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Abstract 

Background:  It is a basic task in high-throughput gene expression profiling studies to identify differentially 
expressed genes (DEGs) between two phenotypes. RankComp, an algorithm, could analyze the highly stable within-
sample relative expression orderings (REOs) of gene pairs in a particular type of human normal tissue that are widely 
reversed in the cancer condition, thereby detecting DEGs for individual disease samples measured by a particular 
platform.

Methods:  In the present study, Gene Expression Omnibus (GEO) Series (GSE) GSE75540, GSE138206 were down-
loaded from GEO, by analyzing DEGs in oral squamous cell carcinoma based on online datasets using the RankComp 
algorithm, using the Kaplan-Meier survival analysis and Cox regression analysis to survival analysis, Gene Set Enrich-
ment Analysis (GSEA) to explore the potential molecular mechanisms underlying.

Results:  We identified 6 reverse gene pairs with stable REOs. All the 12 genes in these 6 reverse gene pairs have been 
reported to be associated with cancers. Notably, lower Interferon Induced Protein 44 Like (IFI44L) expression was asso-
ciated with poorer overall survival (OS) and Disease-free survival (DFS) in oral squamous cell carcinoma patients, and 
IFI44L expression showed satisfactory predictive efficiency by receiver operating characteristic (ROC) curve. Moreover, 
low IFI44L expression was identified as risk factors for oral squamous cell carcinoma patients’ OS. IFI44L downregula-
tion would lead to the activation of the FRS-mediated FGFR1, FGFR3, and downstream signaling pathways, and might 
play a role in the PI3K-FGFR cascades.

Conclusions:  Collectively, we identified 6 reverse gene pairs with stable REOs in oral squamous cell carcinoma, 
which might serve as gene signatures playing a role in the diagnosis in oral squamous cell carcinoma. Moreover, high 
expression of IFI44L, one of the DEGs in the 6 reverse gene pairs, might be associated with favorable prognosis in oral 
squamous cell carcinoma patients and serve as a tumor suppressor by acting on the FRS-mediated FGFR signaling.

Keywords:  Oral squamous cell carcinoma, Differentially expressed genes (DEGs), RankComp, Relative expression 
orderings (REOs), Interferon induced protein 44 like (IFI44L)
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Introduction
Head and neck cancer is the sixth most common malig-
nant tumor in the world [1], and oral squamous cell 
carcinoma (OSCC) is the most common head and 
neck cancer [2]. There are more than 300,000 new 
cases of OSCC worldwide every year, and more than 
140,000 patients die from OSCC every year [2, 3]. More 
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importantly, the incidence of oral squamous cell carci-
noma has been increasing in recent years [4–6]; however, 
for those who receive treatment with surgery and chemo-
therapy or radiation therapy, the five-year survival rate is 
still not ideal [7, 8]. Biomarkers could guide the selection 
of appropriate therapy by predicting disease activity and 
progression, by predicting which individuals will respond 
to a particular therapy, and by providing pharmacody-
namic information to facilitate assessment of response to 
therapy [9, 10].

It is a basic task in high-throughput gene expression 
profiling studies to identify differentially expressed genes 
(DEGs) between two phenotypes. Nevertheless, it has 
proven difficult to identify DEGs that show slight differ-
ential expression between two phenotypes. In particular, 
it is hard to detect sufficient DEGs for future researches 
when the sample size is not large enough. However, it 
is often possible to find a variety of datasets related to 
the same biological questions from public repositories, 
including Gene Expression Omnibus (GEO) [11] and 
ArrayExpress [12]. By combining datasets generated by 
multiple laboratories, weak biological signals can be effi-
ciently detected, thus improving statistical capacity. Nev-
ertheless, direct combining of multiple datasets could be 
hindered by various random factors including measure-
ment batch effects [13]. These problems also pose key 
obstacles for the analysis of transcriptional data in The 
Cancer Genome Atlas (TCGA) where there are many 
small-scale batches of data. Even if data is preprocessed, 
the measurement of highly sensitive samples cannot be 
applied to independent samples [13–16]. Considering 
these limitations, the clinical use of quantitative tran-
scriptional characteristics is limited.

