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Abstract: Thermomass theory was developed to deal with the non-Fourier heat conduction
phenomena involving the influence of heat inertia. However, its structure, derived from an analogy
to fluid mechanics, requires further mathematical verification. In this paper, General Equation for
Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) framework, which is a geometrical and
mathematical structure in nonequilibrium thermodynamics, was employed to verify the thermomass
theory. At first, the thermomass theory was introduced briefly; then, the GENERIC framework
was applied in the thermomass gas system with state variables, thermomass gas density ρh and
thermomass momentum mh, and the time evolution equations obtained from GENERIC framework
were compared with those in thermomass theory. It was demonstrated that the equations generated
by GENERIC theory were the same as the continuity and momentum equations in thermomass theory
with proper potentials and eta-function. Thermomass theory gives a physical interpretation to the
GENERIC theory in non-Fourier heat conduction phenomena. By combining these two theories, it was
found that the Hamiltonian energy in reversible process and the dissipation potential in irreversible
process could be unified into one formulation, i.e., the thermomass energy. Furthermore, via the
framework of GENERIC, thermomass theory could be extended to involve more state variables, such as
internal source term and distortion matrix term. Numerical simulations investigated the influences of
the convective term and distortion matrix term in the equations. It was found that the convective
term changed the shape of thermal energy distribution and enhanced the spreading behaviors of
thermal energy. The distortion matrix implies the elasticity and viscosity of the thermomass gas.

Keywords: GENERIC; thermomass; thermomass energy; hyperbolic heat conduction

1. Introduction

Fourier’s law, which implied a parabolic governing equation, failed to describe heat conduction
phenomena in ultrafast processes [1–7] and nanoscale materials [8–14]. For instance, heat perturbation
propagated in the medium at a finite speed, according to the observation in heat pulse experiments,
while the parabolic equation predicted a paradox with infinite speed [7]. In nanoscale materials, the
thermal conductivity was found to be size-dependent, which was beyond the scope of Fourier’s
law [13].

In order to characterize non-Fourier heat conduction, various models had been proposed
based on different assumptions and physical pictures. Hyperbolic heat conduction equations were
preferred because they solved the paradox of infinite thermal disturbance speed [15] and, in recent
studies, investigated the phonon momentum conservation process [16,17], which implied the inertial
phenomena of heat flux [18,19]. Cattaneo-Vernotte equation [20,21], the first mathematical hyperbolic
heat conduction equation, assumed a relaxation process between temperature gradient and heat
flux, giving a telegraph equation when coupled with the energy conservation equation. However,
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the equation predicted negative temperature at some cases which is unphysical [22]. Afterwards,
Phase lag models, such as Dual Phase Lag model [23,24], were proposed and thought that a time lag
existed between heat flux and temperature gradient and it could reduce to Cattaneo-Vernotte equation
via expansions. However, it was found that the solutions were not continually dependent on the
initial condition [19], which resulted in instability, and it could not avoid the problem of negative
temperature [25–27]. Another series of non-Fourier equations were derived from the Boltzmann
equation [28–30]. Guyer-Krumhansl equation [28,29], typical for this kinds of equations led to the
investigations into phonon hydrodynamics, which was named due to its similar structure with
Navier-Stokes equation. However, it also met mathematical difficulties [31,32], such as the violation of
maximum principle for stability and the failure in preserving variable non-negativity. Recently, to study
the heat transfer in a more intrinsic way, thermomass theory [33–36] was developed. It was found that
the heat was conserved during conduction, similar to mass. Then, the mass nature of heat was recognized
in heat conduction, which is called thermomass and defined based on Einstein’s mass-energy relation.
Consequently, the heat conduction is actually the thermomass gas flow through the porous medium
with the rest mass as skeleton. Thus, heat conduction problems can be described by use of the principles
in fluid mechanics. Thermomass theory was adopted to describe the non-Fourier heat conduction
phenomena, such as hyperbolic heat conduction [22,34], negative entropy production problem [37,38]
and thermomass gas viscosity [39]. Nevertheless, its mathematical structure, derived from analogy,
was supposed to be testified.

Nonequilibrium thermodynamics paved another way to handle this issue, and it tried to
understand the non-Fourier phenomena in the view of entropy evolution [40]. Classical Irreversible
Thermodynamics (CIT) faced challenges when the parabolic Fourier’s law was extended to the
hyperbolic heat conduction. The oscillations of heat flux and temperature led to the negative entropy
production, which violated the Second Law. To solve this problem, CIT was extended mainly in three
paths [41]. The first was to construct the conservation equations along with the time evolution equation
of entropy, such as the Extended Irreversible Thermodynamics (EIT) [42,43]. The second path was
to add new internal variables and get their evolution equations along with that of entropy, such as
Weakly Nonlocal Irreversible Thermodynamics [44–46], Rational Extended Thermodynamics [47] and
Conservation Dissipation Formulism [48]. The last path was to obtain an abstract geometrical structure
extracted from the classical equilibrium thermodynamics. Following this, the General Equation
for Non-Equilibrium Reversible-Irreversible Coupling theory [49–51] (abbreviated to GENERIC)
was developed.

The GENERIC theory intends to provide a unified geometrical and mathematical structure for
various processes, such as complex fluids [52], chemical reaction [53] and Fourier and non-Fourier
heat conduction [54], and tries to demonstrate the similar structure shared by them. One of its
advantages is analyzing the reversible process and irreversible process individually. The reversible
process is described by the Hamiltonian mechanics, governed by the Hamiltonian energy. Moreover,
the irreversible process adopts dissipation potential, which reaches its minimum when the system
arrives at equilibrium state. The time evolution equations of state variables can be derived from
the geometry:

dn
dt

= LHn +
∂Ξ
∂ηn

, (1)

which involves five building blocks: the state variables n, their Hamiltonian kinematics L, Hamiltonian
energy H, dissipation potential Ξ and entropy η, which is also called the eta-function. The first term
in the right represents the reversible process while the second term in the right is characterized by
irreversibility. As for heat conduction [54], it is natural to choose energy density e and heat flux q as the
state variables. The heat flux is treated in a dynamical way, but the physical interpretation is unclear,
especially for the Hamiltonian potential. Therefore, the analysis of heat conduction in GENERIC
structure is mainly mathematical, lacking some physical interpretation.
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This paper aims to apply the thermomass theory in the framework of GENERIC, demonstrating the
mathematical reasonability of the governing equations of thermomass gas and the physical foundation
of the heat conduction in the framework of GENERIC.

