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Abstract

We present a novel Deep Learning method for the Unsupervised Clustering of DNA

Sequences (DeLUCS) that does not require sequence alignment, sequence homology, or

(taxonomic) identifiers. DeLUCS uses Frequency Chaos Game Representations (FCGR) of

primary DNA sequences, and generates “mimic” sequence FCGRs to self-learn data pat-

terns (genomic signatures) through the optimization of multiple neural networks. A majority

voting scheme is then used to determine the final cluster assignment for each sequence.

The clusters learned by DeLUCS match true taxonomic groups for large and diverse data-

sets, with accuracies ranging from 77% to 100%: 2,500 complete vertebrate mitochondrial

genomes, at taxonomic levels from sub-phylum to genera; 3,200 randomly selected 400

kbp-long bacterial genome segments, into clusters corresponding to bacterial families; three

viral genome and gene datasets, averaging 1,300 sequences each, into clusters corre-

sponding to virus subtypes. DeLUCS significantly outperforms two classic clustering meth-

ods (K-means++ and Gaussian Mixture Models) for unlabelled data, by as much as 47%.

DeLUCS is highly effective, it is able to cluster datasets of unlabelled primary DNA

sequences totalling over 1 billion bp of data, and it bypasses common limitations to classifi-

cation resulting from the lack of sequence homology, variation in sequence length, and the

absence or instability of sequence annotations and taxonomic identifiers. Thus, DeLUCS

offers fast and accurate DNA sequence clustering for previously intractable datasets.

Introduction

Traditional DNA sequence classification algorithms rely on large amounts of labour intensive

and human expert-mediated annotating of primary DNA sequences, informing origin and

function. Moreover, some of these genome annotations are not always stable, given inaccura-

cies and temporary assignments due to limited information, knowledge, or characterization,

in some cases. Also, since there is no taxonomic “ground truth,” taxonomic labels can be sub-

ject to dispute (see, e.g., [1–3]). In addition, as methods for determining phylogeny, evolution-

ary relationships, and taxonomy evolved from physical to molecular characteristics, this

sometimes resulted in a series of changes in taxonomic assignments. An instance of this
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phenomenon is the microbial taxonomy, which recently underwent drastic changes through

the Genome Taxonomy Database (GTDB) in an effort to ensure standardized and evolution-

ary consistent classification [4–6].

The applicability of existing classification algorithms is limited by their intrinsic reliance on

DNA annotations, and on the “correctness” of existing sequence labels. For example, align-

ment-based methods crucially rely on DNA annotations indicating the gene name and geno-

mic position. Similarly, supervised machine learning algorithms rely on the training data

having stable taxonomic labels, since they carry forward any current misclassifications into

erroneous future sequence classifications. To avoid these limitations, and given the ease of

extensive sequence acquisition, there is a need for highly accurate unsupervised machine

learning approaches to sequence classification that are not dependent on sequence

annotations.

We propose a novel Deep Learning method for the Unsupervised Clustering of DNA

Sequences (DeLUCS), that is independent of sequence labels or annotations, and thus is not

vulnerable to their inaccuracies, fluctuations, or absence. DeLUCS is, to the best of our knowl-

edge, the first highly-effective/light-preparationDNA sequence clustering method, in that it

achieves high “classification accuracies” while using only a minimum of data preparation and

information. Indeed, the only information external to the primary DNA sequence that is used

by DeLUCS is the implicit requirement that all sequences be of the same type (nuclear DNA,

mtDNA, plastid, chloroplast), and that the selection of the dataset be based on some taxonomic

criteria. Importantly, DeLUCS does not need any DNA annotations, does not require

sequence homology or similarity in sequence lengths, and does not use any true taxonomic

labels or sequence identifiers during the learning process.

In fact, DeLUCS only uses Frequency Chaos Game Representations with resolution k
(FCGRk) of primary DNA sequences to find their cluster assignments, in an unsupervised

manner. (In this paper, k = 6 was empirically selected as achieving the optimal balance between

accuracy and time complexity.) This being said, the post hoc step of evaluating the performance

of DeLUCS uses, by necessity, true taxonomic labels to quantify the accuracy of the computed

clusters. This additional step is implemented via the Hungarian algorithm [7], which finds the

optimal mapping between the numerical cluster labels determined by DeLUCS and the true

taxonomic cluster labels. Based on this mapping, the resulting taxonomic cluster labels are

then used to calculate the method’s accuracy (termed thereafter “classification accuracy”).

