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ABSTRACT 

MatLab
® 
has often been considered an excellent environment for fast algorithm development but is generally perceived 

as slow and hence not fit for routine medical image processing, where large data sets are now available e.g., high-

resolution CT image sets with typically hundreds of 512x512 slices. Yet, with proper programming practices – 

vectorization, pre-allocation and specialization – applications in MatLab
®
 can run as fast as in C language. In this article, 

this point is illustrated with fast implementations of bilinear interpolation, watershed segmentation and volume rendering. 

© 2007 Biomedical Imaging and Intervention Journal. All rights reserved. 
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INTRODUCTION 

In recent years, MatLab
®
, the product of 

MathWorks, has become a popular tool for fast 

development. Its many Toolboxes, powerful interface 

and user-friendliness make it a tool of choice in many 

disciplines, including medical image processing. 

However, two drawbacks are frequently noted: its low 

processing speed and wasteful use of memory. These 

have led many developers and researchers to do a fast 

development of their application in MatLab
®
 first and 

then to re-program it in another language for production 

or distribution (typically C/C++ for the procedural part 

and Visual Basic for the user interface). 

MathWorks has provided a compiler to translate m-

files (MatLab
®
 programs) in C/C++ and FORTRAN. 

However, the translated code preserves the flexibility of 

MatLab
®
 and hence even the compiled code remains as 

slow and uses as much memory [1]. The main advantage 

of translation and compilation is the distribution of the 

developed application to users or colleagues who do not 

have a (compatible) MatLab
®
 licence. 

In medical image processing, the problems of 

memory usage and low execution speed are compounded 

with ever-increasing sizes of data sets. Typical High 

Resolution Computed Tomography (HRCT) image sets 

now include hundreds of 512x512 slices, making up an 

(almost) isotropic volume, which is best handled as one 

volume for reasons of consistency of results over the 

third axis [2]. 

However, it has been found that good programming 

practices can greatly reduce the processing time. These 
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good programming practices when using MatLab
®
 are 

advocated in the MatLab
®
 user manuals and help files 

and include vectorisation of loops and pre-allocation of 

memory [3-6], as well as function specialisation. Often, a 

balance between processing speed and memory usage 

has to be found. 

In the literature, a number of examples of MatLab
®
 

code optimization in different areas have been reported. 

Kobbelt [7] described a vectorised MatLab
®
 program for 

evaluation of box-splines. Menon [8] discussed 

automated language translation and highlighted the 

importance of vectorisation (performance enhancements 

by a factor of 250:1 were reported) and pre-allocation 

(improved performance by a factor of 7:1). Günther [9] 

described the impact of vectorisation on Nuclear 

Magnetic Resonance (NMR) data processing but 

emphasised the memory requirements for vectorisation. 

He concluded: “With increasing amounts of computer 

memory, the concept of data processing in the computer 

memory will become the method of choice”, which is 

becoming a reality due to Moore’s Law. 

Chauhan [10] reported on the development of high-

level problem-solving languages and pointed to the 

importance of procedure vectorisation and strength 

reduction, with performance enhancement up to a factor 

of 3.3:1. Procedure strength reduction can be seen as a 

specialization of certain procedures with a view on 

optimising some specific applications of a given 

procedure. 

Higham [11] reported on the use of MatLab
®
 for 

mathematical calculations. Yang [12] reported on 

software development for improved farming methods. 

Pointon [13] applied MatLab
®
 in three-dimensional (3D) 

dual head coincidence imaging. Lee [14] optimised a 

system for forecasting flooding as a result of typhoons 

and storms. All in their respective fields of application 

reported mainly the advantage of code vectorisation 

without mentioning pre-allocation or function 

specialization. 

In the present article, the issues reported in the 

literature are taken up and applied on the specific needs 

of medical image processing. The main focus is on three 

areas, namely vectorisation, pre-allocation and 

specialization. The principles of these three methods will 

be explained and their effect illustrated. Subsequently, 

their effect will also be demonstrated on three short 

algorithms that are widely used in medical image 

processing, namely bilinear interpolation, watershed 

segmentation and volume rendering. A follow-up article 

will discuss the problems of wasteful memory usage by 

MatLab
®
 as well as techniques for debugging vectorised 

programs. 

