (2004)

• Aged PPARα null mice showed reduced expression of FAO-associated proteins and genes, higher lipid accumulation,
vacuoles in tubules compared to control littermates Chung et al. (2018)

PPARβ-null • PPARβ-null mice developed more severe ischemic acute renal failure than wild-type mice. Epithelial cell sloughing was
more extensive in PPARβ-null mice, leading to tubular dilation and cast formation Lee et al, (2011)

• PPARβ/δ-null female mice showed impairment of apoptotic cell clearance and reduction in anti-inflammatory cytokine
production. These mice were much more likely to develop autoimmune kidney disease, a lupus-like autoimmunity
Mukundan et al. (2009)

PPARγ-null • PPARγ null mice showed increased glucosuria and albuminuria. With age, the mice developed renal insufficiency,
advance of type 2 diabetes, and APS Toffoli et al. (2017)

• The proximal tubular epithelial cells PPAR-γ deletions mice developed more severe tubulointerstitial fibrosis Zhao et al,
(2016)
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(Ruan et al., 2008). The selectivity of each of the three PPAR
isotypesis dependent on the divergent amino-acid sequences in
the LBD. Fatty acids and their metabolites, synthetic
pharmaceutical agents, including hypolipidemic fibrates, and
the antidiabetic agent thiazolidinedione (TZD) have been
shown to bind to and activate PPAR (Ricote et al., 2004;
Monsalve et al., 2013). In recent years, many PPAR-null mice
models have been available to study their implicaton in kidney
physiology (Table 2).

PPARα

PPARα, the first member of the PPAR subfamily identified, is
highly expressed in tissues that exhibit high levels of
mitochondrial and FAO activity, including those of the liver,
kidney, intestinal mucosa, and heart (Dixon et al., 2021). Lower
levels of PPARα expression have also been detected in several
other tissues. Within the kidney, PPARα is abundant in the
proximal tubules and medullary thick ascending limbs, with
much lower levels in glomerular mesangial cells (Guan et al.,
1997; Kamijo et al., 2002). Given the high levels of expression in
proximal tubules and medullary thick ascending limbs, PPARα
has been implicated in metabolic regulation of the kidney. Many
types of fatty acids and synthetic lipid-lowering fibrates (e.g.,
fenofibrate, clofibrate) can serve as PPARα agonists and regulate
the transcription of several genes involved in FAO and the
inflammatory response in the kidney (Di Paola and Cuzzocrea,
2007). It has been reported that activation of PPARα by clofibrate
significantly induced the expression of β-oxidation enzymes in
the renal cortex, including long-chain acyl-CoA dehydrogenase,
medium-chain acyl-CoA dehydrogenase, and acyl-CoA oxidase
(Ouali et al., 1998). PGC-1α, a coactivator of PPARα, is one of the

main upstream transcriptional regulators of mitochondrial
biogenesis and activity (Wu et al., 1999; Arany et al., 2005). In
the kidney, PGC-1α is predominantly expressed in proximal
tubules and medullary thick ascending limbs. Recent evidence
supports the suggestion that PPARα and PGC-1α are critical
regulators of the kidney involved in maintaining the balance of
energy production and consumption (Portilla, 2003; Chambers
and Wingert, 2020).

PPARα and Acute Kidney Injury
PPARα-mediated FAO has been suggested to play an important
regulatory role in the pathogenesis of acute kidney injury (AKI).
PPARα null mice subjected to ischemia/reperfusion (I/R) injury
exhibited significantly enhanced cortical necrosis and poorer
kidney function in comparison to wild-type controls (Portilla
et al., 2000). Upon cisplatin-induced AKI, the binding of PPARα
to its target genes was inhibited and the expression of its
coactivator, PGC-1α, was decreased in the mouse kidney and
proximal tubule cells in culture, suggesting that FAO is
suppressed in cisplatin-induced AKI (Portilla et al., 2002).
Mice deficient in PPARα have poorer kidney function with
sepsis-induced AKI, which is also related to reduced FAO and
increased inflammation (Iwaki et al., 2019). Clinical data
indicated that genome-wide expression profiles are
characterized by repression of the PPARα signaling pathway
with increased incidence of severe sepsis in AKI (Wong et al.,
2009). Lipopolysaccharide (LPS)-treated mice exhibited a 40%
decrease in renal FAO and inhibition of the expression of key
transcription factors required for FAO. LPS also caused
reductions in renal PPARα, RXR, and PGC-1α mRNA levels
(Feingold et al., 2008). PPARα exhibits a protective role against
sepsis-associated AKI by improving reduced FAO and increased
inflammation (Iwaki et al., 2019). The increased expression of