Note that, for readability purposes, we will hereafter use true taxonomic labels for clusters,

even though DeLUCS only outputs numerical cluster labels.

DeLUCS compensates for the absence of information external to the primary DNA

sequence by leveraging the capability of deep learning to discover patterns (genomic signa-

tures) in unlabelled raw primary DNA sequence data. DeLUCS is alignment-free, and learns

clusters that match true taxonomic groups for large and diverse datasets, with high accuracy:

2,500 vertebrate complete mitochondrial genomes at multiple taxonomic levels, with accuracy

ranging from 79% to 100%; 3,200 randomly selected bacterial genome segments, with an aver-

age length of 400 kbp, into bacterial families, with accuracy of 77% (inter-phylum) and 90%

(intra- phylum); several datasets of viral gene sequences and of full viral genomes, averaging

1,300 sequences each, into virus subtypes, with accuracy of 99%, and 100% respectively. To the

best of our knowledge, these are the largest real datasets classified to date, in clustering studies

of genomic data: The biggest dataset analyzed in this paper totals over 1 billion bp of data, a

full order of magnitude bigger than previous studies [8–14]. In addition, all but the viral gene

dataset would be impossible to classify with alignment-based methods, due either to the pro-

hibitive time cost of multiple sequence alignment or to the lack of sequence homology.
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A direct comparison shows that DeLUCS significantly outperforms two classic algorithms

for clustering unlabelled datasets (K-means++ and Gaussian Mixture Models, GMM), some-

times by as much as 47%. We also note that, for the majority of the computational tests, the

DeLUCS classification accuracy is also comparable to, and sometimes higher than, that of a

supervised machine learning algorithm with the same architecture.

DeLUCS is a fully-automated method that determines cluster assignments for its input

sequences, independent of any homology or same-length assumptions, and oblivious to

sequence taxonomic labels. DeLUCS can thus be used for successful ab initio classification of

datasets that were previously unclassifiable by alignment-based methods, as well as datasets

with uncertain or fluctuating taxonomy, where supervised machine learning methods are

biased by their reliance on current taxonomic labels.

In summary, DeLUCS is the first effective alignment-free method that uses deep learning

for unsupervised clustering of unlabelled raw DNA sequences. The main contributions of this

paper are:

• DeLUCS clusters large and diverse datasets, such as complete mitochondrial genomes at sev-

eral taxonomic levels; randomly selected bacterial genome segments into families; viral

genes and viral full genomes into virus subtypes. To date, these are the largest real datasets of

genomic data to be clustered, with our largest experiment comprising over 1 billion bp of

data, a full order of magnitude larger than previous studies [8–14].

• DeLUCS achieves “classification accuracies” of 77% to 100%, in each case significantly

higher than classic alignment-free clustering methods (K-means++ and GMM), with double

digit improvements in most cases. For the majority of the computational tests, DeLUCS clas-

sification accuracies are also comparable to, or higher than, those of a supervised machine

learning algorithm with the same architecture.

• DeLUCS is a highly-effective/light-preparation method for unsupervised clustering of DNA

sequences. Its high classification accuracies are a result of combining the novel concept of

mimic sequences with the invariant information learning framework and a majority voting

scheme. It is termed light-preparation because it does not require sequence homology,

sequence-length similarity, or any taxonomic labels/identifiers during the learning process.

Prior approaches

The time-complexity limitations of alignment-based methods [15], in addition to their reliance

on extraneous sequence information such as sequence homology, have motivated the develop-

ment of numerous alignment-free methodologies [16, 17]. Of these, methods based on k-mer

counts have been among the fastest and the most widely used [17]. In parallel to alignment-

free approaches, machine learning methods have emerged as promising alternatives for solving

classification problems both in genomics and biomedicine [18].

Fig 1 illustrates a summary of methods that combine alignment-free approaches with

machine learning for genomic classification/clustering tasks. (The difference between classifi-

cation and clustering is that, while in classification methods the cluster labels are given a priori,
in clustering methods the clusters are “discovered” by the method.)

Supervised machine learning approaches. Among supervised learning algorithms, Arti-

ficial Neural Networks (ANNs) have proven to be the most effective, with ANN architectures

with several layers of neurons (“deep learning”) being the top performers [19].

