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ABSTRACT Isolated smooth muscle cells and cell fragments prepared by glycerination and 
subsequent homogenization will contract to one-third their normal length, provided Ca ++ and 
ATP are present. Ca+÷-independent contraction was obtained by preincubation in Ca +÷ and 
ATP~,S, or by addition of trypsin-treated myosin light chain kinase (MLCK) that no longer 
requires Ca ++ for activation. In the absence of Ca +÷ , myosin was rapidly lost from the cells 
upon addition of ATP. Glycerol-urea-PAGE gels showed that none of this myosin is phospho- 
rylated. The extent of myosin loss was ATP- and pH-dependent and occurred under conditions 
similar to those previously reported for the in vitro disassembly of gizzard myosin filaments. 
Ca÷+-dependent contraction was restored to extracted cells by addition of gizzard myosin 
under rigor conditions (i.e., no ATP), followed by addition of MLCK, calmodulin, Ca ÷÷, and 
ATP. Function could also be restored by adding all these proteins in relaxing conditions (i.e., 
in EGTA and ATP) and then initiating contraction by Ca +÷ addition. Incubation with skeletal 
myosin will restore contraction, but this was not Ca++-dependent unless the cells were first 
incubated in troponin and tropomyosin. These results strengthen the idea that contraction in 
glycerinated cells and presumably also in intact cells is primarily thick filament regulated via 
MLCK, that the myosin filaments are unstable in relaxing conditions, and that the spatial 
information required for cell length change is present in the thin filament-intermediate filament 
organization. 

In the best understood motility systems (i.e., striated muscle 
contraction and flagellar beat) the development of a demem- 
branated model system was an essential step in relating the 
biochemistry of isolated contractile proteins to their role in 
vivo (reviewed in references 7, 18). It is possible that a similar 
strategy could lead to an increased understanding of smooth 
muscle structure and function. Although glycerinated smooth 
muscle tissues and detergent-treated single cell preparations 
have been used for ultrastructural studies, they have not been 
used for biochemical investigations (15, 20, 21, 35, 36, 37). 
In this report we describe a simple method for preparing a 
glycerinated cell model from chicken gizzards, a smooth 
muscle that has been extensively used in this and other 
laboratories for biochemical studies. This cell model has the 
advantage that response to various physiological manipula- 
tions can be monitored by both biochemical methods and by 
light or electron microscopy, on the same preparation. 

In vertebrate smooth muscle, there is good evidence that 

the regulation of actomyosin interactions involves a Ca ++- 
dependent phosphorylation of the 20,000 Mr light chains of 
myosin (1, 21, 37). Ca ++ initiates actin-myosin interactions 
by activating a specific calmodulin-dependent kinase (2, 12) 
that phosphorylates the light chains. This scheme is supported 
by a variety of studies on vertebrate smooth muscle strips and 
skinned muscle fibers (5, 6, 9, 13, 17, 23). This phosphoryla- 
tion scheme is not, however, universally accepted. Ebashi and 
co-workers (25, 26) consider that actomyosin regulation is 
thin filament based and that Ca++-sensitive regulation is me- 
diated by a factor called leiotonin interacting with smooth 
muscle tropomyosin. Several workers have suggested that 
both thick and thin filament regulation may be involved in 
smooth muscle contraction (10, 249. 

Another controversy concerns the organization and stabil- 
ity of thick filaments in smooth muscle in different physio- 
logical states (reviewed in references 34, 37, 38). Somlyo (38), 
and Small and Sobieszek (37), in their detailed ultrastructural 
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studies on vertebrate smooth muscle, suggest that the thick 
and thin filaments are organised into stable "mini-sarco- 
meres" or "contractile units." Other ultrastructural studies, 
however, have implied that the myosin component of verte- 
brate smooth muscle exists in a labile state of organization 
(11, 14, 21, 27, 33). In vitro studies on vertebrate smooth 
muscle and nonmuscle myosin filament assembly by Watan- 
abe and co-workers (40) and subsequently by Kendrick-Jones 
and co-workers (21, 22, 29, 30) have demonstrated that light 
chain phosphorylation may play a role in regulating thick 
filament assembly. These biochemical studies suggest that in 
relaxed smooth muscle cells, i.e., in low Ca ++ (< l0 -7 i ) ,  high 
ATP, and with nonphosphorylated light chains, the myosin 
would be present in a disassembled form. However, electron 
microscopy of rapidly frozen vascular smooth muscle in a 
relaxed state demonstrates that in this tissue thick filaments 
are present even though the myosin is nonphosphorylated, 
i.e., the light chains are completely nonphosphorylated (39). 
The organization and stability of myosin filaments in verte- 
brate smooth muscle in different physiological conditions 
therefore still remains to be clearly established and may vary 
from one type of smooth muscle to another, depending on 
the functional requirements of that particular muscle. 

In this report we describe experiments using glycerinated 
chicken gizzard smooth muscle fragments. We are able to use 
this system (a) to confirm the role of thick filament regulation 
during contraction and (b) to study whether assembly-disas- 
sembly of myosin thick filaments occurs during the contrac- 
tion cycle. In these experiments, we are able to monitor the 
following: (a) the ability of the cell model to contract (by light 
microscopy), and (b) the presence of myosin in the tissue (by 
SDS gel electrophoresis and electron microscopy), and (c) the 
state of phosphorylation of the myosin 20,000 Mr light chain 
(by glycerol gel electrophoresis). We are also able to reconsti- 
tute a functional contractile smooth muscle cell model by the 
addition of myosin and appropriate regulatory proteins to 
glycerinated cells whose myosin had been previously ex- 
tracted. 