In order to make the best use of the information pro-
vided by different datasets, meta-analysis uses statisti-
cal methods to combine p-values [17], effect sizes [18, 
19], ranks [20, 21] and other results from independ-
ent researches. However, due to small sample sizes and 
large heterogeneity, high false negative rates may occur 
[22]. The more complex hierarchical Bayesian method 
“borrows” the information of all genes to strengthen 
the inference of which genes are expressed differently 
[23–26]. Nevertheless, the crucial assumption of hierar-
chical models usually induces a bias to the estimation of 
gene differences [27]. Although batch effect adjustment 
methods have been used to normalize data across stud-
ies, the normalization process itself might lead to distor-
tions of the true biological signals [28, 29] and even false 
inter-group differences, particularly when phenotypic 
groups are distributed unevenly across batches [14, 30]. 
To solve these problems, recently, Wang and colleagues 
have proposed RankComp, an algorithm, to analyze the 
highly stable within-sample relative expression orderings 

(REOs) of gene pairs in a particular type of human nor-
mal tissue that are widely reversed in the cancer con-
dition, thereby detecting DEGs for individual disease 
samples measured by a particular platform [14, 31]. Since 
first reported, RankComp has been used to detect differ-
entially expressed genes between different groups in lung, 
colorectal [31], and breast cancers [32] and osteosarcoma 
[33]. REOs of gene pairs are not sensitive to measure-
ment batch effect [34] and quite consistent across dis-
tinct platforms [31], which facilitates RankComp to be 
used for cross-study comparison of gene expression.

In the present study, by using RankComp algorithm 
based on training datasets GEO series GSE75540 and 
GSE138206, we attempted to identify differentially 
expressed gene pairs with highly stable REOs in oral 
squamous cell carcinoma and obtained 6 pairs of over-
lapping and stable reverse gene pairs. Through literature 
review, IFI44L, among the 6 gene pairs, was selected for 
further prognostic analysis and signaling pathway enrich-
ment annotation (Fig. 1). Collectively, we confirmed the 
RankComp algorithm could identify reverse gene pairs 
with stable REOs in oral squamous cell carcinoma, pro-
viding potential prognostic markers and therapeutics tar-
gets for oral squamous cell carcinoma.

Materials and methods
Datasets and pre‑processing
GSE75540, GSE138206 were downloaded from GEO 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). GSE75540 con-
tained the expression profile of oral tongue squamous 
cell carcinoma and adjacent normal tissues. GSE138206 
contained expression profile of oral squamous cell carci-
noma and adjacent normal tissues. GSE75540 was based 
on the Illumina HumanHT-12 V4.0 expression beadchip 
(gene symbol), Illumina HumanMethylation450 Bead-
Chip [UBC enhanced annotation v1.0], and Illumina 
HumanHT-12 WG-DASL V4.0 R2 expression beadchip 
[gene symbol version] platforms. GSE138206 was based 
on the [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array platform.

The software we used in this study include Python 
(v3.7.6; https://​www.​python.​org/​downl​oads/​relea​se/​
python-​376/) and R studio (v4.0.2; https://​www.​rstud​io.​
com/).

Stable REOs, the RankComp algorithm, 
and the concordance score
In each sample, the REO of a gene pair (A and B) is 
denoted as either GA > GB or GA < GB exclusively, 
where GA and GB represent the expression values of 
gene A and B, respectively. Stable gene pairs obtained 
from training sets can be used as markers of clas-
sification in any given sample. Based on these stable 
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gene pairs, a classification model was constructed. For 
unclassified samples, the relative expression order rela-
tionships of all stable gene pairs were calculated. In a 
sample, the probability that GA < GB occurs less than 
or equal to k times in n pairs of stable gene pairs can be 
calculated by the following formula:

In the formula, n represents the number of samples 
and k represents the number of occurrences of GA < GB 
in n samples. If the P value is less than 0.05, it means 
that most of the samples can maintain the relationship 
of GA < GB, and we call it a significantly stable pair. 
For a sample with an unknown category, let k be the 
number of times that the genetic rank relationship of 
GA > GB appears in stable reversal pairs, and n is the 
logarithm of significantly stable pairs. Here, we define 
k as stable pair count. If P(k,n) < 0.05, then the sample 
is significantly in line with the characteristics of Type 
B and is classified as type B, and if P(nk,n) < 0.05, the 
sample is significantly in line with the characteristics of 
Type A and is classified as type A. In the present study, 
we use the reversal model of stable gene pairs for the 
classification of two types of samples. If GA < GB and 

P(k ,n) = 1−

∑k−1

i−n

(

n

i

)

0.5
i(1− 0.5)n−i

GA > GB are significantly stable pairs in type A and type 
B, then we call (GA, GB) a stable reversal pair.

Survival analysis
The correlation between IFI44L expression and the dis-
ease-free survival (DFS) in patients with oral squamous 
cell carcinoma was analyzed using the Kaplan-Meier 
survival analysis by grouping the cases in GSE4676 or 
GSE75540 taking the median expression values of IFI44L 
as cut-off. We used univariate and multivariate Cox regres-
sion analysis to identify clinical risk parameters associated 
with survival using GSE34115 (contained the gene expres-
sion profile of archival tongue squamous cell carcinoma), 
GSE42023 (contained the gene expression profile of archi-
val tongue squamous cell carcinoma), GSE84846 (con-
tained the gene expression profile of oral squamous cell 
carcinoma).

Gene set enrichment analyses (GSEA)
To explore the potential molecular mechanisms underlying 
our constructed prognostic gene signature, GSEA (Gene 
Set Enrichment Analyses) [35, 36] was performed to find 
differential characteristics of oral squamous cell carcinoma 
patients with high or low IFI44L expression. P < 0.01 and 
FDR (false discovery rate) q < 0.05 were considered statisti-
cally significant.

Fig. 1  A schematic diagram showing the workflow of the present study. The workflow includes three major steps: the development of the 
REOs-based signature in the training datasets, the validation of the signature in validation datasets, and the signaling pathway enrichment 
annotation of the identified gene pairs
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Results
RankComp algorithm was used to construct reverse gene 
pairs in oral squamous cell carcinoma with stable REOs
On the basis of REO robustness, two datasets, GSE75540 
and GSE138206, were used to analyze DEGs between 
healthy and cancerous samples and identify reverse gene 
pairs with stable REOs. As shown in Table 1, GSE75540 
contained a total of 22,153 DEGs between 51 normal 
samples and 100 cancerous samples; top 500 up- or 
down-regulated DEGs could form 80 reverse gene pairs 
with stable REOs. GSE138206 contained a total of 7133 
DEGs between 10 normal samples and 5 cancerous sam-
ples; top 500 up- or down-regulated DEGs could form 
114 reverse gene pairs with stable REOs. These gene pairs 
intersected in 6 reverse gene pairs shown in Table 2.

Functional annotations of overlapped reverse gene pairs
All the 12 DEGs in the 6 overlapped reverse gene pairs 
identified here have been reported to be associated 
with cancers. For example, Musculin (MSC) has been 
regarded as a component of a robust gene signature iden-
tified using a risk score model, and has been considered 
to be potential immunotherapy targets for hepatocel-
lular carcinoma [37]. Multimerin-1 (MMRN1) has been 
recognized as a novel biomarker that may refine acute 
myelogenous leukemia risk stratification [38]. MMP-9 is 
known to be involved in carcinogenesis, inluding but not 
limited to invasive and metastatic abilities, and forma-
tion of blood vessels [39]. Tropomyosin 3 (TPM3) fusion 
with NTRK1 has been reported as one of the most well 
validated oncogenic events to date [40]. Laminin subunit 
beta-3 (LAMB3) relates to the invasion and metastasis 
of certain cancers, such as colon, pancreatic, pulmonary, 
cervical, gastric, and prostate cancer [41–43]. Aldehyde 
dehydrogenase 1 family member A1 (ALDH1A1) is a 
stemness marker and promotes the malignant behav-
iors in breast cancer [44, 45]. The low expression of 
secretogranin V (SCG5) could predict a poorer prog-
nosis of pancreatic cancer [46]. Alcohol dehydrogenase 
1B (ADH1B) polymorphisms have been reported to be 
associated with bladder cancer, gastric cancer, and breast 
cancer risk [47–49]. NR4A2 is a member of the Nur77 
orphan receptor subfamily, which plays a critical role in 
human tumor cell survival [50–53]. HOXB2 serves as a 
tumor promotor in bladder cancer [54], colorectal cancer 