2. Thermomass Theory

The part will introduce the thermomass theory briefly. Heat is conserved in heat conduction,
which indicates the mass nature of heat. Therefore, it is also called thermomass. The transport process
of heat can be regarded as the flowing behaviors of thermomass gas in porous media. Thus, in this way,
the heat conduction phenomena can be described by fluid mechanics. Guo et al. [36] noticed these
characteristics and proposed the thermomass theory, which focused on the extra mass increased due to
thermal vibration. The theory aims to develop the dynamics of thermomass gas in heat conduction.
In fact, Grmela [55] shared the same idea and regarded the hyperbolic heat conduction in fluid as the
transport of two component fluid in his paper in 1983. The first component was fluid particle and the
second was called caloric component.

The relativistic mass of an object is defined based on the Einstein’s mass-energy relation:

m =
E
c2 , (2)

where E is the mechanical energy and c is light speed. Similar to the mechanical energy, the relativistic
mass of thermal energy in a dielectric solid is:

mh =
Eh

c2 (3)

which is called thermomass, as extra mass added to the rest mass. As for heat conduction in the
dielectric solid, thermomass is transported, while the molecules stay in the original places.

The dynamics of thermomass gas is based on two state variables, ρh and uh, representing the
local thermomass gas density and drift velocity of thermomass gas in per unit volume, respectively,
which are defined as:

ρh =
ρCVT

c2 , (4)

uh =
q

ρCVT
. (5)

where ρ is the material density and ρh is the density of thermomass gas. CV is the specific heat. T and
q are the local temperature and heat flux, respectively. Then, three conservation laws are established,
namely the thermomass continuity equation, the thermomass momentum equation and the thermomass
energy equation:

∂ρh

∂t
+∇·(uhρh) = 0, (6)

∂(ρhuh)

∂t
+∇·(ρhuhuh) = −∇Ph + fh, (7)

∂( 1
2ρhu2

h)

∂t
+∇·(uh·

1
2
ρhu2

h) = −∇Ph·uh + fh·uh. (8)

where uhuh in Equation (7) is a second order tensor and uh·uh is a scalar. The first equation corresponds
to the heat conservation equation, which is:

∂(ρCVT)
∂t

+∇·q = 0. (9)
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In the thermomass momentum Equation (7), the first term represents the temporal inertial force
of thermomass while the second term represents the spatial inertial force. Ph is the thermomass gas
pressure defined as a quadratic function [33]:

Ph =
γhρ

c2 (CVT)2, (10)

and fh is the resistance, usually assumed to have a linear relationship with the drift velocity of
thermomass gas:

fh = −µuh. (11)

The coefficient µ can be derived from the comparisons with Fourier’s law. Of course, different resistance
models lead to different time evolution equations. For example, Dong et al. [39] adopted Brinkman’s
equation for the resistance force to describe the boundary influences on thermomass propagation
in microscale medium. When the temporal inertial force and spatial inertial force can be ignored,
the thermal pressure is equal to the thermal resistance [36], namely:

∇Ph = fh. (12)

At that time, Equation (12) is actually Fourier’s law, so that µ can be expressed in the form of thermal
conductivity k as:

µ =
2c2γhρ

2
hCV

k
. (13)

Then, the thermomass momentum equation (Equation (7)) becomes:

∂q
∂t

+∇·(
qq
ρCVT

) +
2γhρC2

VT

c2 ∇T +
2γhρC2

VT

c2k
q = 0. (14)

where qq is a second order tenser. The time evolution equation of heat flux q is derived with temperature
T on the foundation of thermomass gas dynamics. This equation can reduce to the conventional Fourier’s
conduction law when all the inertia effects are omitted. It reduces to the hyperbolic heat conduction
equation when the spatial inertia is neglected and it is also able to describe the non-Fourier heat
conduction phenomena even in the steady state, when the temporal inertia is omitted. Therefore,
Equation (14) is called the general heat conduction law in the references [35,36].

The conservation equation of thermomass energy can be derived from the coupling of thermomass
continuity equation and momentum equation, while new quantities are defined as the thermomass
kinetic energy (Equation (15)) and thermomass potential energy (Equation (16)):

Ehk =
1
2
ρhuh·uh =

q·q
2ρCvTc2 , (15)

Ehp =
γhρ

c2 (CVT)2. (16)

In the transport process where the drift velocity of thermomass gas is not so low that the kinetic energy
of thermomass cannot be neglected, the kinetic energy and potential energy of thermomass convert
into each other mutually cycle by cycle, and the system goes through the oscillations of heat flux
and temperature.

It is important to emphasize that there are two systems in a solid. The first one is the porous
skeleton of rest mass of molecules and the other is the thermomass gas, which is full of the porous
skeleton and can flow through it, if a temperature difference is applied to the solid. Heat conduction in
a solid is in fact the flowing of thermomass gas in a porous medium, which can be described by the
principles of fluid dynamics. The quantities in the porous skeleton system are those we are familiar
with, such as density ρ and specific heat CV. In the thermomass gas system, the quantities are labeled
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by the subscript h, such as ρh and uh. ρh is the density of thermomass gas, which is the function of
the density of rest mass skeleton, ρ, as shown in Equation (4). It is assumed that the propagation of
thermomass gas is only influenced by the thermomass gas system, free from the skeleton system.

3. Thermomass Theory in the Framework of GENERIC

GENERIC theory divides the whole process into the reversible part and the irreversible part,
controlled by two potentials, namely the Hamiltonian potential and the dissipation potential.
Thermomass gas can be regarded as a kind of special fluid, and thus its transport process can
be dealt with in the framework of GENERIC with the analogy to fluid mechanics. Because different
state variables take effect in different cases, choosing proper state variables is significant, which makes
the GENERIC theory easier to be extended. In the thermomass system, there are two elementary state
variables to choose, thermomass gas density ρh and thermomass gas flow mh, which represents the
thermomass gas momentum, corresponding to the thermomass gas density ρh and thermomass gas
drift velocity uh in thermomass theory by:

mh = ρhuh =
q
c2 . (17)

In this paper, the thermomass system based on the solid system is studied. Then, the Poisson bracket
are derived via Hamiltonian mechanics [51]:

{A, H}c =
∫
V
ρh(

∂Aρh
∂xi

Hmh,i −
∂Hρh
∂xi

Amh,i)dr

+
∫
V

mh,i(
∂Amh,i
∂x j

Hmh, j −
∂Hmh,i
∂x j

Amh, j)dr
(18)

where Einstein’s summation convention is used for the subscript i, j and mh,i represents the ith
component of the vector mh. Equation (18) is obtained from the analogy to the Poisson bracket
in fluid mechanics [51]. In this equation, A is a function with respect to thermomass density and
thermomass momentum A(ρh, mh) and represents some system properties. H is the Hamiltonian energy
in thermomass system. Poisson bracket depicts the reversible process, including the propagation and
the transition between thermomass kinetic energy and thermomass potential energy. The Poisson
bracket is supposed to satisfy three basic principles, namely the linearity, {A, H} + {B, H} = {A + B, H},
the antisymmetry, {A, H} = −{H, A} and the Jacobi identity {{A, B}, H} + {{B, H}, A} + {{H, A}, B}= 0.
These principles are testified for Equation (18) since its structure is similar to that in fluid mechanics.
Then, the following equations are obtained via integration by parts:

.
A =

∂A
∂ρh

∂ρh

∂t
+

∂A
∂mh,i

∂mh,i

∂t
, (19)

.
A = {A, H}, (20)

{A, H}c =
∫

dV(−Aρh
∂
∂xi

(ρhHmh,i) −Amh,iρh
∂Hρh
∂xi

)

+
∫

dV(−Amh,i
∂
∂x j

(mh,iHmh, j) −Amh, j(mh,i
∂Hmh,i
∂x j

)
(21)

The time evolution equations of the reversible process can be derived by substituting Equation (19)
into Equation (21):

∂ρh

∂t
+

∂
∂xi

(ρhHmh,i) = 0, (22)

∂mh,i

∂t
+

∂
∂x j

(mh,iHmh, j) = −ρh
∂Hρh

∂xi
−mh, j

∂Hmh, j

∂xi
. (23)
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A so-called pressure potential is introduced to simplify the expression, as:

π = H − ρhHρh −mh, jHmh, j . (24)

The construction of such pressure potential is common in Hamiltonian mechanics and it implies the
transition between kinetic energy and potential energy. Equation (23) is transformed into:

∂mh,i

∂t
+

∂
∂x j

(mh,iHmh, j) =
∂π
∂xi

(25)

by substituting Equation (24) into Equation (23). These Equations (22) and (23) describe a non-dissipative
transport process of thermomass and thermomass momentum. They are supposed to correspond with
the following hyperbolic heat conduction equations without dissipation:

τ
∂qi

∂t
= −ki

∂T
∂xi

, (26)

ρCV
∂T
∂t

= −
∂qi

∂xi
. (27)

It has to be clarified that the non-dissipative process described by Equations (26) and (27) does
not exist in reality. They are analyzed only as the reversible part of the whole heat transport process
and what occurs in the process is the combination of the reversible part and the irreversible part.
Through the comparisons between Equations (26) and (27) and Equations (22) and (23), it is found
that a proper definition of Hamiltonian potential H makes these two equation sets become the same.
A specific form of H can be chosen as:

H2 =
∑

i

1
2

m2
h,i(x, t)

ρh(x, t)
+

1
2
ε2ρ

2
h(x, t), (28)

which is the thermomass energy in the thermomass theory, consisting of kinetic energy and potential
energy. Moreover, ε is a constant with dimension m5kg−1s−2 to make sure that the Hamiltonian
energy H has the dimension J/m3, which actually means the energy density in the unit volume.
Taking into consideration the relationships Equations (4), (5), (28), Equation (22) and Equation (23) are
transformed into:

∂e
∂t

= −
∂qi

∂xi
, (29)

∂qi

∂t
+
∂(

qiq j
ρCVT )

∂x j
= −ε2

e
c2
∂e
∂xi

(30)

and the parameter ε is defined as:

ε2 =
c2k

(ρCv)e
. (31)

When the variation of temperature is not large, linear approximation can be adopted and the
variation of energy density e in the expression (31) is omitted. In this way, the coefficient ε2e/c2 in the
right of the Equation (30) gives a linear energy-dependent relationship. Of course, the formulations of
Hamiltonian energy are not unique, a linear or a cubic relationship for thermomass potential energy
fits the equations as well. However, it is demonstrated that the linear relationship:

H1 =
∑

i

1
2

m2
h,i(x, t)

ρh(x, t)
+ ε1ρh(x, t) (32)
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leads to a constant pressure potential:
∂π1

∂xi
= 0 (33)

which is not suitable in the physical system. The cubic relation:

H3 =
∑

i

1
2

m2
h,i(x, t)

ρh(x, t)
+ ε3ρ

3
h(x, t) (34)

requires that the thermal conductivity relies on the quadratic energy density e2, which is not considered
in this paper:

∂π3

∂xi
= −ε3

e2

c6
∂e
∂xi

. (35)

As for the irreversible processes, eta-function and dissipation potential are introduced and the
time evolution equations are in entropy representation. Eta-function η, whose derivative with respect
to energy density e(x,t) in local equilibrium state equals the inverse temperature:

∂η

∂e

∣∣∣∣∣
e(x)=eeq(x)

=
1

Teq
, (36)

has the meaning of entropy. The subscript eq represents the equilibrium state. ηe, abbreviation for
the derivative of η with respect to e is called the conjugate variable of e. In the GENERIC theory,
contact geometry and conjugate variables are widely adopted. In equilibrium state, the eta-function
has the expression:

η
∣∣∣∣e(x)=eeq(x) = ρCV ln Teq + D. (37)

in solid physics with constant D. According to the maximum entropy principle, the eta-function
approaches its maximum during the process from nonequilibrium state to equilibrium state. η(ρh, mh)
is the function of thermomass density and thermomass momentum and its variation is determined by
these two state variables:

δη =
∂η

∂n
δn =

∂η

∂ρh
δρh +

∂η

∂mh,i
δmh,i. (38)

The introduction of dissipation potential in GENERIC theory extends the irreversible process
from linear gradient dynamics to nonlinear cases. The time evolution can be written in the form of
inner product:

.
A =< An,

∂Ξ
∂ηn

>=
∂A
∂n
·
∂Ξ
∂ηn

, (39)

and when A is the eta-function itself, it is supposed to satisfy that:

.
η = ηn·

∂Ξ
∂ηn

> 0. (40)

Keeping that in mind, the derivative of A with respect to time could be seen as the sum of the time
evolution of state variables (Equation (38)), Equation (39) could be transformed into:

dn
dt

=
∂Ξ
∂ηn

. (41)

As for how to get a proper dissipation potential, there are many choices. It seems that the simplest
form is the quadratic one:

Ξ =
κ
2
(ηn)

2, (42)
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∂Ξ
∂ηn

= κ(ηn). (43)

One thing to be noticed is that the dissipation potential might be not only the function of state
variables, but also the gradient of state variables and so on. Therefore, the specific form of dissipation
potential is pertinent to the material types, microstructures and other characteristic properties. Here,
one typical form can be chosen as:

η = η0 −
∑

i

1
2
γim2

h,i, (44)

Ξ =
1
2

∑
i

κiη
2
mh,i

=
1
2

∑
i

κiγ
2
i m2

h,i. (45)

The absolute value of η0 is difficult to calculate in practice as it is related with the entropy in equilibrium
state. However, luckily, only the derivatives of eta-function with respect to the state variables are
necessary in the equation set. The dissipation potential is free from the conjugate variable ηρh ,
because the thermomass is conserved, rather than being reduced during the heat conduction process.