METHODS 

Illustrative examples 

Vectorisation and pre-allocation 

To illustrate the concepts of vectorising and pre-

allocation, a simple program will be considered to re-

scale a 3D HRCT scan image from bone window – with 

Hounsfield Units (HU) from -1250 to 250 – to values in 

the range of 0 to 1 for display as type single or double 

using the MatLab
®
 function imshow. Although there exist 

some built-in MatLab
®
 operators to perform this function, 

this simple case will be considered to illustrate the 

concepts of pre-allocation and vectorisation. 

Persons with C/C++ programming background 

would probably come up with a code similar to the 

function in Listing 1. The input image inim is rescaled, 

so that the range of values from min0 to max0 are rescaled 

to the range of values from min1 to max1. Comment lines 

and help lines have been omitted to concentrate on the 

code. 

As will be discussed in the Results section below, 

The triple for-loop results in an extremely slow 

execution. Moreover, the output image outim is built 

using dynamic memory allocation, a nice and very user-

friendly feature of MatLab
®
 but which causes extremely 

slow execution. A user with background in C will have 

no problems pre-allocating the output array as in the 

code in Listing 2 – with a significant increase in 

processing speed as will be shown in the Results section 

below, and at the price of a single additional line in the 

code. 

Despite the increase in processing speed, the time-

consuming triple for-loop still remains. Vectorising 

means treating an array as an array and not as a list of 

elements. In C-like languages, arrays can only be 

accessed one element at a time while MatLab
®
-like 

languages allow for manipulating whole arrays at one 

time. Hence, learning to use MatLab
®
-like languages 

effectively (with vectorisation) often requires a complete 

change of thinking pattern. The code in Listing 3 shows 

the same function as in Listings 1 and 2, but with 

vectorisation. Please note that the code becomes shorter 

and more readable. As shown in the Results section 

below, the execution time is also shorter. In this case, no 

pre-allocation is required as the whole array is processed 

at one time. 

Vectorisation of conditional statements 

Vectorisation of conditional statements is usually 

done with the find operator in MatLab
®
 whereby the 

condition is input in the find statement, which returns 

the indices of the elements on which the conditional 

operation should be applied. To illustrate, the above 

scaling operation will be done on pixels with HU within 

the range of min0 to max0; all the pixels with HU lower 

than min0 will have an output value of min1 while those 

with HU higher than max0 will have an output value of 

max1. Again, there are easier ways to do this in MatLab
®
 

but this simple case illustrates the vectorisation of 

conditional statements. Listings 4 and 5 show the code 

without and with vectorisation. 

Again, the code with vectorisation is much shorter, 

and as shown in the Results section below, it also runs 

much faster. The code can be further optimised if the 

indices on which to apply the conditional operator are 

not explicitly calculated. This is done in the code in 
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Listing 6. Results are shown in the Results section below 

and discussed in the following Discussion section. It can 

be observed that the code is again more compact and yet 

it retains the same level of readability. 

Vectorisation of local neighbourhood operations 

Another problem in vectorising code for digital 

image processing is often related to local neighbourhood 

operations, whereby the output value of a pixel or 

element depends, not only on the value of this pixel, but 

also on the value of the neighbouring pixels. In case this 

is a linear relationship, the new value being a linear 

combination of the values of the neighbouring pixels, 

this operation can be easily implemented as a 

convolution operator. In the case of a non-linear 

relationship, it is often worthwhile to look at 

morphological operators implemented in MatLab
®
 (e.g., 

the bwmorph operator). 

In case the desired operator cannot be implemented 

using the above-mentioned techniques, it is often 

possible to write out the local neighbourhood along an 

additional dimension and to apply the operator along that 

new dimension. To illustrate, a function was 

implemented to find local maxima in a 3D array. The 

existing MatLab
®
 operator imregionalmax was 

implemented in C using MEX programming (MatLab
®
 

callable C and Fortran programs are referred to as MEX-

files; MEX stands for MatLab
®
 Executables) and does it 

very efficiently. However, in this article the operator was 

re-implemented to illustrate the concept of vectorisation. 