FIGURE 1 | Structure and molecular mechanism of action of peroxisome proliferator-activated receptors.
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PPARα in proximal tubular epithelial cells in mice was shown to
be sufficient to maintain FAO and protect kidney function and
morphology in AKI (Li et al., 2009). PPARα ligands attenuate
cisplatin-induced AKI by preventing the inhibition of FAO (Li
et al., 2004a), reducing apoptosis and necrosis in proximal tubule
cells through a decrease in endonuclease G activity (Li et al.,
2004b), and limiting inflammatory processes by blocking NF-κB
activity (Li et al., 2005; Baud and Letavernier, 2007). The
activation of NF-κB, apoptosis, and oxidative stress induced by
fatty acid-bound albumin (FA-BSA) in HK-2 cells was also
markedly suppressed by fenofibrate (Zuo et al., 2015).
Therefore, PPARα may be considered as a novel therapeutic
target for preventing AKI. The mitochondrial matrix protein
cyclophilin D (CypD) binds to PPARα and inhibits its nuclear
translocation as well as the transcription of PPARα-regulated
FAO genes during cisplatin-induced AKI. The genetic or
pharmacological inhibition of CypD was reported to preserve
PPARα transcriptional activity and prevent FAO impairment
(Jang et al., 2020). The upregulation of PGC-1α can improve FAO
and renal recovery from I/R injury by regulating NAD
biosynthesis (Tran et al., 2016). Therefore, the regulation of
PGC-1α was also identified as a new way to improve AKI.

PPARα and Diabetic Nephropathy
Recent studies suggested important roles of FAO dysfunction and
insulin resistance in the pathogenesis and progression of diabetic
nephropathy (DN). PPARα may be a promising therapeutic
target for treating diabetic renal complications. Herman et al.
reported heavy lipid deposition and increased amounts of
intracellular lipid droplets in kidney biopsies of patients with
DN. It is also worth noting that several genes involved in FAO
pathways, including PPARα, were downregulated (Herman-
Edelstein et al., 2014). In an experimental study, more severe
glomerular structural changes as well as albuminuria were noted
in diabetic PPARα-knockout mice, with increased type IV
collagen and transforming growth factor (TGF)-β expression
detected in the glomerular lesions (Park et al., 2006). The
PPARα agonist fenofibrate has been shown to reduce fasting
blood glucose and insulin resistance, decrease urinary albumin
excretion and glomerular mesangial expansion, suppress
oxidative stress, and attenuate inflammation in diabetic
animals (Park et al., 2006; Zuo et al., 2015; Yaribeygi et al.,
2018). In addition, fenofibrate can downregulate the TGF-β
signaling pathway, which plays a key role in the progression
of DN (Wilmer et al., 2002). Endothelial dysfunction-inducedM1
macrophage recruitment has been shown to play a key role in the
development of DN. Fenofibrate can prevent DN by reducing M1
macrophage recruitment through regulating endothelial cell
function as observed in a mouse model of type 2 diabetes
(Feng et al., 2021). The PPARα activator gemfibrozil not only
alleviated dyslipidemia but also attenuated albuminuria in
normotensive noninsulin-dependent diabetic patients
(Smulders et al., 1997). The Action to Control Cardiovascular
Risk in Diabetes (ACCORD) study additionally demonstrated
that fibrate therapy with intensive glucose control could
significantly reduce microalbuminuria and macroalbuminuria
in patients with type 2 diabetes (Ginsberg et al., 2010; Ismail-

Beigi et al., 2010). It was reported that the downregulation of
PGC-1α significantly increased reactive oxygen species in high
glucose-stimulated renal mesangial cells, and endogenous PGC-
1α expression resulted in protective effects against oxidative
stress, glomerulosclerosis, and tubulointerstitial fibrosis in
experimental DN (Zhang et al., 2018).

PPARα and Chronic Kidney Disease
PPARα was shown to be downregulated in aggressive mouse
models of autosomal dominant polycystic kidney disease
(ADPKD) and primary human ADPKD cells, suggesting that
decreased PPARα function may underlie the impaired FAO and
oxidative phosphorylation in ADPKD (Hajarnis et al., 2017;
Lakhia et al., 2018).