MATERIALS A N D  METHODS 

Materials and Protein Preparation: ATP and ATP-tS were ob- 
tained from the Boehringer Corporation (London) Ltd., Lewes, Sussex. Trypsin 
inhibitor (Soyabean), trypsin (from bovine pancreas), and Nonidet P-40 (NP40) 
were obtained from the Sigma Chemical Co. Ltd, Poole, Dorset. 

Gizzard myosin and myosin light chain kinase (MLCK) l were prepared as 
previously described (2, 22). Unregulated kinase was prepared by tryptic diges- 
tion of MLCK in the presence of bound calrnodulin (3). Kinase at 0.65 mg/mi 
in 100 mM NaC1, 25 mM Tris HCl pH 7.5, 0.2 mM CaCl2, 2 mM dithiothreitol 
with excess calmodulin was digested with trypsin at 250:1 for l h on ice before 
the digestion was terminated with a 10-fold excess of trypsin inhibitor. Cal- 
modulin was prepared from bovine brain as described previously (30), whilst 
troponin and tropomyosin were prepared using the methods of Greaser et al. 
(16) and Bailey (4), respectively. Skeletal myosin was kindly donated by Brian 
Pope (MRC Laboratory of Molecular Biology). 

Protein concentrations were estimated spectrophotometrically using E ° '~ 2P, O a m  

(E, extinction coefficient) for myosin of 0.56 (2) and MLCK of 1.08 (2), 
troponin of 0.48 and tropomyosin of 0.38 (16). 

Muscle GIycerination and Cell Models: Chicken gizzards were 
cleaned of fat and connective tissue and sliced with a razor-blade "comb" to 
produce slivers of muscle 0.5 mm thick, before being immersed in ice-cold 
50% glycerol, 50 mM KCI, 10 mM Na glyceropbosphate, 5 mM EGTA, 10 
mM 2-(N-Morpholino) ethanesulphonic acid (MES) pH 6.5, 2 mM dithiothre- 
itol, 75 rag/liter phenylmethyl sulfonyl fluoride, l0 mg/liter soyabcan trypsin 

Abbreviations used in thispaper: M L C K,  myos in  light chain kinase; 
NPM,  100 m M  NaC1, l0 m M  PIPES pH 7.0, 2 m M  MgC1, 2 m M  
dithiothreitol. 

inhibitor, 10 mg/liter L-l-tosylamide-2-phenyl-ethylchloromethylketone, 10 
rag/liter benzyl arginylmethyl ester, 1 mg/liter leupeptin, 1 rag/liter pepstatin, 
0.1% NP40, 0.1 mM ATP. Time elapsed from sacrificing the chicken to 
immersion in giycerination medium was <15 min. It was later found that the 
presence or absence of ATP and the detergent NP40 made no difference in the 
performance of the cell model, although the freshness of the muscle and the 
enzyme inhibitors did. After 24 h on ice the glycerinated muscle was stored at 
-20°C for 7 d before use. These preparations were stable for several months. 
Myosin lability was noticeably affected by prolonged storage. 

We have successfully prepared functional contractile models from chicken 
gizzard muscles that were glycerinated in a variety of salt solutions. Provided 
the tissue is fresh (<15 rain after removal from the chicken), proteolytic 
inhibitors are added to the medium, and the tissue is chopped into small pieces 
to facilitate rapid infusion of the glycerol medium; the composition and pH of 
the medium are not critical for preparation of cell models. 

Cell and tissue fragment preparations for the cell model were prepared by 
homogenizing in giycerination medium with a Polytron (Kinematica, Luzcrn, 
Switzerland) for 4 l-s bursts and centrifuging in a bench-top centrifuge (IEC 
Centra 3) for 2-5 s at 2,000 rpm, and discarding the pellet of large tissue 
fragments. The supernatant was centrifuged for 2-5 s at 4,000 rpm and this 
pellet of small tissue fragments and single cells was then resuspended in 100 
mM NaCl, l0 mM PIPES pH 7.0, 2 mM MgCI, 2 mM dithiothreitoi (NPM 
medium) containing 40% glycerol. The supernatant, containing cell debris and 
soluble proteins, was discarded. 

Myosin solubility assays used 500-~tl aliquots of the cell and tissue fragment 
preparations. These were centrifuged at maximum rpm for 3 s in a microcen- 
trifuge (Quickfit Instrumentation, Stone, Staffs, England), the supernatant 
discarded, and the pellet washed with NPM plus 20% glycerol and finally NPM 
alone. The pellet was solubilized in 200 ~zl assay medium by gentle vortexing, 
and drawing through an Eppendorftip. 10% of supernatants and 5% of pellets 
were loaded onto the SDS PAGE gels. "Extracted" cell preparations were 
produced by incubating the samples in NPM plus 2 mM EGTA, 0. l mM ATP 
for 5 min before extensive washing and adding back proteins in NPM plus 0.2 
M NaCl (final concentration 0.3 M NaC1) and 2 mM EGTA. Samples were 
incubated on ice for half an hour with myosin at 0.7-1.0 mg/ml, and tropo- 
myosin and troponin at ~0.2 mg/ml. 