Listing 7 shows the code without vectorisation. The six 

nested for-loops are immediately noticeable (three to 

scan all the pixels along the three dimensions and 

another three to scan the neighbourhood of each pixel), 

with an additional conditional operator resulting in 

extremely slow execution. The min and max operators on 

the ranges of the indices i, j and k accommodate the 

traditional problems that arise at the borders of the image 

when applying neighbourhood operators. 

Listing 8 shows the code with vectorisation by 

building a new array with the local neighbourhood 

written out along a new dimension. An augmented 

version of the input matrix is formed to circumvent the 

traditional border problems in neighbourhood operations. 

The temporary matrix tempim is formed with dimension 

3+1 whereby the new dimension lists the values of all the 

neighbours of the pixels. Of course, this is highly 

redundant and memory consuming but as shown in the 

Results section below, the code executes much faster. 

A similar approach could be followed to implement 

operators which are not available in MatLab
®
 e.g., 

percentile operators whereby the value of the output 

pixel is the percentile of the values in a neighbourhood 

of the input array (median, maximum and minimum 

filters are special cases of percentile filters). 

It is obvious that this approach is very wasteful in 

terms of memory. A compromise could be achieved by 

vectorising the three outermost loops, replacing the 

conditional operator with a find statement and keeping 

the three innermost loops, each of which only runs over 

three values. The resulting code is shown in Listing 9. 

The code is a little slower and less versatile (e.g., 

percentile or median filtering could not be implemented 

in this way) but the memory requirements are much 

lower and processing speed is still acceptable, as 

discussed in the Results section below. Please note that 

the code is more readable than the one in Listing 8 and 

closer to the C-like code of Listing 7, making for an 

easier “translation” from the traditional coding 

techniques to vectorisation. 

Specialisation 

The specialisation of a function is illustrated in the 

‘Medical image processing’ section below with the 

discussion of a specialised interpolation function for use 

in medical image processing. 

Medical image processing 

Bilinear interpolation 

Interpolation is an old and well-covered topic in 

digital image processing. In medical image processing, 

bilinear interpolation is often used to zoom into a 2D 

image or for rendering, for display purposes. The 

formula for bilinear interpolation of a point (x, y) is 

given by 
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yx ,,  lying within the area of the image and 

with s = scale of resizing, i and j integer. 

MatLab
®
 has an excellent interpolation function 

imresize, which allows for a large number of options 

such as size of the resulting image OR scaling factor, 

type of interpolation (nearest neighbour, bilinear, 

bicubic), choice of length of low-pass filter and of the 

specific filter in the case of size reduction. The procedure 

calls for another procedure, tformarray, which performs 

possibly very advanced interpolation functions (even 

using an irregular sampling grid). The result is that this 

routine and all its subroutines are over-generalised – they 

are too flexible for most usual applications in medical 

image processing and hence take too much time and 

memory. Listing 10 lists a routine that does two-

dimensional (2D) bilinear interpolation in a very simple 

and efficient way, applying the concepts of pre-

allocation and vectorisation as explained in the 

‘Illustrative examples’ section above. As shown in the 

Results section below, the resulting execution speed is 

much higher than for the standard MatLab
®
 routine, at 

the expense of reduced flexibility. 

Watershed segmentation 

For image segmentation, watershed algorithms [15] 

have become very popular in all their implementations: 

applied on gradient image for object delineation, applied 
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on original image for definition of region of interest, 

applied on distance-transformed images for separation 

between convex components, associated with filtering 

and/or merging or in multi-resolution implementation for 

reduction of over-segmentation, etc. In their steepest-

descent approach, each pixel is linked to its neighbour 

with the lowest intensity and groups of pixels that link 

together are defined as segments (see the analogy of 

raindrops falling on a landscape). These algorithms are 

usually considered time-consuming and are mostly 

implemented in C. Even the watershed function in 

MatLab
®
 is implemented as a MEX file. However, by 

applying the efficient coding techniques described above, 

it is possible to define a watershed function that is very 

efficient, as shown in Listing 11. Basic comment lines 

were left in the code to explain its different steps. 