The time evolution can be derived by combining the reversible process and irreversible process:

∂ρh

∂t
+

∂
∂xi

(ρhHmh,i) = 0, (46)

∂mh,i

∂t
+

∂
∂x j

(mh,iHmh, j) =
∂π
∂xi
− κiγimh,i. (47)

In the nonequilibrium heat conduction process, the thermomass is transferred and conserved while the
thermomass momentum is reduced until a steady state is established.

4. Discussion and Extensions

4.1. Comparisons Between GENERIC Theory and Thermomass Theory

In the thermomass theory, the momentum equation is in the form of thermomass density and
drift velocity of thermomass gas:

∂(ρhuh,i)

∂t
+
∂(ρhuh, juh,i)

∂x j
= −

∂[
γρ
c2 (CVT)2]

∂xi
+ µuh,i. (48)

When the thermomass theory is applied in the framework of GENERIC, the counterpart equation
(Equation (47)) is expressed in the form of thermomass density and thermomass momentum. In order
to obtain more obvious comparisons, the same variables are substituted in these equations. They are
the energy density e(x,t) and heat flux q(x,t), which are more common in hyperbolic heat conduction
equations. Substituting the relationships Equations (4) and (5) into Equations (46) and (47):

∂e
∂t

+
∂qi

∂xi
= 0, (49)

∂qi

∂t
+
∂(

qiq j
e )

∂x j
= −ε

e
c2
∂e
∂xi
− κiγiqi, (50)

are derived. The first equation (Equation (49)) is the heat conservation equation. The second equation
(Equation (50)) is compared with the momentum equation in thermomass theory (Equation (7)),
which is also rewritten in the form of e and q:

∂qi

∂t
+
∂(

qiq j
e )

∂x j
= −

2γe
c2ρ

∂e
∂xi
−

2γeCV

Kc2 qi. (51)
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The first term in the left of Equation (51) represents the temporal inertial effect of heat and the
second term is the convective term, representing the spatial inertial effect. Hyperbolic heat conduction
phenomena arise because of the temporal inertial force of thermomass. Then, the spatial inertial
force influences the interactions between the heat fluxes in different directions. The third term in
Equation (51) is the pressure gradient, characterized by the gradient of energy density. The last term is
the resistance, leading to the decrease of heat flux. In the whole process, the heat is conserved and
transferred, while the thermomass momentum is reduced.

By comparing Equation (50) and Equation (51), it is found that they have the same structure and
similar terms. The difference is in the definition of the coefficients. In the thermomass momentum
equation, the pressure term is derived from the thermal pressure in solid. The resistance is obtained
from the analogy to the porous media, and it is assumed that the resistance force has a linear relation
with the drift velocity of thermomass gas [33,36]. In the GENERIC equation, the third term, the pressure
potential, is obtained from the reversible process, representing the combination of thermomass kinetic
energy and thermomass potential energy. Furthermore, the fourth term comes from the dissipation in
the irreversible process, leading to entropy production and thermomass energy dissipation [51].

4.2. Thermomass Energy

In the GENERIC theory, the reversible process and irreversible process are controlled by two
individual potentials. In the reversible process, Hamiltonian potential energy H, which consists of
thermomass kinetic energy and thermomass potential energy, takes effect, while in the irreversible
process, dissipation potential governs and keeps damping monotonously. It was found in this paper
that these two potentials have similar forms and they can be unified as one potential energy, namely
the thermomass energy.

It was noticed that in the reversible process, thermomass energy is conserved, while in the
irreversible process, resistance dissipates the thermomass energy. These behaviors are much like
the controlling potentials in GENERIC theory. Therefore, the Hamiltonian potential and dissipation
potential in the thermomass system with state variables ρh and mh can be written as:

Hh = Ξh =
∑

i

1
2
κi(ηmh,i)

2 +
1
2
ερ2

h =
∑

i

1
2

m2
h,i

ρh
+

1
2
ερ2

h. (52)

The following relationships are required to be satisfied:

κiγ
2
i =

1
ρh

, (53)

κiγi =
1
τi

, (54)

where τ is the relaxation time. In this way, it can be answered what is dissipated in the process in heat
conduction. It is the thermomass energy H. In the reversible process, thermomass energy is transmitted
and conserved, with the transformation between thermomass kinetic energy and thermomass potential
energy, while in the irreversible process, thermomass energy is dissipated monotonously. The behaviors
of thermomass are much similar with those of entropy. However, the irreversible process leads to the
increase of entropy production, while the thermomass energy is reduced due to its dissipation.

The thermomass energy analysis has two advantages. Firstly, it provides a uniform formulation
for the Hamiltonian potential and the dissipation potential. From nonequilibrium state to equilibrium
state, the thermomass energy keeps being dissipated monotonously, which can be used as the Lyapunov
function. Secondly, it gives a clearer and more intrinsic physical picture for the heat transport in
GENERIC theory, where reversible process is described in energy representation while the irreversible
one is in entropy representation.
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4.3. Extension in the Framework of GENERIC

The reduction from microscale view to macroscale view ignores some details and focuses only
on the variation of macroscopic patterns. Nevertheless, different levels of descriptions are required
in different situations. For example, in an equilibrium system, only one state variable is necessary,
namely the total thermal energy E. However, in a system described by Fourier’s law, the distribution
of local energy density e(x) is supposed to be considered. If more proper variables are added to the list,
more details of the system are revealed. However, the word proper is significant, which requires to
pick up the relatively more general variables and leave out the less significant ones and that the state
variables are rational. For example, when both heat flux and the gradient of heat flux influence the
heat conduction process, the heat flux is obviously more general, while the gradient of it might be only
a good supplement.

One advantage of the GENERIC framework is that it is easy to extend because it provides the
mathematical structure. Thus, flexible state variables can be chosen according to different systems.
Of course, the most important thing is that these state variables are reasonable for the target system.
One possible extension is the distortion matrix, in which case the propagation of heat suffers from
viscosity, and heat fluxes in different directions have stronger interactions with each other.