Gel Electrophoresis: Gel electrophoresis was carried out on SDS- 
10% polyacrylamide slab gels using a discontinuous 0. I M Tris-bicine, pH 8.1 
buffer system, and staining with Coomasie Brilliant Blue R250. Glycerol-urea 
polyacrylamide gel electrophoresis was performed using the system described 
by Perrie and Perry (28). For densitometry, a Joyce-Lobel Microdensitometer 
3CS was used in conjunction with a tablet on a PDP 11/45 computer using a 
program by Terry Horsnell (MRC Laboratory of Molecular Biology) to estimate 
the area of peaks where necessary. 

Microscopy: Microscope slides were precoated with 5 ~1 of 0.1 mg/ml 
polylysine and immediately rinsed in running deionized water. Flow-through 
chambers were made by placing "Parafilm" (American Can Co., Greenwich, 
CT) spacers between the coverslip and slide to hold about 50/~l medium and 
the coverslips were held in place by valap (a [: l: 1 mixture of vasoline, lanolin, 
and paraffin). After the cells and fragments were stuck down, they were washed 
through with two volumes of NPM plus 20% glycerol, followed by NPM alone. 
Solutions were flushed under the coverslip by using filter paper as a wick as 
described previously (8). Preparations were examined by phase and Nomarski 
optics using a Zeiss standard microscope. Tri-X film was developed with AcuIux 
(Paterson Products Ltd., London). 

Fresh and glycerinated muscle was fixed with 2.5% glutaraldehyde, 0.1 M 
Na cacodylate pH 7.0, 0.1 M KCI, l mM EGTA, 1 mM MgCl2 overnight 
before being washed in buffer for 30 min, and then postfixed in 0.8% osmium 
tetroxide for l h and washed in buffer and distilled H20. The specimen was 
then block-stained in uranyl acetate for l-l/2 h, washed with distilled H20, and 
dehydrated through alcohol before embedding in araldite. Sections were ex- 
amined in a Phillips EM 300 electron microscope. 

RESULTS 

Cell Model Contraction 
After glycerination and homogenization, chick gizzard cell 

and tissue fragments adhering to glass slides coated with 
polylysine contracted to one-third of  their original length 
within ~ 1 min, provided ATP and Ca ++ are present in the 
NPM medium (Figs. 1 and 2, d-f). Although the population 
of cell models consisted of single cells, fragments of  cells, and 
small pieces of  tissue containing ~ 50-100 cells, all cells and 
fragments in the field contracted to a similar extent (Fig. 2 f ) ,  
provided that the concentration of polylysine used to stick 

CANDE ET AL. Glycerinated Vertebrate Smooth Muscle Cells 1 0 6 3  



the cells to the glass slide was not above ~0.15 mg/ml. 
The largest individual cells observed before contraction 

were several hundred microns long. After contraction, indi- 
vidual cells assumed a cuboid shape and the cell surfaces were 

FIGURE 1 Photomicrographs showing contraction of the glyceri- 
hated cells~ Sequential phase-contrast photomicrographs of the 
contractile response of individual smooth muscle cell fragments 
(a0) before and (a70) after 10 s, (a30) after 30 s and (a60) after 60 s 
in 0.1 mM Ca ++, 0.5 mM ATP. There is a threefold reduction in 
length, x 570. 

thrown into many folds (Fig. 1). In some cells, cytoplasm 
appeared to be extruded into the medium during contraction 
and the supernatant contained aggregates of protein. Cells 
and cell fragments in tissue fragments underwent similar 
shape changes after contraction and individual contracted 
cells embedded in the collagen matrix gave the tissue fragment 
a "cobblestone" appearance (Fig. 2 f ) .  

Addition of NPM medium and ATP in the absence of Ca ++ 
did not induce relaxation (or increase in length) of partially 
contracted or fully contracted cells. Cell models exposed to 
relaxing conditions at neutral pH (NPM medium + ATP + 
EGTA) rapidly lost their ability to contract if subsequently 
challenged with Ca ++ (Fig. 2, a-c). Addition of calmodulin 
and MLCK did not restore Ca++-dependent contraction to 
these cells. However, at pH 6.5, the contractile machinery 
was more stable and cells contracted upon subsequent Ca ÷÷ 
addition even though they were exposed to EGTA and ATP 
for several minutes (Fig. 2, d-f). Exposure of cells to NPM 
medium plus EGTA or Ca ++ in the absence of ATP did not 
lead to loss of ability to contract when ATP was subsequently 
added to the coverslip preparation. As we will demonstrate 
later, the labile component of the contractile machinery ap- 
peared to be myosin and its regulatory proteins (see Fig. 4). 

The ultrastructure of fresh and glycerinated gizzard smooth 
muscle cells was very similar (see Fig. 7 a; unpublished data). 
Although membranes and membrane-bound organelles were 
distorted by storage in 50% glycerol for several weeks, thin, 
thick, and intermediate filaments and dense bodies were 
present in both preparations. 

We noticed that the cell and tissue fragments after glyceri- 
nation contained less tropomyosin than that assumed to be 
present in vivo, i.e., -~3:1 actin/tropomyosin molar ratio (see 
Fig. 4, lane Ap, vs. reference 37). It has been suggested that 
high levels of Mg ÷÷ favors tropomyosin binding to actin. 
Glycerination in a medium with varying Mg +÷ levels up to 
l0 mM, however, did not alter the level oftropomyosin found 

FIGURE 2 Contractile activity is lost after incubation in relaxing conditions. Cell preparations after mounting in flow-through 
chambers (a) and washing with 2 mM EGTA and 0.5 mM ATP at pH 7 (b) do not contract upon addition of 0.1 mM Ca ++, 0.5 mM 
ATP (c). If the preparation (d) is instead washed with 2 mM EGTA and 0.5 mM ATP at pH 6.5 (e) then contraction does occur on 
addition of 0.1 mM Ca ++, 0.5 mM ATP (f). X 220. 
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in this cell model. Cell preparations glycerinated in the pres- 
ence of 2 mM Mg ++ behaved the same as cells glycerinated 
in the absence of Mg ÷+. 