[55], and pancreatic cancer [56]. The oncogenic role of 
ID4 has also been reported in lung cancer [57], hepato-
cellular carcinoma [58], and breast cancer [59]. IFI44L 
serves as a tumor suppressor in hepatocellular carci-
noma; in hepatocellular carcinoma patients, low IFI44L 
expression is associated with tumor size, recurrence, 
advanced stage and poor clinical survival [60].

Prognostic potential of IFI44L
To further investigate the clinical potential of the 12 
DEGs, we analyzed the association of the 12 DEGs 
expression and the prognosis in oral squamous cell carci-
noma patients. Kaplan-Meier survival analysis found that 
only IFI44L of the 12 DEGs was significantly associated 
with overall survival in patients with oral squamous cell 
carcinoma (P < 0.05; Table  3). GSE75540 included three 
types of samples: 75 cancerous tissues, 51 para-cancerous 
tissues, and 25 peripheral blood samples, for a total of 
151 cases. In survival analysis, 51 para-cancerous tissues, 
2 cancerous tissues with no survival information and 1 
case with an overall survival of less than 30 days were first 
excluded. Thus, 72 cases of tissue samples and 25 cases 
of peripheral blood samples were assigned into high- or 
low-IFI44L expression group; however, although cases 

Table 1  DEGs and reverse gene pairs with stable REOs

Dataset Genes Normal Tumor Reverse 
(top 500)

consist

GSE75540 22,153 51 100 80 6

GSE138206 7133 10 5 114

Table 2  Overlapping reverse gene pairs with stable REOs

Gene pairs GeneA GeneB

Pair 1 MSC MMRN1

Pair 2 MMP9 TPM3

Pair 3 LAMB3 ALDH1A1

Pair 4 SCG5 ADH1B

Pair 5 IFI44L NR4A2

Pair 6 HOXB2 ID4

Table 3  IFI44L was significantly associated with overall survival 
in patients with oral squamous cell carcinoma

Gene logRank.Pvalue

IFI44L 0.040380449
MSC 0.144207782

SCG5 0.240076311

HOXB2 0.301325148

LAMB3 0.364615339

TPM3 0.414847351

NR4A2 0.549182715

MMP9 0.639113275

ALDH1A1 0.718916123

ADH1B 0.825081505

MMRN1 0.903768924

ID4 0.914215189
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with higher IFI44L expression seemed to obtain better 
overall survival, the p value was > 0.05 (Fig.  2A). Con-
sidering that peripheral blood samples may differ from 
tissues and affect the analysis, peripheral blood samples 
were also excluded for the survival analysis. Finally, a 
total of 72 cases were included in survival analysis and 
assigned into low-IFI44L expression group and high-
IFI44L expression group based on the median IFI44L 
expression; the Kaplan-Meier survival analysis showed 
that lower IFI44L expression was associated with poorer 
OS in oral squamous cell carcinoma patients (Fig.  2B). 
Then, we employed the receiver operating characteristic 
(ROC) curve [61] to test the prediction efficiency of the 
IFI44L. As shown in Fig. 2C-D, the area under the curve 
(AUC) for 3-,4-,5 years of OS were 0.69, 0.73 and 0.72, 
and for DFS were 0.70, 0.72, and 0.70. As revealed by the 
ROC curve, the IFI44L expression-based curve showed 
satisfactory predictive efficiency. In a larger cohort based 

on TCGA-HNSC data, lower IFI44L expression was asso-
ciated with poorer OS (Fig. S1).