At first, the concept of volume density of labels a is introduced [51,56]. In Lagranian mechanics,
the coordinate is set to be with the thermomass particles and the particle trajectories are recorded.
However, when these equations are transformed into Euler representation, the coordinates might be
compressed or twisted. The volume density of labels a, which is a vector, implies where the particles
come from. The gradient of a, called distortion matrix D, shows the torsion and deformation of the
given volume, which has been applied in elasto-plastic solid successfully [56]. The distortion matrix D
is usually used to describe the solid-like fluid or fluid-like solid, which has the flowing and elasticity
characteristics at the same time. In heat conduction, even though the thermomass gas is regarded as
a kind of fluid, the real transport process is complex and these kinds of fluids might have the solid
characteristics. Therefore, it is reasonable to apply the theory for elasto-plastic solid to thermomass
gas. Actually, the historical effect of heat flux with temperature [7] or the vibration interference [57],
for example, can be seen as some kind of elasticity. It is thought that the distortion matrix is relevant
with the initial state of thermal energy distribution and represents the viscous effect and elastic effect.

The time evolution equations with label field a are derived as the first step. The derivatives of
label field a with respect to displacement and momentum are defined as:

∂ai
∂x j

= Di j, (55)

∂ai
∂p j

= 0. (56)

Thus, the Poisson bracket, consisting of thermomass density ρh, thermomass momentum mh and label
field a has the form of:

{A, H}label = {A, H}c + {A, H}a

=
∫
V
ρh(

∂Aρh

∂xi
Hmh,i −

∂Hρh

∂xi
Amh,i)dr

+
∫
V

mh,i(
∂Amh,i

∂x j
Hmh, j −

∂Hmh,i

∂x j
Amh, j)dr

+
∫

ai(
∂Aai

∂x j
Hmh, j−

∂Hai

∂x j
Amh, j)dr

(57)

Via integration by parts, the time evolution of these state variables yields:
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∂ρh

∂t
+

∂
∂xi

(ρhHmh,i) = 0, (58)

∂ai
∂t

+
∂(aiHmh, j)

∂x j
= 0, (59)

∂mh,i

∂t
+

∂
∂x j

(mh,iHmh, j) =
∂π†

∂xi
, (60)

π† = H − ρhHρh −mh, jHmh, j − a jHa j . (61)

From the equations above, it is found that label field takes part in a pure convective process in reversible
systems. The force potential π† differs from that in Equation (24) by one energy term produced by
label vector. Furthermore, if the distortion matrix is taken as the state variable and the Hamiltonian
energy H is a function of only the distortion matrix, not the function of label field, the Poisson bracket
(57) is transformed into [56]:

.
A = {A, H}c + {A, H}D

=
∫
V
ρh(

∂Aρh

∂xi
Hmh,i −

∂Hρh

∂xi
Amh,i)dr

+
∫
V

mh,i(
∂Amh,i

∂x j
Hmh, j −

∂Hmh,i

∂x j
Amh, j)dr

+
∫
V

Di j(Hmh, j

∂ADik

∂xk
−Amh, j

∂HDik

∂xk
)dr

+
∫
V
(
∂Di j

∂xk
−
∂Dik
∂x j

)(ADik Hmh, j −HDik Amh, j)dr

(62)

However, the irreversible process might destroy the continuity of label field a and Equation (55)
might not be always satisfied, which results in the failure of Jacobi identity. The last part in Equation (62)
is added to the equation to make sure that it fulfills the Jacobi identity even for incompatible distortion
fields. The time evolution equations derived are:

∂ρh

∂t
+

∂
∂xi

(ρhHmh,i) = 0, (63)

∂Di j

∂t
+
∂(DikHmh,k)

∂x j
− (

∂Dik
∂x j
−
∂Di j

∂xk
)Hmh,k = 0, (64)

∂mh,i

∂t
+

∂
∂x j

(mh,iHmh, j) = −ρh
∂Hρh

∂xi
−mh, j

∂Hmh, j

∂xi
−

∂(D jiHD jk)

∂xk
+
∂D jk

∂xi
HD jk . (65)

Due to the complex distortion matrix, a universal form of force potential is difficult to find.
A possible form of H is:

HD
2 =

∑
i

1
2

m2
h,i(x, t)

ρh(x, t)
+

1
2
ερ2

h(x, t) +
∑
i, j

1
2
χi jD2

i j. (66)

In fact, Equation (65) implies that the heat flux is not only determined by the gradient along this
direction, but also interacts with the gradients of variables along other directions. The physical meaning
of the distortion matrix, the elasticity of thermomass, can be regarded as a nonlocal effect, because it
takes into consideration the interactions between the thermomass particles and their surroundings.
Its formulation is similar with that of Rational Extended Thermodynamics [47]. However, the closure
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problems are avoided and it closes the equation set by the application of dissipation potential, as shown
in the following part.

The new variables also have their own part in the dissipation process, which is irreversible.
When the phonon entropy is the function of label field a or distortion matrix field D, or even the
gradient of the distortion matrix, which is a third-order tensor, the dissipation terms have different
characteristics. Here, for simplicity, it is assumed that the eta-function is the function of the distortion
matrix D. Then the time evolution Equation (64) is rewritten as:

∂Di j

∂t
+
∂(DikHph,k)

∂x j
− (

∂Dik
∂x j
−
∂Di j

∂xk
)Hph,k =

∂Ξ
∂ηDi j

. (67)

One possible example of Ξ and η is proposed. The dissipation potential is set to be a quadratic
function, as:

ΞD =
1
2
βi j(ηDi j)

2. (68)

The irreversible process requires that the dissipation potential always keeps damping during the
process of propagation, thus, the terms is supposed to give the equation the tendency to equilibrium.
Analogous with the behavior of heat flux, the relationship between eta-function and distortion matrix
field is set to be:

ηD = η0 −
ϕi j

2
(Di j)

2, (69)

In the above equations, β and ϕ are the coefficients related to the material thermal properties.
The complete time evolution equation for D is then rewritten as:

∂Di j

∂t
+
∂(DikHph,k)

∂x j
− (

∂Dik
∂x j
−
∂Di j

∂xk
)Hph,k = −βi jϕi jDi j, (70)

The state variables that are necessary to describe the system are changing in different problems and
at different description levels. Taking more state variables does not always mean better, because while
some patterns are negligible, more details can mean more meaningless efforts and disordered
importance. In view of the current experimental measurement techniques, label field and distortion
matrix field are both difficult to observe. However their effects are presented by the thermomass
density ρh and thermomass momentum mh. This article makes an effort to demonstrate that the heat
conduction principles for thermomass system might be more complex than was thought and the theory
can be developed to a more general stage.