As shown in the Results section below, the 

performance of this routine is competitive with the 

performance of the native routine in C, which shows that 

MatLab
®
 programming, when properly done, can be 

competitive with C programming for speed. Hence, the 

old adage that MatLab
®
 is only good for fast 

development but not for speed might have to be 

overturned. 

Volume rendering 

A third example of efficient coding in MatLab
®
 for 

medical image processing applications is volume 

rendering [16-17], as in Listing 12 – again a procedure 

which is usually considered very time-consuming. Inputs 

to the function are the original 3D array, the coordinates 

of the camera (position, tilt and pan, focus), the size of 

the output image, a measure of distance weighting, and 

the Region of Interest (ROI) on which to apply the 

rendering. Looping could be done on the 3D coordinates, 

or on the 2D reprojection coordinates plus range 

coordinate. Vectorisation was performed on the 2D 

reprojection coordinates while the loop on the range 

coordinates was maintained. Linear 3D interpolation was 

written out explicitly. 

RESULTS 

The algorithms were tested on a HP xw4300 

Workstation, Pentium 4 at 3.0 GHz with 1 Gb of RAM 

running Microsoft Windows
®
 XP and MatLab

®
 7.1. The 

test image is a Thin Slice CT chest image of a 47-year-

old female, 319 slices of 512x512 pixels taken with a 

Siemens Sensation 16 with pixel spacing of 0.57 mm and 

a slice thickness of 0.75 mm. Typical cross-sections are 

shown in Figure 1. 

The input image was analysed in full resolution and 

in sub-sampled versions with sampling factors 2 and 4, 

resulting in image sizes of 512x512x319, 256x256x160 

and 128x128x80. Processing time was measured using 

the MatLab
®
 Profiler for 10 runs of each routine and the 

average time was listed in Table 1. In a number of cases, 

the output could not be calculated due to lack of memory; 

in these cases, obviously no time was recorded. 

For the scaling functions, the input range was set to 

the lung window (-1250 - 250) and the output range to 

the range of MatLab
®
 for the viewing of floating-point 

images (0 - 1). 

For the functions bilinterp2D and imresize, the 

100
th
 slice of the 3D input image was arbitrarily chosen, 

and the chosen scaling factor was non-integer and 

significantly larger than two and set to 6.43. 

For the watershed, no pre-filtering was applied and 

the watershed was applied on the original grayscale 

image. 

The volume rendering took pan and tilt angles of 10 

degrees, a focal length of 50 pixels and a distance 

measure of 50. The size of the reprojection was the same 

as the main size of input image (e.g., 256x256 for the 

256x256x160 input image). The location of the camera 

was slightly outside the volume. The routine was run 10 

times with the ROI defined to be the whole volume and 

10 times with an ROI centering on the lungs (defined by 

simple thresholding and morphological filtering), and the 

average was calculated. 

   
Figure 1 Typical transversal, coronal and sagittal sections of the image used in the testing procedures. 
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DISCUSSION 

The pre-allocation in the first example (scaling 

function) produced a performance enhancement of a 

factor between 3:1 and 11:1, while the vectorisation gave 

an additional performance enhancement of a factor 

between 25:1 and 42:1, resulting in a total gain of a 

factor 83:1 to 201:1. The code gained in readability and 

not more memory was used. It is clear that code 

vectorisation offers great advantages when programming 

in MatLab
®
. 

Using conditional statements, the performance 

enhancement by using vectorisation was only a factor of 

2:1 to 7:1, which is still significant. The implicit 

calculation of indices only slightly speeded up the code 

(30 to 70%), resulting in a total performance 

enhancement of a factor of 14:1. 