In the context of genome classification, alignment-free methods that employ supervised

machine learning have been shown to outperform alignment-based methods in the
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construction of high-quality whole-genome phylogenies [20], profiling of microbial communi-

ties [21], and DNA barcoding at the species level [22]. In recent years, alignment-free methods

have successfully applied supervised machine learning techniques to obtain accurate classifica-

tion of HIV subtypes [23], as well as accurate and early classification of the SARS-CoV-2 virus

(COVID-19 virus) [24]. The increasing success of machine learning, and in particular deep

learning, techniques is partly due to the introduction of suitable numerical representations for

DNA sequences and the ability of the methods to find patterns in these representations (see

[23, 25], respectively [21]). Other classification tasks in genomics such as taxonomic classifica-

tion [26], and the identification of viral sequences among human samples from raw metage-

nomic segments [27, 28] have also been explored from the deep learning perspective.

One limitation of supervised deep learning is that the performance of the ANNs is heavily

dependent on the number of labelled sequences that are available during training. This can

become a limiting factor, even though raw sequencing data can now be obtained quickly and

inexpensively [29]. The reason for this is the intermediate process that lies between obtaining a

raw DNA sequence and uploading that sequence onto a public sequence repository, namely

the “invisible” work that goes into assigning a taxonomic label and attaching biological annota-

tions. This is a laborious, expensive, and time consuming multistep process, comprising ad hoc
wet lab experiments and protocols that cannot be automated due to the human expertise

required. Another limitation of supervised learning is its sensitivity to perturbations in classifi-

cation, since any present misclassifications in the training set are “learned” and propagated

into future classification errors.

To overcome these limitations, one can attempt to use unsupervised learning, which oper-

ates with unlabelled sequences and compensates for the absence of labels by inferring identity-

relevant patterns from unlabelled training data. Moreover, unsupervised learning does not

Fig 1. Machine learning-based alignment-free methods for classification/clustering of DNA sequences. DeLUCS is the first method to use deep

learning for accurate unsupervised clustering of unlabelled DNA sequences. The novel use of deep learning in this context significantly boosts the

classification accuracy (as defined in the Evaluation section), compared to two other unsupervised machine learning clustering methods (K-means+

+ and GMM).

https://doi.org/10.1371/journal.pone.0261531.g001
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perpetuate existing labelling errors, as the algorithms are oblivious to labels. It can correctly

classify sequences of a type never seen during any previous training, by assigning the

sequences to dynamically defined new clusters.

Unsupervised machine learning approaches. Unlike supervised learning, in unsuper-

vised learning training samples are unlabelled, i.e., the cluster label associated with each DNA

sequence is not available (or is ignored) during training. In general, clustering large datasets

using unsupervised learning is a challenging problem, and the progress in using unsupervised

learning for clustering of genomic sequences has not been as rapid as that of its supervised

classification counterparts. The effort made so far in the development of unsupervised align-

ment-free clustering algorithms for genomic sequences has been mainly focused on using

generic clustering algorithms such as K-means or Gaussian Mixture Models (GMM) for differ-

ent numerical representations of DNA sequences. For example, Bao et al. [8], used a represen-

tation of DNA sequences based on their word counts and Shannon entropy, whereby each

sequence is represented by a 12-dimensional vector and the clustering is performed using K-

means with Euclidean distance. James et al. [9], grouped DNA sequences based on four differ-

ent similarity measures obtained from an alignment-free methodology that used k-mer fre-

quencies and an adaptation of the mean shift algorithm, normally used in the field of image

processing. Similar work [10, 14, 30] also builds on the K-means algorithm and k-mer counts.

Another approach is the use of digital signal processing [11–13], whereby Fourier spectra cal-

culated from a numeric representation of a DNA sequence are used as their quantitative

description, and the Euclidean distance is used as a measure of dissimilarity to be employed by

either the K-means or the GMM clustering algorithms.

Although K-means (and its improved version K-means++) is a simple and versatile algo-

rithm, it is dependent on several restrictive assumptions about the dataset, such as the need for

manual selection of the parameter K, and the assumption that all clusters have the same size

and density. It is also heavily dependent on the selection of initial cluster centroids, meaning

that for large datasets, numerous initializations of the centroids are required for convergence

to the best solution and, moreover, that convergence is not guaranteed [31]. Although GMM

is more flexible in regards to the distribution of the data and does not assume that all clusters

are spherical, the initialization of clusters is still challenging, especially in high dimensional

data [32, 33].