Regulation of Contraction 
To determine whether contraction in the cell preparations 

was regulated by myosin light chain kinase or by other regu- 
latory systems such as troponin-tropomyosin, we studied the 
effects of ATP3,S incubation on Ca++-dependent contraction. 
As previously demonstrated on chemically skinned smooth 
muscle (9, 17), incubation of the cell models in ATP'rS and 
Ca ÷÷ induces Ca++-independent contractility (Fig. 3, a-b). An 
alternative method of obtaining Ca++-independent contrac- 
tion is to incubate cell models in unregulated MLCK (Fig. 3, 
c-d). After trypsin digestion (as described in Materials and 

Methods) MLCK activity in the absence of calcium was 
elevated to the level observed in the presence of calcium 
before digestion, presumably because the regulatory site has 
been removed from the enzyme by proteolysis (3, 41, 42). 
This unregulated kinase triggers contraction in the cell model 
in the presence of EGTA overriding the endogenous regula- 
tory system. However, it was necessary to run this experiment 
at pH 6.5, presumably to keep the contractile machinery 
stabilized during the incubation period. 

We found that smooth muscle cell models will not contract 
at low ATP concentrations (~25 uM ATP), even though 
Ca ++ was present (Fig. 3, e-f). This is in marked contrast to 
the Ca++/ATP-dependent contraction observed in glyceri- 
nated skeletal myofibrils, which will occur in ATP concentra- 
tions as low as 10 #M. It is possible to overcome the high 
ATP requirement for contraction by preincubation in ATP3,S 

FIGURE 3 Phase-contrast photomicrographs demonstrating the role of myosin light chain phosphorylation during contraction. 
Cell preparations preincubated in NPM pH 7.0, 0.1 mM Ca +*, 0.5 mM ATP3,S (a) do not contract but the addition of 2 mM EGTA, 
0.5 mM ATP (b) will result in contraction. If unregulated MLCK is preincubated with the cell preparation (c), then Ca ++ is not a 
requirement for contraction. Such cells contract upon addition of 2 mM EGTA, 0.5 mM ATP in NPM medium, pH 6.5 (d). 
Photomicrographs of cell fragments before (e) and after (f) addition of 0.1 mM Ca ++, 10 /~M ATP, NPM pH 7.0 show no 
contraction. If the cell preparation is first preincubated with 0.1 mM Ca ++, 0.5 mM ATPyS (g), subsequent addition of 10/~M ATP 
(h) will trigger contraction. All preincubations were carried out in NPM in the flow-through chamber on the microscope slide, a- 
d, x 570. e-h, x 220. 
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and Ca +* (Fig. 3, g-h). This result demonstrated that the step 
that requires elevated ATP levels is the phosphorylation of 
myosin light chains. 

Regulation of  Myosin Disassembly 

SDS PAGE gels of glycerinated chick gizzard cells demon- 
strated that the most abundant proteins present in these 
preparations are myosin, the 65-kdalton protein desmin, 
which is the major subunit of the intermediate filaments of 
this type of smooth muscle (37), actin, and tropomyosin (Fig. 
4, lane Ap; Table I). Extensive washing of cell and tissue 
suspensions with NPM medium _+ Ca +* or with Ca ++ and 
ATPyS (not hydrolyzed by myosin) (Fig. 4, lanes A-B; Table 
I, and unpublished data) did not lead to extraction of these 
components and their appearance in the supernatant fraction, 
with the exception of actin. 

As described in Fig. 2, addition of ATP in the absence of 
Ca *+ leads to a loss of contractile activity when the cell models 
were subsequently challenged with Ca ++ . This loss of contrac- 
tility is pH dependent. After addition of ATP and EGTA to 
cell suspensions, myosin and actin were extracted but the 
intermediate filament protein remained with the cell pellet 
fraction (Fig. 4, lanes C-H). The levels of solubilized actin 
are independent of pH, but the level of extracted myosin 
increases with the increase in pH over the range from pH 6.2- 
7.0 (Table I). At pH 7, 86% of the myosin was extracted into 
the supernatant, but at pH 6.2 only 38% was extracted. We 
have previously examined the effects ofpH on in vitro myosin 
thick filament disassembly, as monitored by turbidity and 
confirmed by electron microscopy (22, 29). We repeated these 
experiments using chick gizzard myosin in NPM medium. At 
pH 7.0, thick filament disassembly occurred rapidly and was 
essentially complete within minutes, but at pH 6.5 and pH 
6.2 little or no disassembly occurred (unpublished data). 