For neighbourhood operations, using an augmented 

matrix resulted in a gain of a factor 7:1 to 12:1 but at the 

cost of a prohibitive memory requirement. Even the 

256x256x160 image could not be processed. Without the 

use of an augmented matrix and at the cost of a slight 

loss in functionality, vectorisation resulted in a gain of a 

factor 8:1 to 12:1, although the vectorised routine still 

required more memory than the non-vectorised one. The 

corresponding built-in function (programmed in C/C++) 

was faster only by 11 to 60% and with similar memory 

usage, showing that the MatLab
®
 code can compete with 

the C/C++ code. 

Specialization can have surprisingly good results as 

shown in the case of 2D bilinear interpolation. A gain by 

a factor of 15:1 to 60:1 was achieved. In case of building 

a user interface whereby a large number of interpolations 

has to be done in a short time, such gain of time might be 

essential [18]. 

In the case of watershed interpolation, the 

implementation in MatLab
®
 ran faster than the 

implementation in C with 7% to 20% difference in speed 

but with a number of noteworthy advantages. First, 

steepest-descent implementation makes it possible to 

work with floating-point input as in the case of Gaussian 

blurring, which is essential for multiresolution 

implementation [19]. Second, the possible return values 

of rootim and linkim make it possible to quickly and 

seamlessly implement alternative applications – as 

preprocessing algorithm, in multiresolution 

implementation, applied on original gray value image, 

gradient image or distance transform, and postprocessing 

like segment merging [20]. But even the simple fact that 

the MatLab
®
 implementation was roughly as fast as the 

C implementation shows that MatLab
®
 should not be 

necessarily regarded as slow and memory-consuming. 

However, it is essential that good programming practices 

be applied. 

Finally, the volume rendering was slow but similar 

to an implementation in MEX (not shown here since the 

MatLab
®
 implementation is the topic of this article) and 

volume rendering usually is slow. 

Three particular applications in medical image 

processing have been discussed: bilinear interpolation 

(easily expandable to trilinear or bicubic interpolation), 

watershed segmentation and volume rendering. The code 

provided can be reused freely in any medical image 

processing applications and the principles used can serve 

as examples in the process of improving one’s MatLab
®
 

programming techniques. 

Although the three methods for MatLab
®
 code 

optimization i.e., vectorisation, pre-allocation and 

specialization, were specifically discussed in the context 

of medical image processing, those techniques are 

equally applicable in other application domains. 

TO PROBE FURTHER 

As mentioned in the introduction, good 

programming practices when using MatLab
®
 are 

advocated in the MatLab
®
 user manuals and help files 

and the relevant references [3-6] can certainly be used to 

probe further on the issues related to MatLab
®
 

vectorisation. In particular, the technical note in [6] gives 

quite a comprehensive guide to code vectorisation. Bar 

[3] explains the use of the meshgrid command to help 

vectorising the processing of 2D and 3D arrays. Eddins 

[4] explains the use of the find operator to vectorise 

conditional statements. And the technical note in [5] 

gives a number of varied valuable suggestions on how to 

increase the speed of MatLab
®
 code. 

CONCLUSION 

MatLab
®
 has usually been tagged a high-level 

language with a lot of flexibility but inherently slow and 

memory-consuming, just meant for fast development of 

algorithms or one-shot applications but not for 

production environment. The experiments in this article 

have shown that proper programming techniques should 

be developed, particularly in the case of medical image 

processing where data sets (e.g., HRCT data) tend to be 

big. 

Vectorisation and pre-allocation are the most 

traditional techniques for writing faster MatLab code and 

are well-documented in the literature and the technical 

documentation provided by MathWorks. Despite this fact, 

even some native MatLab functions are written in MEX 

(C) code while the corresponding MatLab (m) code is 

just as efficient. 

Finally, specialization is an option to consider 

seriously when specific functions are often used in a very 

specialised or limited context and execution speed is an 

issue. 
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Table 1 Processing time for different algorithms 
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scale1 1.66 20.19 -.--* 

scale2 0.53 4.31 34.91 

scale3 0.02 0.09 0.83 

scale4 1.19 8.94 74.25 

scale5 0.11 0.89 7.02 

scale6 0.08 0.64 5.06 

findlocmax1 29.44 227.39 1867.70 

findlocmax2 2.38 -.--* -.--* 

findlocmax3 2.31 18.38 -.--* 

imregionalmax 1.45 12.34 96.20 
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Listing 1 C-like code for rescaling a 3-dimensional array. 