Meanwhile, PPARα also regulates age-associated renal
fibrosis. PPARα and FAO-associated gene expression was
decreased with age, which is directly related to the lipid
metabolic disturbances in renal diseases in aged (Tovar-
Palacio et al., 2012). PPRAα null mice exhibited higher lipid
accumulation in renal tubule compared with littermates, which
suggested the importance of PPRAα in the development of age-
related renal fibrosis (Chung et al., 2018). Targeting PPARα is
also useful for preventing age-associated CKD.

In unilateral ureteral obstruction models, preserving the
expression of PPARα led to a reduction in tubulointerstitial
fibrosis and inflammation. Further analyses reveal decreased
production of TGF-β, IL-1b, IL-6, and TNF-α, reduced
macrophage infiltration (Li et al., 2013). PPARα also plays an
important role in glomerulonephritis. Saga et al. reported that
bezafibrate, a PPARα agonist, attenuated the severity and extent
of diseased glomeruli and decreased the number of CD8+ cells in
the glomeruli in anti-glomerular basement membrane (GBM)
crescentic glomerulonephritis. Moreover, the urinary protein
level was diminished after bezafibrate treatment, in parallel
with the attenuation of glomerular injury (Saga et al., 2005).
Plasma free fatty acid and triglyceride levels were elevated in
relation to a decrease in PPARα expression in high-fat diet (HFD)
models. In these models, treatment with fenofibrate increased
PPARα expression, prevented HFD-induced renal lipotoxicity,
reduced oxidative stress and lipid accumulation in the glomeruli,
and prevented the development of albuminuria and glomerular
fibrosis (Tanaka et al., 2011; Chung et al., 2012). Taken together,
these findings suggest that PPARα may be a novel therapeutic
target for the treatment of kidney disease.

PPARβ/δ

PPARβ/δ plays a key role in a number of biological processes,
including fertility, lipid metabolism, bone formation, mast cell
immunity, skin and brain development, and tumorigenesis (Wu
et al., 2009). Although PPARβ/δ mRNA has been detected in
almost all tissues and cells examined, it is relatively abundant in
the kidney, with ubiquitous expression in all nephron segments,
including glomerular mesangial cells, medullary interstitial cells,
and stromal cells (Guan et al., 1997). However, the role of PPARβ/
δ in the kidney has not been investigated in detail.
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PPARβ/δ and Acute Kidney Injury
Letavernier et al. reported that PPARβ/δ-knockdown mice
exhibited much greater kidney dysfunction and exacerbated
injury compared to their wild-type counterparts after I/R
injury. PPARβ/δ may protect the kidney against I/R injury
by activating the antiapoptotic Akt signaling pathway and
increasing the spread of tubular epithelial cells (Letavernier
et al., 2005). PPARβ/δ agonist treatment has also been shown
to attenuate renal dysfunction, leukocyte infiltration, and the
formation of interleukin (IL)-6 and tumor necrosis factor-α
(TNF-α) in the diabetic kidney during I/R injury. The
expression of suppressor of cytokine signaling-3, which
plays important roles in the cytokine-activated signaling
pathway, was increased after PPARβ/δ agonist treatment in
I/R injury models (Collino et al., 2011).

PPARβ/δ and Diabetic Nephropathy
The expression of PPARβ/δ in the kidney was downregulated in
type 1 diabetic Akita and OVE26 mice, which might have been
associated with decreased FAO and increased renal triglyceride
accumulation (Proctor et al., 2006). The expression of PPARβ/δ
was found to be increased in renal medullary interstitial cells
under hypertonic conditions, with the overexpression of PPARβ/
δ protecting cultured medullary interstitial cells from
hypertonicity-induced cell death. These results indicate that
PPARβ/δ is an important survival factor for medullary
interstitial cells under hypertonic conditions in the renal
medulla (Han et al., 2011).

PPARβ/δ and Chronic Kidney Disease
PPARβ/δ attenuates kidney injury through inhibiting inflammatory
and immune system. In a mouse model of protein-overload
nephropathy, mice receiving the PPARβ agonist GW501516,
developed less severe tubulointerstitial lesions, macrophage
infiltration, and decreased mRNA expression of monocyte
chemotactic protein (MCP-1) and TNFα. In vitro, results of the
study showed that GW501516 attenuated MCP-1 expression via
direct inhibition of the TGF-β activated kinase (TAK1)-NF-κB
pathway, a common signaling pathway of inflammatory (Yang
et al., 2011). PPARβ/δ has a pivotal role in maintain self-
tolerance. PPARβ/δ-deficient female mice decreased expression of
opsonins such as complement component-1qb (C1qb), which
resulted impairment of apoptotic cell clearance and reduction in
anti-inflammatory cytokine production. These mice were much
more likely to develop autoimmune kidney disease, a lupus-like
autoimmunity (Mukundan et al., 2009). Treatment of lupus mice
with PPARβ/δ agonist reduced incidence of hypertension,
endothelial disfunction, renal inflammation, and organ damage of
mice, which was associated with decreased plasma anti-double-
stranded DNA autoantibodies and anti-inflammatory, antioxidant
effects (Romero et al., 2017).