The extent of myosin solubilization that occurs in the cell 

suspensions is also dependent on the ATP concentration in 
the suspension medium, and the greatest concentration of 
myosin extracted (82%) occurs in the highest ATP levels used 
(Fig. 4, lanes F-H; Table I). Approximately one-half of the 
myosin was extracted even at ATP levels that will not support 
contraction (10 uM ATP, Fig. 4, lane F, Table I) and this 

TABLE I 

Densitometry of Major Peaks in Fig. 4 

Percent Percent 
myosin Interme- actin in 

in super- diate illa- superna- 
Myosin natant ments Actin tant 

A p 3.3* 1.0 4.3 
s - -  - -  0.1 

B p 5.6 2.4 6.1 
s 0.6 10 0.1 2.3 38 

C p 2.1 0.8 2.0 
s 1.3 38 - -  1.8 47 

D p 1.3 0.7 1.9 
s 2.7 68 - -  2.5 57 

E p 0.8 0.8 2.1 
s 4.8 86 - -  2.2 51 

F p 3.4 2.7 5.4 
s 4.3 56 - -  3.1 37 

G p 2.5 3.4 6.5 
s 5.9 70 - -  4.5 41 

H p 1.3 2.6 4.9 
s 6.1 82 - -  4.7 49 

I p 3.0 1.9 5.5 
s 2.7 47 - -  1.7 24 

J p 4.3 3.3 6.4 
s 2.4 36 - -  3.5 35 

K p 2.5 1.3 3.3 
s 2.4 49 - -  4.5 56 

* Peak areas in square centimeters. 

FIGURE 4 Effect of pH and myosin 
light chain phosphorylation on the 
stability of the myosin in cell prep- 
arations. SDS PAGE of pellets (p) 
and supernatants (s) from the 
myosin solubility series after prein- 
cubation in NPM pH 7.0 and: (A) 2 
mM EGTA; (B) 0.1 mM Ca ++ , 0.5 
mM ATPyS; (C) 2 mM EGTA, 0.5 
mM ATP, 10 mM MES, final pH = 
6.2; (D) 2 mM EGTA, 0.5 mM ATP, 
10 mM MES, final pH = 6.5; (E) 2 
mM EGTA, 0.5 mM ATP, pH 7.0; 
(F) 2 mM EGTA, 10 ~M ATP; (G) 2 
mM EGTA, 100/~M ATP; (H) 2 mM 
EGTA, 1 mM ATP; (I) 0.1 mM Ca ++, 
10/~M ATP; (J) 0.1 mM Ca ++, 1 mM 
ATP; (K) 0.1 mM Ca ++, 0.5 mM 
ATP~,S, followed by 0.1 mM Ca ++, 
1 mM ATP. Actomyosin standards 
(m) included for reference; MHC, 
myosin heavy chain; IF, intermedi- 
ate filament protein; AC, actin; TM, 
tropomyosin; 20-kdalton (20) and 
16-kdalton (16) myosin light chains. 
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level of extraction occurred regardless of whether Ca ++ was 
present in the suspension medium (Fig. 4, lane I, and Table 
I). 

Under contraction conditions, as much actin as myosin 
was released into the supernatant (Fig. 4, lane J)  and the level 
of myosin released (36%) was considerably less than at com- 
parable nucleotide levels in the absence of Ca *+ (82%, Fig. 4, 
lane/7; Table I). The level of myosin released does not depend 
on the ATP concentration in the contraction medium (un- 
published data) nor does it depend on whether the cell prep- 
aration has been incubated in ATPTS before ATP addition 
(Fig. 4, lane K; Table I). Very little myosin was released into 
the supernatant when only ATPTS and Ca ++ were present 
(Fig. 4, lane B; Table I). 

The extent of phosphorylation of myosin 20,000 Mr light 
chains was monitored by urea-glycerol gel electrophoresis 
(Fig. 5). During these experiments we discovered that there 
was residual phosphatase activity in the pellet fraction that 
was not destroyed by the trichloroacetic acid and 8 M urea 
treatment (unpublished data). This activity, in the absence of 
ATPTS (Fig. 5, lanes A - D ) ,  may have reduced the level of 
phosphorylated myosin in the pellet fraction in some of these 
experiments. < 10% of the myosin was phosphorylated in the 
initial glycerinated cell preparations, and after incubation in 
EGTA, ATP _+ ATP-rS, this level of phosphorylation was 
unchanged (Fig. 5, lanes B and F). The myosin light chains 
were fully phosphorylated when incubated in the presence of 
Ca ++, ATPTS, and _+ ATP (Fig. 5, lanes D and G). When 
these experiments were performed in the absence of ATPTS 
the levels of phosphorylation observed in the pellet fractions 
were significantly less (Fig. 5, lane C), due to the presence of 
the residual phosphatase activity. Phosphorylated myosin was 
lost to the supernatant after contraction (Fig. 5, lanes C and 
G), however these supernatants contained protein aggregates 
that were not pelleted by the low speed centrifugations used 
in these experiments. No phosphorylated myosin was lost to 
the supernatant in lane D with only Ca ++ and ATPTS addition 
and in this condition no contraction took place. In these 
experiments, as in the experiments described in Fig. 4 and 
Table I, more myosin was released into the supernatant in 
the absence of Ca ÷÷ than in the presence of Ca ÷÷ (Fig. 5, lanes 
B and F vs. C, D, and G). 

Supernatants from these experiments were examined by 
negative staining in the electron microscope for the presence 
of thick filaments and by dark field light microscopy. Al- 
though collagen fibers, thin filaments, and aggregates of pro- 
tein were found in these preparations, no myosin thick fila- 
ments were found. The supernatants from suspensions washed 
with ATP and Ca ÷÷ were turbid and contained large clumps 
of aggregated protein. The supernatants of cells washed in 
ATP and EGTA were clear and upon Ca ÷+ addition, these 
supernatants rapidly turned cloudy and large clumps of ag- 
gregated protein were visible to the naked eye and by dark 
field microscopy. 