 
 

 

Listing 2 Improved code with pre-allocation for rescaling a 3-dimensional array. 

 
 

 

Listing 3 Improved code with vectorisation for rescaling a 3-dimensional array. 

 
 

 

Listing 4 Code with conditional statement for rescaling a 3-dimensional array, without vectorisation. 

 
 

 

 

function outim = scale4(inim, min0, max0, min1, max1) 

scale = (max1 - min1) / (max0 - min0); 

offset = min1 - min0 * scale; 

[Nx Ny Nz] = size(inim); 

outim = zeros([Nx Ny Nz] , class(inim)); 

for x=1:Nx 

    for y=1:Ny 

        for z=1:Nz 

            if (inim(x, y, z) < min0)  

                outim(x, y, z) = min1; 

            elseif (inim(x, y, z) > max0) 

                outim(x, y, z) = max1; 

            else 

                outim(x, y, z) = inim(x, y, z) * scale + offset; 

            end 

        end 

    end 
end 

function outim = scale3(inim, min0, max0, min1, max1) 

scale = (max1 - min1) / (max0 - min0); 

offset = min1 - min0 * scale; 

outim = inim * scale + offset; 

function outim = scale2(inim, min0, max0, min1, max1) 

scale = (max1 - min1) / (max0 - min0); 

offset = min1 - min0 * scale; 

[Nx Ny Nz] = size(inim); 

outim = zeros([Nx Ny Nz], class(inim)); 

for x=1:Nx 

    for y=1:Ny 

        for z=1:Nz 

            outim(x, y, z) = inim(x, y, z) * scale + offset; 

        end 

    end 
end 

function outim = scale1(inim, min0, max0, min1, max1) 

scale = (max1 - min1) / (max0 - min0); 

offset = min1 - min0 * scale; 

[Nx Ny Nz] = size(inim); 

for x=1:Nx 

    for y=1:Ny 

        for z=1:Nz 

            outim(x, y, z) = inim(x, y, z) * scale + offset; 

        end 

    end 

end 
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Listing 5 Code with conditional statement for rescaling a 3-dimensional array, with vectorisation. 

 
 

 

 

 

Listing 6 Code with conditional statement for rescaling a 3-dimensional array, with vectorisation and implicit 

index calculation. 

 
 

 

 

 

Listing 7 Code for detecting local maxima, without vectorisation. 

 
 

 

 

 

 

 

 

 

 

 

function outim = findlocmax1(inim) 

[Nx Ny Nz] = size(inim); 

outim = ones([Nx Ny Nz] , 'uint8'); 

for x = 1:Nx 

    for y = 1:Ny 

        for z = 1:Nz 

            for i = max(1, x-1) : min(Nx, x+1) 

                for j = max(1, y-1) : min(Ny, y+1) 

                    for k = max(1, z-1) : min(Nz, z+1) 

                        if inim(i, j, k) > inim(x, y, z) 

                            outim(x, y, z) = 0; 

                        end 

                    end 

                end 

            end 

        end 

    end 
end 

function outim = scale6(inim, min0, max0, min1, max1) 

scale = (max1 - min1) / (max0 - min0); 

offset = min1 - min0 * scale; 

outim = inim * scale + offset; 

outim(inim < min0) = min1; 
outim(inim > max0) = max1; 

function outim = scale5(inim, min0, max0, min1, max1) 

scale = (max1 - min1) / (max0 - min0); 

offset = min1 - min0 * scale; 

outim = inim * scale + offset; 

indices = find(inim < min0); 

outim(indices) = min1; 

indices = find(inim > max0); 
outim(indices) = max1; 
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Listing 8 Code for detecting local maxima, with vectorisation by building the local neighbourhood along a new 

dimension. 