Moreover, based on the aforementioned 72 cases in 
GSE75540, we performed univariate and multivariate 
Cox regression analysis to analyze the association of 
age, gender, stage, and IFI44L expression with the OS 
in oral squamous cell carcinoma patients. As shown in 
Fig. 3 and Table 4, among these four factors, low IFI44L 
expression (HR = 2.63; 95% CI = 0.90-7.70) might pre-
dict higher risk for oral squamous cell carcinoma 
patients’ OS, although the p value was 0.0785. Based on 
TCGA-HNSC data, IFI44L is differentially expressed 
in subjects with different clinical parameters, including 
downregulated in male subjects (Fig.  S2A), downregu-
lated in subjects with tumor (Fig.  S2B), downregulated 
in subjects with progression after therapy (Fig. S2C), and 
downregulated in higher tumor stages (not significantly, 
Fig. S2D).

Fig. 2  Correlation of IFI44L expression with the prognosis in patients with oral squamous cell carcinoma according to GSE75540 A Overall survival 
analysis on cancer tissues (n = 72) and peripheral blood samples (n = 25); 2 cancerous tissues with no survival information and 1 case with an overall 
survival of less than 30 days were excluded. B overall survival analysis on cancer tissues (n = 72). C ROC curves
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Functional annotation of IFI44L
Since low IFI44L expression showed to be associated 
with poor OS and DFS in oral squamous cell carci-
noma patients, next, we performed GSEA functional 

annotation analysis on different characteristics in high- 
and low-IFI44L cases, attempting to identify signal-
ing pathways related to IFI44L function. As shown in 
Fig.  4A-C, IFI44L downregulation would lead to the 
activation of the FRS-mediated FGFR1, FGFR3, and 
downstream signaling pathways; low IFI44L expression 
also plays a role in the PI3K-FGFR cascades.

Discussion
In the present study, by analyzing DEGs in oral squa-
mous cell carcinoma based on online datasets using the 
RankComp algorithm, we identified 6 reverse gene pairs 
with stable REOs. All the 12 genes in these 6 reverse gene 
pairs have been reported to be associated with cancers. 

Fig. 3  Univariate and multivariate Cox regression of oral squamous cell carcinoma patients

Table 4  Univariate and multivariate Cox regression of oral 
squamous cell carcinoma patients

Univariate Multivariate

HR (95%CI) p.value HR (95%CI) p.value

Age 1(0.96-1) 0.85 0.99(0.96-1.02) 0.5804

Gender 1.1(0.37-3.5) 0.82 0.47(0.11-1.96) 0.2962

Stage 0.42(0.15-1.1) 0.091 0.34(0.09-1.23) 0.0997

IFI44L_exp 2.9(1-8.1) 0.05 2.63(0.90-7.70) 0.0785
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Fig. 4  Gene Set Enrichment Analysis (GSEA) functional annotation analysis on IFI44L A The low expression of IFI44L activates FRS-mediated FGFR1 
and FGFR3 signaling pathways. B The low expression of IFI44L activates the downstream signaling pathways of FGFR1 and FGFR3. C The low 
expression of IFI44L plays a role in the PI3K and FGFR cascades
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Notably, lower IFI44L expression was associated with 
poorer OS and DFS in oral squamous cell carcinoma 
patients, and IFI44L expression showed satisfactory pre-
dictive efficiency by ROC curve. Moreover, low IFI44L 
expression were identified as risk factors for oral squa-
mous cell carcinoma patients’ OS. IFI44L downregula-
tion would lead to the activation of the FRS-mediated 
FGFR1, FGFR3, and downstream signaling pathways, and 
might play a role in the PI3K-FGFR cascades.

Totally different from traditional meta-analysis meth-
ods and batch-correction methods, RankComp, an algo-
rithm based on the cross-platform significantly stable 
REOs for a particular normal tissue, is an economic and 
efficient method which can readily and accurately iden-
tify DEGs in any disease sample measured by any of the 
platforms [62]. Regarding other algorithms, both batch 
effect correction and normalization method might result 
in a distortion of true biological signals between two 
phenotypes, leading to false differences between groups 
[14, 28–30]; as for the RankComp algorithm, which has 
a high accuracy and is insensitive to measurement batch 
effect and data normalization, could normalize microar-
ray samples measured by different platforms [62]. Herein, 
by using RankComp algorithm based on GSE75540 and 
GSE138206, we successfully identified 6 reverse gene 

pairs with stable REOs. As we have mentioned, all the 
12 genes involved in the 6 reverse gene pairs have been 
reported to be associated with multiple cancers, suggest-
ing that these reverse gene pairs might possess prognos-
tic potential in oral squamous cell carcinoma.