Reconstitution of Contractile Cell Models by 
Addition of Myosin 

Using cells whose myosin was extracted by ATP in the 
absence of Ca ÷÷ , we have investigated the conditions required 
for restoration of contraction. Two very different strategies 
were used successfully in the myosin add-back experiments, 
i.e., addition under rigor conditions or addition under relaxing 

FIGURE 5 Urea/glycerol gel analysis of the level of phosphoryla- 
tion of the 20,000 Mr light chain of the myosin in pellet (p) and 
supernatant (s) fractions of the glycerinated gizzard muscle cells. 
The samples were preincubated before centrifugation in: (A) NPM 
pH 7.0 and 2 mM EGTA; (B) NPM, 2 mM EGTA, and 1 mM ATP; 
(C) NPM, 0.5 mM Ca ++ and 1 mM ATP; (D) NPM, 0.5 mM Ca ++ and 
1 mM ATP~,S; (M) purified gizzard myosin; (E) NPM and 2 mM 
EGTA; (F) NPM, 2 mM EGTA, 0.5 mM ATP and 0.5 mM ATPTS; (G) 
NPM, 0.5 mM Ca ++ , 0.5 mM ATP and 0.5 mM ATP~S. After 
centrifugation the supernatants were removed and the pellets re- 
suspended in the initial solutions outlined above. The pellet and 
supernatant fractions were processed for electrophoresis by precip- 
itation with a final concentration of 3% trichloroacetic acid (wt/vol) 
and the precipitated proteins centrifuged and washed with cold 
acetone. They were "dissolved" in 9 M urea, 20 mM Tris, 122 mM 
glycine buffer pH 8.6 solution and run on 40% glycerol, 10% 
polyacrylamide gels (28). Non~ LC 20 indicates position of the 
nonphosphorylated Mr 20,000 light chain and (~ LC 20 its position 
when phosphorylated. 

conditions (Fig. 6; Table II). In neither case was it necessary 
to add back actin for restoration of contraction. First, cells 
were incubated in the absence of ATP with skeletal or gizzard 
myosin kept in a nonfilamentous state by elevated salt (0.3 
M NaC1). Excess myosin was removed by extensive washing 
of the cell pellets with NPM medium without ATP. Myosin 
in vast excess was retained in these pellets (Fig. 6, gel), 
presumably by the formation of rigor bonds with the actin in 
the cell models. Cells incubated in gizzard myosin alone would 
not contract upon C a  *+ and ATP addition unless MLCKinase 
and calmodulin were added at the same time (Fig. 6 a and b; 
Table II). As described previously (Fig. 3), when the cells were 
first incubated in ATP3,S and Ca *+, before ATP addition, 
contraction was independent of C a  ++ . 

Electron microscopy of cell pellets treated with EGTA and 
ATP show that the thick filaments that were visible in cells 
bathed solely in NPM medium (Fig. 7 a) are no longer present 
after 5 min exposure to this relaxing medium (Fig. 7b). 
However, thin and intermediate filaments were still present 
in extended arrays. After addition of myosin in high salt and 
extensive washing, no obvious decoration of thin filaments 
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FIGURE 6 The restoration of the ability of "extracted" cell prepa- 
rations to contract by addition of native and skeletal myosins and 
regulatory proteins. The cell preparations were "extracted" by 5- 
min exposure to 2 mM EGTA, 0.5 mM ATP, NPM pH 7.0. When 1 
mg/ml gizzard myosin in NPM + 0.2 M NaCl is added back (a), 
followed by subsequent washings in NPM as described in the text, 
contraction occurs upon addition of 0.1 mM Ca ++, 0.5 mM ATP, 5 
/~g/ml MLCK, and 50/~g/ml calmodulin (b). If ~1 mg/ml rabbit 
skeletal myosin in NPM + 0.2 mM NaCI is added to "extracted cell 
preparations" (c) as described in the text, calcium-independent 
contraction will occur in 2 mM EGTA, 0.5 mM ATP, NPM pH 7.0 
(d). SDS-IO% polyacrylamide gels of (1) initial cell preparation in 
NPM pH 7.0; (2) the cell preparation after "extraction" with NPM 
pH 7.0, 2 mM EGTA, and 0.5 mM ATP and washing in the same 
medium; (3) the "extracted" preparations after incubation with 
gizzard myosin and subsequent washing with NPM pH 7.0; (4) the 
"extracted" cell preparation incubated with rabbit skeletal myosin 
and washed with NPM pH 7.0; m, "impure" gizzard myosin stand- 
ard. Myosin HC, myosin heavy chain; IF, intermediate filament 
protein; AC, actin; TM, tropomyosin; 20, Mr 20,000 myosin light 
chain; and 16, M, 16,000 myosin light chain. The faint bands at 
26,000, 18,000, and 16,000 M, are the skeletal myosin light chains. 
(a-d) x 220. 

was observed, although the arrangement of thin filaments 
appeared to be more clumped and some short thick filament- 
like structures may be present (Fig. 7c). After addition of 
Ca ÷÷, calmodulin, MLCK, and ATP, the thin and interme- 
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diate filaments were highly disordered and large swirls of 
filaments were present (Fig. 7d). Even at this stage, few thick 
filament-like structures could be observed. 

Cells incubated in skeletal myosin will contract without 
addition of calmodulin and MLCK, but this contraction was 
not Ca ÷÷ dependent (Fig. 6c and d; Table II). In a limited 
number of experiments, Ca÷÷-dependent contraction was ob- 
tained with skeletal myosin when cells were incubated with 
skeletal troponin and tropomyosin before addition of myosin 
(Table II). Unlike the original cell preparations, these cell 
models did not lose their contractile activity upon incubation 
in ATP in the absence of Ca ÷÷. 