 
 

 

 

 

 

 

Listing 9 Code for detecting local maxima, with vectorisation while keeping innermost loops and processing 

using the implicit find command. 

 
 

 

 

 

 

 

 

 

 

 

 

 

function outim = findlocmax3(inim) 

[Nx Ny Nz] = size(inim); 

augim = zeros([Nx+2,Ny+2,Nz+2] , class(inim)) + min(inim(:)); 

x = 2:Nx+1; 

y = 2:Ny+1; 

z = 2:Nz+1; 

augim(x, y, z) = inim; 

outim = ones([Nx Ny Nz] , 'uint8'); 

for i = -1:+1 

    for j = -1:+1 

        for k = -1:+1 

            outim(augim(x+i, y+j, z+k) > inim) = 0; 

        end 

    end 
end 

function outim = findlocmax2(inim) 

[Nx Ny Nz] = size(inim); 

augim = zeros([Nx+2,Ny+2,Nz+2] , class(inim)) + min(inim(:)); 

x = 2:Nx+1; 

y = 2:Ny+1; 

z = 2:Nz+1; 

augim(x, y, z) = inim; 

tempim = zeros([Nx Ny Nz 27] , class(inim)); 

m = 1; 

for i = -1:+1 

    for j = -1:+1 

        for k = -1:+1 

            tempim(:, :, :, m) = augim(x+i, y+j, z+k); 

            m = m + 1; 

        end 

    end 

end 
outim = (inim == max(tempim, [], 4)); 
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Listing 10 Specialised code for 2D bilinear interpolation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function outim = bilinterp2D(inim, scale)             % specialization  

 

[Nx Ny] = size(inim); 

Nu = floor(scale * Nx); 

Nv = floor(scale * Ny); 

 

u = 1:(Nx-1)/(Nu-1):Nx; 

tmpim = zeros(Nu, Ny, class(inim));                   % pre-allocation 

for i = 1:Nu 

    ul = floor(u(i)); 

    fract = u(i) - ul; 

    if fract 

        tmpim(i, :) = (1-fract) * inim(ul,:) + fract * inim(ul+1,:); 

                                                       % vectorization 

    else 

        tmpim(i, :) = inim(u(i), :);                   % vectorization 

    end 

end 

 

v = 1:(Ny-1)/(Nv-1):Ny; 

outim = zeros(Nu, Nv, class(inim));                   % pre-allocation 

for j = 1:Nv 

    vl = floor(v(j)); 

    fract = v(j) - vl; 

    if fract 

        outim(:, j) = (1-fract) * tmpim(:,vl) + fract * tmpim(:,vl+1); 

                                                       % vectorization 

    else 

        outim(:, j) = tmpim(:, v(j));                  % vectorization 

    end 

end 
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Listing 11 Fast code for watershed segmentation. 

 
 

 

 

 

 

 

 

 

 

 

function [segim, rootim, linkim] = watershed3D(inim) 

 

% define augmented input image to deal with border problems 

[Nx Ny Nz] = size(inim); 

augim = zeros(Nx+2, Ny+2, Nz+2, class(inim)) + (max(inim(:)) + 1); 

% pre-allocating 

x = 2:Nx+1; 

y = 2:Ny+1; 

z = 2:Nz+1; 

augim(x, y, z) = inim;                                  % vectorization 

 

% initialize minim and linkim 

minim = inim;                                           % vectorization 

linkim0 = uint32(reshape(find(inim > (min(inim(:))-1)), size(inim))); 

                                                        % vectorization 

linkim = linkim0;                                       % vectorization 

 

% look for steepest path downward from each pixel 

for i = -1:+1 

    for j = -1:+1 

        for k = -1:+1 

            shiftim = augim(x+i, y+j, z+k);             % vectorization 

            ind = find(shiftim < minim); 

            if length(ind) 

                [u v w] = ind2sub([Nx Ny Nz], ind); 

                minim(ind) = shiftim(ind);              % vectorization 

                linkim(ind) = linkim0(sub2ind([Nx Ny Nz],u+i,v+j,w+k)); 