PPARγ

PPARγ is constitutively expressed throughout the kidney,
predominantly in the distal medullary collecting ducts, and

at low levels in many other nephron segments, such as the
proximal tubules and renal vasculature (Yang et al., 2012;
Zhou et al., 2013). In accordance with the results of other
studies, PPARγ expression has also been reported in cultured
glomerular mesangial cells, podocytes, and proximal
epithelial cells (Zhang and Guan, 2005). Accumulating
evidence has revealed the renoprotective effects of PPARγ
activation (Doi et al., 2007; Miyazaki et al., 2007; Corrales
et al., 2018).

PPARγ and Acute Kidney Injury
PPARγ agonists were reported to protect the kidney against
I/R injury by inhibiting I/R injury-induced diffuse tubular
necrosis and acute inflammation (Reel et al., 2013), and
reducing nitric oxide plasma levels, ED-1+ cell infiltration,
and cleaved caspase-3 expression (Betz et al., 2012). A recent
study showed that the PPARγ agonist pioglitazone decreased
the expression of NF-κB-related proteins and the mRNA
expression of inflammatory cytokines, including TNF-α and
monocyte chemotactic protein-1 (MCP-1) in a renal I/R model
(Zou et al., 2021). These data suggest that PPARγ agonists may
be helpful in reducing renal I/R injury because of their anti-
inflammatory, antioxidant, and anti-apoptosis effects.
Moreover, PPARγ agonists have been found to increase
AMP-activated protein kinase phosphorylation, inhibit p62
and cleaved caspase-3/8 protein expression, reduce cell
apoptosis, and activate two autophagy-related proteins, LC3
II and Beclin-1, in the kidneys and proximal tubular cells of
rats with an I/R injury (Chen et al., 2018; Xi et al., 2019).
Therefore, PPARγ agonists exert renoprotective effects via the
activation of autophagy. The PPARγ agonist pioglitazone
protects against histological alterations in the kidney and
ameliorates decreases in glutathione (GSH) and ascorbic
acid levels induced by cisplatin treatment by preventing a
decline in antioxidant status (Jesse et al., 2014). Pioglitazone
can also decrease the expression of NF-κB p65 target genes
(e.g., IL-6, IL-1β, and TNF-α) and inhibit histological injury
and inflammatory cell infiltration in rats with cisplatin-
induced AKI (Zhang et al., 2016). Medic et al. reported that
pioglitazone reduced serum urea and creatinine levels, as well
as the urinary level of kidney injury molecule-1, thus
mitigating histological injury in response to gentamicin-
induced kidney injury in rats (Medic et al., 2019).