An alternative method for restoring contractile function 
was to incubate cell models in excess gizzard myosin in the 
presence of ATP and EGTA (Table II). As described previ- 
ously (22) when the myosin is nonphosphorylated, no myosin 
thick filament assembly occurs under these conditions even 
when MLCK and calmodulin are present in the incubation 
medium. Contraction is initiated in these preparations upon 
addition of excess Ca ÷÷ (Table II). Cells did not contract when 
either calmodulin or MLCK were omitted from the incuba- 
tion medium. 

DISCUSSION 

The glycerinated cell model described here provides a useful 
alternative to the preparations of smooth muscle contractile 
proteins used in biochemical studies. Unlike studies per- 
formed on highly purified proteins, in the glycerinated cells 
we may have preserved regulatory systems of muscle structure 
or function that are lost or altered during normal biochemical 
preparative procedures. In addition, by using glycerinated cells 
we are able to introduce proteins into cells, an option not 
available in physiological studies using intact muscle strips. 
We have used a simple light microscopy assay of cell length 
change to monitor maintenance of muscle function and SDS- 
PAGE gel electrophoresis and electron microscopy to assay 
maintenance of muscle structure. Our studies using glyceri- 
nated cells confirm the importance of myosin light chain 
phosphorylation in the regulation of Ca*+-dependent contrac- 
tion and demonstrate the lability of myosin thick filaments 
under defined but physiologically relevant conditions, i.e., 
under relaxing conditions. What is striking about our results 
is how well they conform to previous biochemical studies, 
from this and other laboratories, on regulation of thick fila- 
ment assembly-disassembly and interaction with actin by 
myosin light chain phosphorylation (see reviews 1, 21, 37). 

The studies using glycerinated cells demonstrate that 
myosin light chain phosphorylation is the primary and per- 
haps the only step required for Ca+*-dependent regulation of 
contraction. We can override the normal Ca ÷÷ requirement 
for initiation of contraction either by the irreversible thio- 
phosphorylation of myosin done in the presence of ATPTS 
by endogenous MLCK (9, 17, 31) or by the addition of an 
unregulated MLCK that no longer requires Ca ÷÷ for activa- 
tion (3, 41, 42). The central role of myosin light chain 
phosphorylation is also demonstrated by the relatively high 
ATP requirement for contraction, which mirrors the low 
affinity of MLCK for ATP (50 uM, reference 2). These results 
are inconsistent with the possibility that an inhibitory thin 
filament regulatory system such as the tropomyosin-troponin 
system found in skeletal muscle is involved in Ca+*-dependent 
contraction in smooth muscle. However, our assay of smooth 



FIGURE 7 Electron micrographs of cell pellets from a myosin reconstitution experiment. (a) Cell fragments in NPM pH 7.0, 2 mM 
EGTA contain thick filaments. (b) Cell fragments after 5-min incubation in NPM, 2 mM EGTA, 0.5 mM ATP, followed by washes 
in NPM do not contain thick filaments although thin and intermediate filaments are present. (c) Cell fragments after incubation in 

1 mg/ml gizzard myosin in NPM, 0.2 M NaCl for 30 min. Several small thick filament-like structures are visible (lower right) but 
the thin filaments do not look decorated. (d) After addition of 5/~g/ml MLCK, calmodulin, 0.1 mM Ca ++, and 0.5 mM ATP, cell 
fragments contract as described in Fig. 6 a-b, and thin filaments and intermediate filaments are thrown into large swirls. No thick 
filaments are apparent in this section, x ~40,000. 

muscle function, i.e., cell length change measures contractility 
rather than development of tension. This assay may not be 
sensitive enough to detect the presence of a positive regulatory 
mechanism such as the leiotonin system postulated by Ebashi 
and co-workers (25, 26), which would potentiate actomyosin 
interactions, or the presence ofnoncycling cross bridges (latch 
bridges) as postulated by Dillon et al. (13). Nevertheless, such 
systems, if present, would supplement but could not replace 
the MLCK regulation of contraction that we observe here. 

We cannot eliminate the possibility that some thin filament 
regulatory proteins are lost during the glycerination process, 
especially since SDS gel electrophoresis demonstrates that 
there is less tropomyosin present in glycerinated cells than in 
whole muscle extracts (37). However, we think this possibility 
is unlikely for the following reasons: (a) the ultrastructure of 
glycerinated smooth muscle is similar to fresh tissue; (b) 
glycerination under conditions that should preserve tropo- 
myosin binding to actin filaments (i.e., in 2 mM Mg ÷÷) does 
not alter the contractile properties of the glycerinated cells; 
(c) our results using ATP'rS and unregulated MLCK are 
identical to those of Cassidy et al. (9) and Hoar et al. (17), 

who used chemically skinned smooth muscle to investigate 
the role of myosin light chain phosphorylation in regulation 
of contraction, and those of Walsh et al. (41, 42) who used 
unregulated MLCK to trigger Ca++-independent contraction 
in chemically skinned gizzard strips. 