Among these 12 genes, little is known about IFI44L, 
which was found to exert moderate impact upon Hepa-
titis C virus infection [63]. Notably, the expression level 
of IFI44L has also been implicated in cancers [60, 64]. 
IFI44L has been recognized as a novel tumor-suppressor 
gene in human hepatocellular carcinoma that regulates 
met/Src signaling to affect cancer stemness, metastasis, 
and drug resistance [60]. However, the role of IFI44L in 
oral squamous cell carcinoma has never been investi-
gated. Moreover, according to TCGA data, in glioma 
patients, higher IFI44L expression predicted higher sur-
vival probability (Fig.  5). Similarly, in the present study, 
according to GSE75540, lower IFI44L expression was 
associated with poorer OS and DFS in oral squamous cell 
carcinoma patients. Moreover, by using univariate and 
multivariate Cox regression analysis based on GSE75540, 
we identified the low IFI44L expression as a risk factor for 
oral squamous cell carcinoma patients’ OS. These data 
indicate that high IFI44L expression might be a favorable 
biomarker for oral squamous cell carcinoma patients.

Fig. 5  Sangerbox online analysis (http://​sange​rbox.​com/) were performed to analyze the correlation of IFI44L expression with in glioma prognosis. 
A The correlation between IFI44L expression and survival probability of patients with oral squamous cell carcinoma. B The specificity and sensitivity 
of IFI44L expression being a prognostic marker

http://sangerbox.com/
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Regarding possible molecular mechanism, GSEA 
analysis indicated that IFI44L downregulation would 
lead to the activation of the FRS-mediated FGFR1, 
FGFR3, and downstream signaling pathways; low 
IFI44L expression also plays a role in the PI3K-FGFR 
cascades. Increasing evidence demonstrated that FGFR 
aberrations are tied to oncogenesis, driving mutations 
where the acquisition of somatic molecular altera-
tions could directly stimulate the growth and prolifera-
tion of tumor cells, promoting neovascularization and 
resistance to anticancer therapies [65–69]. The field of 
FGFR targeting has advanced rapidly with the recent 
development of new drugs repressing FGFs/FGFRs, 
thereby exhibiting a manageable safety profile in early 
clinical trials [70]. FGFR inhibitors have been reported 
to be effective in tumors with abnormal FGFR signal-
ing, providing new treatment strategies within the 
era of precision medicine [71, 72]. Considering these 
previous findings, IFI44L might be a promising agent 
serving as a tumor suppressor in oral squamous cell 
carcinoma, possibly through acting on the FRS-
mediated FGFR1, FGFR3, and downstream signaling 
pathways.

Collectively, we identified 6 reverse gene pairs with sta-
ble REOs in oral squamous cell carcinoma, which might 
serve as gene signatures playing a role in the diagnosis in 
oral squamous cell carcinoma. Moreover, high expression 
of IFI44L, one of the DEGs in the 6 reverse gene pairs, 
might be associated with favorable prognosis in oral 
squamous cell carcinoma patients and serve as a tumor 
suppressor by acting on the FRS-mediated FGFR signal-
ing. Regarding the limitations of the present study, the 
RankComp algorithm might not be sufficient enough to 
identify genes whose differential expression results in 
slight alterations in the ranking. Moreover, based on the 
sensitivity of gene expression ordering to the microarray 
platforms to a certain extent, herein, the present study 
only analyzed the microarray data from the same plat-
form. Future research should be performed to exclude 
gene pairs without stable ordering in datasets from mul-
tiple platforms, and identified promising factor should be 
investigated for specific effects in vitro and in vivo.
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