Cyclooxygenase-2 (COX-2) is an inducible enzyme, which
is constitutively expressed and highly regulated in response to
alterations in intravascular volume (Rios et al., 2012). The
protective effect of COX-2 on renal vascular function was
associated with prostacyclin signaling through PPARβ/δ.
PPARβ/δ activation conferred renal vasodilatory effects by
regulating COX-2 and offered a potential strategy for
treatment of acute renal failure (Kirkby et al., 2018).
PPARα or PPARγ agonists (fenofibrate, rosiglitazone)
lowered blood pressure through anti-inflammatory effect by
reducing COX-2 expression in the kidney, which may be one
of the indirect mechanisms of renal protection of PPARs (Bae
et al., 2010; Lee et al., 2011). More researches are needed to
ascertain the role of PPARs and COX-2 in renal disease.
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PPARγ and Diabetic Nephropathy
PPARγ is upregulated in the presence of high glucose in HK-2
cells. Activation of PPARγ reverses G1 phase cell cycle arrest
and suppresses high-glucose-induced TGF-β and MCP-1
levels in these cells (Panchapakesan et al., 2004). Therefore,
PPARγ has been postulated to be involved in the pathogenesis
of DN. Stimulation of PPARγ may protect against the
development of DN. PPARγ agonist treatment has been
reported to be effective in improving microalbuminuria,
intrarenal nitric oxide bioavailability, and protecting renal
function in patients with DN (Bakris et al., 2003; Grossman,
20032003; Tang et al., 2010; Pistrosch et al., 2012). In animal
experiments, PPARγ agonists were shown to improve the
effects of kidney injury by preventing mesangial expansion,
glomerulosclerosis, tubulointerstitial inflammation and
fibrosis, and tubular dilation and atrophy, with partial
improvements observed after the downregulation of renal
disintegrin and metalloprotease-17 as well as angiotensin-
converting enzyme-2 shedding (Ohga et al., 2007; Bilan
et al., 2011; Chodavarapu et al., 2013). The PPARγ agonist
rosiglitazone, which induces PGC-1α expression, may
ameliorate podocyte impairment, GBM thickening, and
kidney fibrosis in DN (Zhang et al., 2018). The PPAR
Pro12Ala gene polymorphism was shown to be significantly
associated with a decreased risk of developing DN (Tönjes and
Stumvoll, 2007). It has been reported that telmisartan, a weak
PPARγ agonist, can slow the progression of DN (Matsui et al.,
2007). The PPARα/γ dual agonist tesaglitazar not only
improved lipid metabolism and increased adiponectin levels
but also prevented albuminuria and renal glomerular fibrosis
in diabetic mice (Yang et al., 2009). Another study reported a
similar result, that a combination of low doses of the PPARα
agonist fenofibrate and the PPARγ agonist rosiglitazone
attenuated diabetic kidney injury to a greater extent than
did either drug alone (Arora et al., 2010).

PPARγ null mice showed increased glucosuria and
albuminuria in 3 weeks old. With age the mice developed
renal insufficiency, advance of type 2 diabetes, and anti-
phospholipid syndrome (APS), an autoimmune disorder
associated with glomerular injury and microthrombi. The
results reflected PPARγ activities in systemic metabolic
hemostasis, and in the immune and inflammatory system
(Toffoli et al., 2017).

PPARγ and Chronic Kidney Disease
There is a growing body of evidence showing that the activation of
PPARγ plays a protective role in renal interstitial fibrosis disease.
The expression of PPARγ is increased in glomeruli in a
substantial proportion of patients with chronic kidney disease
(CKD), particularly in macrophages, podocytes, and some
parietal epithelial cells (Revelo et al., 2005; Paueksakon et al.,
2142). PPARγ activation can delay the progression of CKD by
inducing klotho restoration (Lin et al., 2017) and inhibiting Wnt
signaling-mediated fibrogenesis (Maquigussa et al., 2018).
PPARγ in renal tubular epithelial play an important role of
maintaining the normal epithelial phenotype and opposing
fibrogenesis (Zhao et al., 2016). In an open-label randomized

crossover study in nondiabetic obese patients with proteinuric
CKD, rosiglitazone treatment was shown to decrease proteinuria
(Kincaid-Smith et al., 2008). In a randomized, double-blind,
placebo-controlled study, rosiglitazone was also shown to
lower the homeostasis model assessment score, an indicator of
insulin sensitivity, in patients with CKD (Chan et al., 2011).
Rosiglitazone attenuated the progression of hyperuricemic
nephrophathy rat model through inhibiting TGF-β and NF-κB
signaling, suppressing epithelial-to-mesenchymal transition
(EMT), reducing inflammation, and lowered serum uric acid
levels (Wang et al., 2020). The PPARγ agonist troglitazone
ameliorated both glomerulosclerosis and aortic medial
thickening in spontaneously hypertensive rats subjected to 5/6
nephrectomy (Yoshida et al., 2001). Troglitazone also attenuated
renal interstitial fibrosis and inflammation in the model of
unilateral ureteral obstruction (UUO) through reduction of
TGF-β expression (Kawai et al., 2009). Another PPARγ
agonists, pioglitazone, reduced renal fibrosis and its
progression. It was recently demonstrated that pioglitazone in
TGFβ transgenic mice inhibited the renal mRNA expression of all
the profibrotic effectors, and TGFβ-STAT3 and TGFβ-EGR1
transcriptional activation pathways (Nemeth et al., 2019).
Pioglitazone treatment of male Zucker diabetic fatty (ZDF)
rats ameliorated diabetic kidney disease, improved renal blood
flow and renal fibrosis, which was associated with lower renal
expression of Twist-1, an evolutionarily conserved protein that
can accelerate renal EMT and interstitial fibrosis (Wang et al.,
2019). Moreover, similar results have been confirmed in vitro,
with thiaziolidinediones (TZD) shown to prevent increases in
TGF-β and extracellular matrix components in cultured human
mesangial cells (Maeda et al., 2005) and inhibit mesangial cell and
fibroblast proliferation (Nicholas et al., 2001; Zafiriou et al., 2005).
Activation of PPARγ by rosiglitazone attenuated primary renal
fibrolasts proliferation by suppressing AKT phosphorylation and
skp2 production (Lu et al., 2016). PPARγ agonists were reported
to delay the progression of polycystic kidney disease in a rat
model by inhibiting cell proliferation and fibrosis (Yoshihara
et al., 2011). PPARγ agonists were also found to inhibit renal
interstitial macrophage infiltration, downregulate the expression
of downstream target genes, and upregulate bone morphogenetic
protein-7 expression, eventually blocking renal fibrosis (Lin et al.,
2005).