Inner heat source absorbs and emits heat, providing a new term to the dissipation potential.
Different from distortion matrix, inner heat source is not a state variable, but a given system parameter.
In a system represented by the state variables ρh and mh, the inner heat source has nothing to do with
Hamiltonian mechanics and it influences the heat conduction process by changing the dissipation
potential. The time evolution equations of thermomass system with inner heat source are supposed
to be:

∂ρh

∂t
+

∂
∂xi

(ρhHmh,i) = sh, (71)

∂mh,i

∂t
+

∂
∂x j

(mh,iHmh, j) =
∂π
∂xi

, (72)

according to the physical interpretation, where sh is the inner thermomass source, representing the mass
density variation per unit volume per second. Therefore, to make new potential quantities compatible
with Equations (71) and (72), the Hamiltonian potential and dissipation potential are changed into:

H2,inner =
∑

i

1
2

m2
h,i(x, t)

ρh(x, t)
+

1
2
ε2ρ

2
h(x, t), (73)
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Ξ =
1
2

∑
i

κiη
2
ph,i

+ shηρh =
1
2

∑
i

κiγ
2
i m2

h,i + shηρh . (74)

The analyses of dissipation potential show that the thermomass source potential is written as the
product of the derivative of eta-function with respect to the thermomass density ρh and the inner
thermomass source sh. If this inner source is a hot source sh > 0, it adds to the dissipation potential.
Otherwise, it reduces the dissipation potential.

Distortion matrix and inner heat sources are used as the examples to demonstrate how to extend
the thermomass theory in the framework of GENERIC. The state variables are chosen according to the
characteristics of the system. Inner heat sources gives a new term to the dissipation potential, and the
distortion matrix allows for stronger interactions between heat fluxes in different directions, describing
the viscous effect and elasticity of thermomass gas.

5. Numerical Results

5.1. Influences of the Convective Term

One of the characteristics of Equation (50), the time evolution equation for the thermomass
momentum, is the second term which implies the momentum convection effects. The influences of
the convective term on the propagation behaviors are investigated in this section by numerical
simulations. Here, the heat conduction problems are solved in one-dimensional regimes and
two-dimensional regimes.

The transient heat conduction phenomenon in a large plate with finite length as shown in Figure 1,
is studied, which can be regarded as a one-dimensional heat conduction problem. The left boundary is
heated by a sine-shape heat pulse for the time from 0 to tpulse:

qx =

{
Y1(1− cos(2πt/tpulse) 0 < t < tpulse
0 t > tpulse

. (75)

where Y1 is the amplitude of heat pulse. Before calculations, the state variables and coefficients
are normalized and the numerical algorithm comes from computational fluid mechanics [58–60].
After normalization, Y1 is chosen to be 1. More numerical details can be seen in the Appendix A. If the
thermal conductivity is constant, the effects of the convective term can be highlighted. Thus, in Figure 2
the problem with constant thermal conductivity is analyzed. That is, the equation:

∂q
∂t

+
∂(q q

e )

∂x
= −k

∂e
∂x
−

1
τ

q, (76)

is solved, where the second term denotes the convective effect. In the simulations, k and τ are both
set to be 1 to make the calculations easier. The choices of these coefficients are important, of course.
However, it does not influence the qualitative characteristics of the equations, as it has been adopted in
the reference [59–62]. The propagation patterns of the energy density with and without the second
term are displayed in Figure 2. The results for the equations without the second term are plotted in
solid line while the dash line denotes those for the equations with convective term. It can be seen
that the heat pulse at the left boundary produces a thermal wave in the medium and it keeps the
original pattern during propagation while the peak value is dissipated as shown by the solid line.
When the convective term is considered, the shape is changed and a sharp wave front comes into being.
The convective term shows the drift behaviors of thermomass conveyed by momentum. Thus, it is an
obvious deduction when the mass nature of heat is taken into consideration. Meanwhile, the existence
of convective term speeds up the thermal wave and leads to higher dissipation rate for the peak value
of the patterns.
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To show more characteristics of the momentum convection, a two-dimensional heat conduction
problem is considered where heat transport occurs in a plate with finite length and width and infinite
height. Then, the left boundary is heated by a partial heat pulse:

qx =

{
Y2(1− cos(2πt/tpulse)(1− cos[4π(y− 0.25)]) 0 < t < tpulse, 0.25 < y < 0.75
0 t > tpulse or y > 0.75 or y < 0.25

, (77)

where Y2 is also set to be 1. If it is not clarified specifically, all the coefficients are set to be 1.
The distribution shape of the heat flux is displayed in Figure 3. Then, the energy distribution along with
time is shown in Figure 4 and different colors denotes different values of the energy density, which has
a corresponding relationship with temperature. Figure 4a–c are the energy distribution propagation
patterns en for Equations (49) and (50) without the convective term and Figure 4d–f are those ec with
the convective term. The thermal energy enters the regime from the left boundary and it spreads away
just like water ripples. The majority of the energy propagates forward, namely along with the original
direction of the heat flux, while the nonequilibrium energy distribution produces the heat flux in other
directions. The difference of the energy distribution (ec-en) is plotted in Figure 5. It was found that the
convective term enhances the spreading behaviors of the thermal energy. In macroscale descriptions,
the spreading enhancement caused by the convective term is similar with the viscous effect. However,
they are different because the convective effect is reversible and the viscous effect is irreversible.
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5.2. Influences of the Distortion Matrix

Distortion matrix in thermomass theory, analogous to that in solid mechanics, implies the concept
of thermomass elasticity. For example:

Dxx =
∂ax

∂x
, (78)

means the compression or tension of the label field and:

Dxy =
∂ax

∂y
, (79)

implies the torsion of the label field. Assuming that the Hamiltonian potential is the function of the
distortion matrix:

HD
2d =

1
2
ερ2

h +
1
2

m2
h,x

ρh
+

1
2

m2
h,y

ρh
+

1
2
χxxD2

xx +
1
2
χyyD2

yy, (80)

then the heat conduction is also influenced by the distortion matrix coefficients Dxx and
Dyy, which reveals a tendency of recovering to the initial state. In the numerical simulations,
the nondimensional coefficients χxx, χyy are set to be 0.5 and 0.5, and other coefficients are 1.