A potential solution to these drawbacks could lie in recent developments in the field of

computer vision [34–36], specifically in the concepts at the core of invariant information clus-
tering (IIC) [36], one of the successful methods for the clustering of unlabelled images. These

methods are effective for visual tasks and, as such, are not directly applicable to genomic

data. In this paper, we propose the use of Frequency Chaos Game Representations (FCGR) of

DNA sequences and the novel notion ofmimic sequences, to leverage the idea behind IIC. In

our approach, FCGR pairs of sequences and of their mimics are generated, and used as input

for a de novo simple but general Artificial Neural Network (ANN) architecture, specifically

designed for the purpose of DNA sequence clustering. Finally, majority voting over several

independently trained ANN copies is used, to obtain the accurate cluster assignment of each

sequence.

Materials and methods

In this section, we first give an overview of our method and the computational pipeline of

DeLUCS. We then describe the core concepts of invariant information clustering, and detail

how these concepts are adapted to DNA sequence clustering, by introducing the notion of

“mimic sequences”. This is followed by a description of the architecture of the neural networks
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employed, the evaluation scheme used for assessing the performance of DeLUCS, and all of

the implementation details. Finally we give a description of all the datasets used in this study.

Method overview

DeLUCS employs a graphical representation of DNA sequences introduced by Jeffrey in [37],

called Chaos Game Representation (CGR). In this paper, we use a quantized version of CGR,

called Frequency CGR with resolution k, and denoted by FCGRk. The FCGRk of a DNA

sequence is a two-dimensional unit square image, with the intensity of each pixel representing

the frequency of a particular k-mer in the sequence [38]. FCGRk is a compressed representa-

tion of the original DNA sequence, with the degree of compression indicated by the resolution

k. All computational experiments in this paper use k = 6, which was empirically assessed as

achieving the best balance between accuracy and time complexity. Several studies have demon-

strated that the CGR of a genomic sequence can serve as its genomic signature, defined by Kar-

lin and Burge [39] as any numerical quantity that is more similar for DNA sequences of closely

related organisms, while being dissimilar for DNA sequences of more distantly related organ-

isms, see Fig 2.

Unlike some quantization techniques [40, 41], DeLUCS does not need an intermediate step

of supervised learning to produce a compressed representation of data, retaining only the

information needed for the correct classification of the feature vector and the cluster assign-

ment. This is because FCGRk already is a compressed representation, by virtue of storing only

the counts of all k-mers in the sequence for a given value of k. These k-mer counts contain the

intrinsic, taxonomically relevant, information used for the unsupervised learning in DeLUCS.

The general pipeline of DeLUCS, illustrated in Fig 3, consists of three main steps:

1. For each DNA sequence in the dataset several artificialmimic sequences are constructed,

and considered to belong to the same cluster. These mimic sequences are generated using a

probabilistic model based on transversions and transitions. The k-mer counts for both the

original sequence and its mimic sequences are then computed, to produce their respective

FCGRs. In this study, k = 6 was empirically assessed as achieving the best balance between

high accuracy and speed.

Fig 2. Chaos Game Representation of (a) the complete mitochondrial genome of Rana Chosenica (a frog), 18,357 bp—Accession ID: NC_016059.1; (b)

the first 80,000 bp of the Bacillus mycoides genome—Accession ID: NZ_CP009691.1; (c) the complete genome ofDengue Virus 2, 10,627 bp—Accession

ID: GU131948.1.

https://doi.org/10.1371/journal.pone.0261531.g002
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2. Pairs consisting of the FCGR of the original DNA sequence and the FCGR of one of its

mimic sequences are then used to train several copies of an Artificial Neural Network

(ANN) independently, by maximizing the mutual information between the network predic-

tions for the members of each pair.

3. As the training process of the ANNs is a randomized algorithm which produces different

outcomes with high variance, a majority voting scheme over the outcomes of the ANNs in

Step 2 is used to determine the final cluster assignment for each sequence.

Fig 3. General DeLUCS pipeline. The input consists of the original DNA sequences to be clustered. (1a): Artificialmimic sequences are generated from

the original sequences, by using a probabilistic model based on transitions and transversions. (1b): FCGRs of all original (black) sequences, and of all

mimic (blue) sequences are computed, and data pairs of the form “FCGR of DNA sequence, FCGR of one of its mimics” are divided in batches for the

training process. (2): Several copies of the ANN are trained independently, with the loss function being the negative mutual information between the

network predictions for a sequence and that of its mimic. (3): Majority voting is used to obtain the final cluster assignment for each sequence.

https://doi.org/10.1371/journal.pone.0261531.g003
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To evaluate the quality of the clusters, an additional step is performed, independent of

DeLUCS. This step first utilizes the Hungarian algorithm to determine the optimal correspon-

dence between the cluster assignments learned by DeLUCS and the true taxonomic cluster

labels. It then proceeds to determine the accuracy of the DeLUCS cluster predictions, as

detailed in the Evaluation section.