Podocyte damage is the crucial step in the pathogenesis of CKD
and progression of end stage renal disease (ESRD). Some studies
have focused on the role of PPARγ activation in preventing podocyte
injury. It was reported that PPARγ agonist protected podocytes in
acute nephric syndrome, which was dependent partially on
restoration of podocyte structure (Zuo et al., 2012). Rosiglitazone
completely restored the reduced nephrin expression, and prevented
MtD and oxidative stress in podocytes exposed to the
mineralocorticoid aldosterone (Aldo). It was suggested that
rosiglitazone might protect podocytes from injury by improving
mitochondrial function (Zhu et al., 2020-31). Pioglitazone decreased
puromycin aminonucleoside (PAN)-induced podocyte apoptosis
and necrosis, while restoring podocyte differentiation
(Kanjanabuch et al., 2007). PPARγ activation in the podocyte
seems to be a key protective response after injury. PPARγ
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agonists might be effective in the treatment of CKD by protecting
podocytes.

PPARγ activation plays a potently role in preservation of
renal function of kidney allografts. Rosiglitazone has the
immunosuppressive, antifibrotic, antiproliferative, anti-
inflammatory actions, which are the leading causes of
chronic allograft failure. It was reported that rosiglitazone
treatment reduced serum creatinine, albuminuria, chronic
allograft damage in the rat renal transplantation models.
Meanwhile, the deposition of extracellular matrix proteins
such as collagen, fibronectin, decorin was lowered (Kiss
et al., 2010). Administration of rosiglitazone also reduced
proteinuria and decreased interstitial collagen deposition in
renal allograft transplantation model. It was suggested that
rosiglitazone attenuated the development of chronic renal
allograft dysfunction via inhibition of TGF-β and NF-κB
pathway activation, the renal EMT, and inflammation
(Deng et al., 2019).

Klotho is an anti-aging protein mainly expression in the
kidney. A decreased expression of Klotho has been reported in
aging and CKD. Therapeutic approaches to stimulate Klotho
expression in CKD can exert vasculo-protective effects
(Buchanan et al., 2020). The Klotho gene has two upstream
non-canonical PPARγ binding sites. Influencing the PPARγ
pathway might result in an increased renal tubular Klotho
mRNA and protein expression (Zhang et al., 2008). PPARγ
activation was attributed to increased renal Klotho expression
and reduced oxidative stress, which effectively ameliorated the
age-related nephrosclerosis in ApoE-null mice (Shen et al.,
2018). Acetylation of PPARγ could prevent Klotho loss, and
attenuate renal damage in CKD mouse model consequentially
(Lin et al., 2017).

CONCLUSION

The kidney is a highly metabolic organ and consumes a large
amount of energy to maintain fluid and electrolyte homeostasis.
All three PPAR isotypes perform complementary physiological
functions and may confer therapeutic benefits in kidney disease.
The activation of PPAR isotypescan result in distinct biological
processes in kidney disease. Agonists of PPARs show
considerable promise for the treatment of AKI, DN,
glomerulonephritis, and CKD. However, some undesirable
severe side effects of PPAR agonists have been reported. For
example, they can result in increased serum levels of creatinine
and cystatin C, and potentially decrease the estimated glomerular
filtration rate and creatinine clearance (Hiukka et al., 2010).
Therefore, these agonists should be used with caution in
clinical therapy for kidney diseases. Further large-scale,
prospective, randomized trials are necessary to evaluate the
effects of these agonists on renal outcomes in patients with
kidney disease.
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