The energy distribution eD at time t = 0.3, which is derived from the equation set with Hamiltonian
energy (Equation (76), is plotted in Figure 6a and the energy distribution ec which is another view of
Figure 4e is displayed in Figure 6b. These two figures are compared to highlight the influences of the
distortion matrix. Moreover, their difference, eD-ec, is shown in Figure 7. The distortion coefficients
Dxx and Dyy speeds up the wave propagation and the wave shape are also altered. Meanwhile,
the coefficients enhance the fluctuations of wave. In Figure 7, another small wave peak appears behind
the first wave pattern, and in some sense, it shows the effect of elasticity. Considering that the distortion
matrix field goes through an irreversible process at the same time, the introduction of these coefficients
will add to the dissipation and strengthen the viscous effects. One obvious feature of the viscous effects
is that the peak value of the energy density in Figure 6a is lower than that in Figure 6b.
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6. Conclusions

The thermomass theory and GENERIC theory deal with the non-Fourier heat conduction
phenomena in different ways. The core idea of the thermomass theory is to reveal the mass nature
of heat during heat conduction based on Einstein’s mass-energy relation. Therefore, heat transfer is
actually the flow of thermomass gas in porous media, thus, the principle of fluid mechanics can be
used to describe the heat conduction process in the media. The momentum conservation equation of
thermomass gas is actually a wave equation with thermal inertia force and damping. The GENERIC
theory constructs an abstract geometrical structure for various transport processes. Its core idea is to
adopt the contact geometry to derive the time evolution equations of the state variables, by handling
the reversible and irreversible process separately. The reversible process is expressed in energy
representation governed by Hamiltonian energy, while the irreversible process is expressed in entropy
representation dominated by dissipation potential.

Analyses show that the governing equations of heat conduction derived from GENERIC theory
are the same as that derived from thermomass theory, if proper coefficients and potentials are chosen.
The reversible process in GENERIC theory corresponds to conversion process between the thermomass
potential energy and the thermomass kinetic energy in thermomass theory, while the irreversible
process in GENERIC theory, which is described by dissipation potential, corresponds to the dissipation
process of thermomass energy due to the resistance in thermomass theory. GENERIC theory provides
a concrete mathematical foundation for the thermomass theory, while thermomass theory gives
GENERIC more physical pictures. All these indicate that both GENERIC theory and thermomass
theory are not only compatible, but also supportive and complementary mutually.

The advantage of thermomass theory is that it not only reveals the physical meanings of the
Hamiltonian energy and the dissipation potential in GENERIC, but also uniformly expresses these two
kinds of energy as one unified quantity. Hamiltonian energy in the reversible process corresponds to
the conversion process of potential energy and kinetic energy of thermomass during wave transport
of heat (thermomass), and the dissipation potential in the irreversible process corresponds to the
dissipation process of thermomass energy. One advantage of GENERIC theory is that it provides a
flexible structure, which is easy to include more new state variables, such as the inner heat source
and the distortion matrix field. Numerical methods are adopted to investigate the influences of the
convective term and distortion matrix term on the wave propagation patterns. The convective term
establishes a sharp wave front and enhances the spreading of thermal energy. Thus, it leads to more
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dispersive energy distribution. The distortion matrix field considers the viscosity and elasticity of
thermomass gas and constructs a new series of heat conduction equations, as is shown in Section 5.
The application of these new state variables enables thermomass theory to describe more complex heat
conduction phenomena.
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Nomenclature

Letters Greek symbols
A function of state variables β coefficient (K2/(J·m3))
a label vector (m) γ coefficient (m3

·s/kg)
CV specific heat (J/(kg·K)) ε coefficient (J·m3/kg2)
D distortion matrix (1) η eta-function (J/K)
E energy (J) κ coefficient (J·s2

·K2/(m11))
e energy density (J/m3) π pressure potential (N/m2)
f resistance force (N/m3) ρ density (kg/m3)
H Hamiltonian energy (J/m3) τ relaxation time (s)
k thermal conductivity (W/(m·K)) µ coefficient (N·s/m4)
V Volume (m3) ϕ coefficient (J/K)
L Poisson bivector Ξ dissipation potential (J/m3)
M mass (kg) χ coefficient (J/m3)
p thermomass momentum (kg/(m2s) subscripts
n state variable 1,2,3 orders
P pressure (N/m2) i,j component of tensor
Q heat source (W/m3) h thermomass
s thermomass source (kg/(m3

·s) k kinetic energy
T temperature (K) p potential energy
t time (s) c convective effect
x spatial coordinate (m) D distortion effect
u velocity (m/s) a label field
Y amplitude (W/m2)

Appendix A. Details of the Numerical Simulations

In one-dimensional heat conduction problems, the governing equation set is:

∂e
∂t

+
∂q
∂x

= 0, (A1)

∂q
∂t

+
∂(q q

e )

∂x
= −ke

∂e
∂x
−

1
τ

q. (A2)

The second term in Equation (A2) implies the convective effect. Therefore, when the convective term is
ignored, the time evolution equation (Equation (A2)) becomes:
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∂q
∂t

= −ke
∂e
∂x
−

1
τ

q. (A3)

The temperature T has a linear relationship with the energy density e:

e = ρCVT, (A4)

where the density ρ and heat specific CV are constant. Therefore, the evolution of temperature is the
same to that of thermal energy density.

In a two-dimensional regime, the governing equation set becomes:

∂e
∂t

+
∂qx

∂x
+
∂qy

∂y
= 0, (A5)

∂qx

∂t
+
∂(

qxqx
e )

∂x
+
∂(

qxqy
e )

∂y
+ fx = −ε2e

∂e
∂x
− κxγxqx + gx, (A6)

∂qy

∂t
+
∂(

qyqx
e )

∂x
+
∂(

qyqy
e )

∂y
+ fy = −ε2e

∂e
∂y
− κyγyqy + gy, (A7)

fx =
∂(DxxβxxDxx)

∂x
+
∂(DxxβxyDxy)

∂y
+
∂(DyxβyxDyx)

∂x
+
∂(DyxβyyDyy)

∂y
, (A8)

fy =
∂(DxyβxxDxx)

∂x
+
∂(DxyβxyDxy)

∂y
+
∂(DyyβyxDyx)

∂x
+
∂(DyyβyyDyy)

∂y
, (A9)

gx =
∂Dxx

∂x
βxxDxx +

∂Dxy

∂x
βxyDxy +

∂Dyx

∂x
βyxDyx +

∂Dyy

∂x
βyyDyy, (A10)

gy =
∂Dxx

∂y
βxxDxx +

∂Dxy

∂y
βxyDxy +

∂Dyx

∂y
βyxDyx +

∂Dyy

∂y
βyyDyy, (A11)

∂Dxx

∂t
+
∂(Dxx

qx
e )

∂x
+
∂(Dxy

qy
e )

∂x
=

(
∂Dxy

∂x
−
∂Dxx

∂y

)
qy

e
− χxx(Dxx −Dxx0), (A12)