Although many studies of smooth muscle ultrastructure 
demonstrated that the state of myosin filament assembly 
changes with the contractile activity of the smooth muscle 
(11, 14, 19, 20, 27, 32, 33), several recent studies suggest that 
myosin may be organized into stable filaments arranged in 
"mini-sarcomeres" with actin (37, 38). However, biochemical 
studies on myosin assembly-disassembly from Watanabe's 
and our laboratories have shown that ATP binding to non- 
phosphorylated gizzard myosin promotes rapid filament dis- 
assembly and that phosphorylation of the myosin light chains 
promotes thick filament assembly (21, 22, 29, 30, 40). Our 
observations on myosin lability in glycerinated cells upon 
ATP addition in the absence of Ca ÷÷ support the claim that 
the in vitro studies of myosin stability may be of physiological 
significance. In cells glycerinated in the absence of divalent 
cations and at pH 6.5 thick filaments are present. Since these 
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TABLE II 

Reconstitution o[ Functional Smooth Muscle Cell Models 

Percent cell or tissue length de- 
crease* 

2 mM EGTA/0.5 0.1 mM Ca++/0.5 
Treatment mM ATP mM ATP 

Extracted cells 0 0 
Calmodulin, MLCK 0 0 
Gizzard myosin 0 0 
Calmodulin, MLCK, giz- 0 59 

zard myosin 
Rabbit skeletal myosin 46 40 
Rabbit skeletal myosin, tro- 0 43 

ponin, tropomyosin 
*Calmodulin, MLCK, giz- 0 contracted 

zard myosin, in relaxing 
medium 

Cells were extracted by 5-min exposure to 2 mM EGTA, 0.5 mM 
ATP, NPM pH 7.0. In b-f myosin (~1 mg/ml) and regulatory 
proteins (see text and Fig. 6) were added back in NPM pH 7.0, + 
0.2 M NaCI. 

* Average of at least six cells taken from at least two separate 
experiments. 

* 1 mg/ml gizzard myosin was added back in 2 mM EGTA, 0.5 mM 
ATP, NPM pH 7.0. After centrifugation, the pellet fraction was 
resuspended in 5 ag/ml MLCK, 50 #g/ml calmodulin, 0.5 mM ATP, 
N PM pH 7.0, and contraction was triggered by addition of 0.1 mM 
Ca ++" 

are unphosphorylated, they are presumably held together and 
in place in these nonphysiological conditions by rigor bonds. 
After introduction of MgATP in the absence of Ca ++ (i.e., 
relaxing conditions), the thick filaments fall apart and are 
readily extracted. The pH and ATP dependence of myosin 
stability under these conditions exactly parallels that observed 
in vitro when ATP is added to nonphosphorylated thick 
filaments (22). The loss of myosin observed after contraction 
(Ca +* and ATP) does not show the same ATP dependence 
and does not depend on the phosphorylation state of the 
myosin. Circumstantial evidence suggests that this myosin is 
"squeezed" out of the contracting cells since large protein 
aggregates are observed in the cloudy supernatants after con- 
traction. Since the myosin present in thick filaments in gly- 
cerinated cells has not been exposed to cycles of polymeriza- 
tion-depolymerization by exposure to high/low salt, we have 
thus eliminated the possibility that the in vitro lability of 
myosin thick filaments is due to the loss of a special stabilizing 
or "capping" protein that is not retained during purification 
of smooth muscle myosin by cycles of filament assembly- 
disassembly. 

How then can one explain the recent demonstration that 
myosin with nonphosphorylated light chains exists in fila- 
ments in relaxed vertebrate smooth muscle (39)? One possi- 
bility is that actomyosin interactions even in the absence of 
light chain phosphorylation stabilize the thick filament to 
some extent. A second possibility is that dephosphorylated 
thick filaments may be in equilibrium with a monomer pool 
of myosin. Unlike the intact cell, in the cell model monomers 
would diffuse out of the cell in relaxing conditions driving 
disassembly of thick filaments. A third possibility is that the 
conditions that we have defined in vitro and with our glycer- 
inated cells as relaxed (high ATP in the absence of calcium) 
do not correspond exactly to any physiological state normally 
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observed in smooth muscle, even in the absence of any 
apparent tension generation. That is, in some vertebrate 
smooth muscles some tension may always be maintained and 
hence some thick filaments are always present. Finally it is 
possible that myosins from different vertebrate smooth mus- 
cles have different stability properties. However, preliminary 
observations on glycerinated rabbit uterus and uterine 
myosin, and glycerinated guinea pig taena coli and taena coli 
myosin suggest that the contractile and myosin thick filament 
lability properties of these other smooth muscles are similar 
to those described here for gizzard muscle (W. Z. Cande, P. 
J. Tooth, and J. Kendrick-Jones, unpublished data). 

One possible objection to the physiological relevance of the 
thick filament lability observed in vitro is that stable thick 
filaments may be required for repeated cycles of contraction 
and relaxation of smooth muscle cells. However, the myosin 
add-back experiments demonstrate that all of the spatial 
information required for cell length change during contraction 
is present in the thin filament-intermediate filament organi- 
zation. After extraction of the myosin thick filaments, the 
other filament arrays, at least at an ultrastructural level, do 
not appear to be greatly disturbed. It is unlikely that the thick 
filaments formed during the reconstitution experiments are 
similar in structure to those observed in normal or glyceri- 
nated cells, especially since they are not very apparent in 
electron micrographs. By definition this must be true in those 
experiments using skeletal myosin. It may even be that thick 
filaments as small as myosin dimers may be responsible for 
some of the cell length change. However, this appears to make 
little difference since contraction similar in extent occurs after 
reconstitution, regardless of whether myosin is added back 
under either rigor or relaxation conditions. Therefore the actin 
thin filaments in glycerinated cells (and also maybe in vivo) 
must be arranged such that contraction can occur as soon as 
thick filaments are formed and activated by light chain phos- 
phorylation. 
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