                                                        % vectorization 

            end 

        end 

    end 

end 

clear augim minim shiftim x y z u v w i j k 

 

% propagate the links 

newlink = linkim(linkim);                               % vectorization 

while any(newlink(:) ~= linkim(:)) 

    linkim = newlink;                                   % vectorization 

    newlink = linkim(linkim);                           % vectorization 

end 

clear newlink 

 

% define the roots 

rootim = uint32(bwlabeln(linkim == linkim0));           % vectorization 

clear linkim0 

 

% perform the segmentation by assigning the value of the root to all 

% the pixels linking to the root 
segim = rootim(linkim);                                 % vectorization 
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Listing 12 Code for volume rendering. 

 
 

 

function outim = volrender(inim, X0,Y0,Z0, pan,tlt,foc, Np,dist, ROIim) 

 

[Nx Ny Nz] = size(inim); 

outim = zeros(Np, Np, 'uint16');                        % pre-allocating 

 

range = atan(13 / foc) * 180 / pi; 

step = range * 2 / (Np - 1); 

phi = tlt + (-range : step : range)';                   % vectorisation 

the = pan + (-range : step : range) ;                   % vectorisation 

 

xstep = sind(phi) * cosd(the);                          % vectorisation 

ystep = sind(phi) * sind(the);                          % vectorisation 

zstep = cosd(phi) * ones(size(the));                    % vectorisation 

 

Nr = sqrt(X0^2 + Y0^2 + Z0^2) + sqrt(Nx^2 + Ny^2 + Nz^2); 

sc = max(1, 1 + Nr * dist); 

 

inim = single(inim); 

for r = 5:Nr 

    xf = X0 + r * xstep; x0 = floor(xf); x1 = x0 + 1;   % vectorisation 

    yf = Y0 - r * ystep; y0 = floor(yf); y1 = y0 + 1;   % vectorisation 

    zf = Z0 - r * zstep; z0 = floor(zf); z1 = z0 + 1;   % vectorisation 

    ind = find((x0>0)&(x1<=Nx) & (y0>0)&(y1<=Ny) & (z0>0)&(z1<=Nz)); 

    if length(ind) 

        xf = xf(ind); x0 = x0(ind); x1 = x1(ind);       % vectorisation 

        yf = yf(ind); y0 = y0(ind); y1 = y1(ind);       % vectorisation 

        zf = zf(ind); z0 = z0(ind); z1 = z1(ind);       % vectorisation 

        ref = sub2ind([Nx Ny Nz], x0, y0, z0); 

        ref2 = find(ROIim(ref)); 

        xf = xf(ref2); x0 = x0(ref2); x1 = x1(ref2);    % vectorisation 

        yf = yf(ref2); y0 = y0(ref2); y1 = y1(ref2);    % vectorisation 

        zf = zf(ref2); z0 = z0(ref2); z1 = z1(ref2);    % vectorisation 

        ref = ref(ref2);                                % vectorisation 

        ind = ind(ref2);                                % vectorisation 

        NxNy = Nx * Ny; 

        val = (xf-x0).*(yf-y0).*(zf-z0) .* inim(ref+1+Nx+NxNy) + ... 

              (x1-xf).*(yf-y0).*(zf-z0) .* inim(ref  +Nx+NxNy) + ... 

              (xf-x0).*(y1-yf).*(zf-z0) .* inim(ref+1   +NxNy) + ... 

              (x1-xf).*(y1-yf).*(zf-z0) .* inim(ref     +NxNy) + ... 

              (xf-x0).*(yf-y0).*(z1-zf) .* inim(ref+1+Nx     ) + ... 

              (x1-xf).*(yf-y0).*(z1-zf) .* inim(ref  +Nx     ) + ... 

              (xf-x0).*(y1-yf).*(z1-zf) .* inim(ref+1        ) + ... 

              (x1-xf).*(y1-yf).*(z1-zf) .* inim(ref          ); 

                                                        % vectorisation 

        outim(ind) = max(outim(ind), uint16(val * sc/(1 + r * dist))); 

                                                        % vectorisation 

    end 
end 