∂Dxy

∂t
+
∂(Dxx

qx
e )

∂y
+
∂(Dxy

qy
e )

∂y
=

(
∂Dxx

∂y
−
∂Dxy

∂x

)
qx

e
− χxyDxy, (A13)

∂Dyx

∂t
+
∂(Dyx

qx
e )

∂x
+
∂(Dyy

qy
e )

∂x
=

(
∂Dyy

∂x
−
∂Dyx

∂y

)
qy

e
− χyxDyx, (A14)

∂Dyy

∂t
+
∂(Dyx

qx
e )

∂y
+
∂(Dyy

qy
e )

∂y
=

(
∂Dyx

∂y
−
∂Dyy

∂x

)
qx

e
− χyyDyy. (A15)

The above equations are normalized by several standard quantities, to make the numerical
calculations easier. The new quantities are defined as:

t∗ =
t
t0

, x∗ =
x
L

, e∗ =
e
e0

, qx
∗ =

qx

q0
, qy
∗ =

qy

q0
, ε∗ =

ε
ε0

,γ∗ =
γ

γ0
, β∗ =

β

β0
, χ∗ =

χ
χ0

(A16)

Moreover, the following relationships are supposed to be satisfied for the standard quantities:

e0L
q0t0

= 1, (A17)

q0L
β0t0

= 1, (A18)
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q0L

e2
0ε0t0

= 1, (A19)

k0γ0t0 = 1, (A20)

t0χ0 = 1, (A21)

To simplify the expression, the superscript * in the new equations is omitted. As for the one-dimensional
heat conduction problem, where heat is transported in a plate with finite length, periodic boundary
conditions are applied to the width and height. The nondimensional length is set to be 1. A heat flux
boundary is applied at the left boundary and thermal perturbation propagates in the medium from the
left to the right. The total grid number is 500 and the unit temporal step is ∆t = 1 × 10−5. Then, as for
the two-dimensional heat conduction problem, the plate has finite length and finite width. The height
boundary is set to be periodic. The grid is 200 × 200 and the temporal step is ∆t = 1 × 10−5. All the
coefficients in the equations are set to be 1, if they are not clarified specifically. The initial conditions
are set to be:

e(x) = e0, (A22)

q(x) = 0, (A23)

As for the distortion matrix Dij, it is:

Di j(x, y) =
{

1 i = j
0 i , j

. (A24)

The boundary condition for the left boundary is:

qx =

{
Y1(1− cos(2πt/tpulse) 0 < t < tpulse
0 t > tpulse

. (A25)

in one-dimensional problems and:

qx =

{
Y2(1− cos(2πt/tpulse)(1− cos[4π(y− 0.25)]) 0 < t < tpulse, 0.25 < y < 0.75
0 t > tpulse or y > 0.75 or y < 0.25

. (A26)

in two-dimensional problems. The other boundaries are set to be adiabatic. That is:

q = 0. (A27)

The energy density at the boundary is derived from the energy conservation equation. The distortion
matrix at the boundary are set to be:

Di j =

{
1 i = j
0 i , j

. (A28)

Finite difference method is adopted to solve the problem numerically. Staggered grids are used
for heat flux and energy density and distortion fields. The energy and distortion fields are placed at
the grid nodes while the heat fluxes are positioned between the nodes, as shown in Figure A1.

As for the time derivative, the forward difference scheme is applied:

δte =
en+1

− en

∆t
, (A29)

The superscript n and n + 1 represent the time levels. The convective term is solved with the first order
upwind scheme. As:

∂(nm)

∂x
= n

∂m
∂x

+ m
∂n
∂x

, (A30)
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The spatial difference is written as:

mδxn = mi
ni − ni−1

∆x
, (A31)

when m > 0, and it is:

mδxn = mi
ni+1 − ni

∆x
, (A32)

when m < 0. The upwind difference scheme is suitable for the wave propagation problem.
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Another difference algorithm is the central difference, which is suitable for the relationship
between heat flux and temperature. For instance, in Figure A2, the derivative of temperature with
respect to x coordinate is simulated as:

∆T
∆x

=
Ti+1, j − Ti, j

∆x
, (A33)

where the heat flux qx,i+0.5,j is located between the nodes Ti+1,j and Ti,j. As for a given volume unit,
such as Figure A2, sometimes the values which are necessary in the numerical algorithm are lacking.
Here, two-point interpolation method are adopted to give the necessary values. Take the convective
term in Equation (A6), for example:

s =
∂(

qxqy
e )

∂y
=

qx

e
∂(qy)

∂y
−

qxqy

e2
∂e
∂y

+
qy

e
∂(qx)

∂y
, (A34)

as for the first term in the right, there are no values for qy,i+0.5,j+0.5 and qy,i+0.5,j−0.5. Therefore, the values
are obtained from two-point interpolation:

qy,i+0.5, j+0.5 =
qy,i+1, j+0.5 + qy,i, j+0.5

2
, (A35)

qy,i+0.5, j−0.5 =
qy,i+1, j−0.5 + qy,i, j−0.5

2
(A36)

where the nearest two points are chosen. As for other values which are lacking at the given points,
interpolation is widely adopted. Sometimes, the four-point interpolation method is used. For example,
in Figure A2, there is no value for qy at the give point qx,i+0.5,j. Thus, the value qy,i+0.5,j is set to be:

qy,i+0.5, j =
qy,i+1, j+0.5 + qy,i, j+0.5 + qy,i+1, j−0.5 + qy,i, j−0.5

4
. (A37)

In this way, the equation set are solved explicitly to obtain the quantities in the time level n + 1 with
the data in the time level n. The solution of boundary conditions is significant in this method. Here,
extrapolation at the boundary are used to provide the lacking values.
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However, it is difficult to analyze the stability for this nonlinear numerical algorithm. Thus,
we make the time steps as small as possible to make this solution stable. The grid size dependency and
time step dependency have been testified (see Table A1).

Table A1. Grid size dependency of the current numerical algorithm.

Grid Size 100 × 100 150 × 150 200 × 200 300 × 300

Deviation Percent 1.07% 0.3% — <0.01%

The peak value of the energy density at time t = 0.1 is calculated to testify the size independence
of the spatial grid and time step. The value when the grid size is 200 × 200 and time step is 1 × 10−5 is
adopted as the reference and the deviation percent at other conditions are derived. It can be seen that
the current scheme is reasonable (see Table A2).

Table A2. Time step dependency of the current numerical algorithm.

Time Step 1 × 10−4 5 × 10−5 2 × 10−5 1 × 10−5 5 × 10−6

Deviation Percent 0.24% 0.1% 0.02% — <0.01%
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