Invariant Information Clustering (IIC)

Steps 1 and 2 in the DeLUCS pipeline build upon the underlying concepts of IIC [36], which

leverages some information theory notions described in this subsection. Given a discrete ran-

dom variable X that takes values x 2 X and has probability mass function p(x) = P(X = x),

the entropyH(X) is a measure of the average uncertainty in the random variable and is defined

by

HðXÞ ¼ �
X

x2X

pðxÞlog
2
pðxÞ: ð1Þ

H(X) also represents the average number of bits required to describe the random variable X.

Given a second random variable ~X that takes values ~x 2 ~X , we can also define the condi-

tional entropy HðXj~XÞ, for a pair sampled from a joint probability distribution

pðx; ~xÞ ¼ PðX ¼ x; ~X ¼ ~xÞ, as the entropy of a random variable X conditional on having some

knowledge about the variable ~X . The reduction in the uncertainty of X introduced by the addi-

tional knowledge provided by ~X is calledmutual information and it is defined by

IðX; ~XÞ ¼ HðXÞ � HðXj~XÞ ¼
X

x;~x

pðx; ~xÞlog
pðx; ~xÞ
pðxÞpð~xÞ

: ð2Þ

The mutual information measures the dependence between the two random variables, and it

represents the amount of information that one random variable contains about another. I(X,

~X) is symmetric, always non-negative, and is equal to zero if and only if X and ~X are

independent.

The information bottleneck principle [42, 43], which is part of the information theoretic

approach to clustering, suggests that clusters only need to capture relevant information. In

order to filter out irrelevant information, IIC aims to learn only from paired data, i.e., from

pairs of samples ðx; ~xÞ 2 X � ~X taken from a joint probability distribution pðx; ~xÞ. If, for each

pair, ~x is an artificially created copy of x, it is possible to find a mapping F that encodes what is

common between x and ~x, while dropping all the irrelevant information. If such a mapping F

is found, the image Y ¼ FðXÞ becomes a compressed representation of the original space X .

To find the best candidate for F, one way is to make F(x) represent a random variable, and

then maximize the predictability of sample x from sample ~x and vice versa, that is, find a map-

ping F(x) that maximizes IðFðxÞ;Fð~xÞÞ—the mutual information between the encoded vari-

ables—over all x 2 X .

This idea suggests that F can be calculated using a deep neural network with a softmax as

the output layer. For a dataset with an expected number of c clusters, c 2 N, the output space

will be Y ¼ ½0; 1�c, where for each sample x we have thatF(x) represents the distribution of a

discrete random variable over the c clusters. The mutual information can be modified with the

introduction of a hyper-parameter l 2 R that weighs the contribution of the entropy term in

Eq (2). However, instead of maximizing the weighted mutual information, we use a numerical

optimizer to minimize its opposite (mathematically, the negative weighted mutual informa-

tion) during the training process of the ANN. Hence, the loss function to be minimized

PLOS ONE DeLUCS: Deep learning for unsupervised clustering of DNA sequences

PLOS ONE | https://doi.org/10.1371/journal.pone.0261531 January 21, 2022 8 / 25

https://doi.org/10.1371/journal.pone.0261531


becomes:

Lðx; ~xÞ ¼ � l � HðFðxÞÞ þHðFðxÞ j Fð~xÞÞ: ð3Þ

In Eq (3), the entropy termH(F(x)) measures the amount of randomness present at the output

of the network, and it is desirable for that value to be as large as possible, in order to prevent

the architecture from assigning all samples to the same cluster. The conditional entropy term

HðFðxÞ j Fð~xÞÞmeasures the amount of randomness present in the original sample x, given

its correspondent ~x. This conditional entropy should be as small as possible, since the original

sample x should be perfectly predictable from ~x.

Generation of mimic sequences

The success of the method described in the previous section is fundamentally dependent on

the way ~x is artificially generated from x. In the particular case of our application, where the

samples x are DNA sequences, we refer to the artificially created ~x asmimic sequences (some-

times called simplymimics). In this context, the generation of mimic sequences poses the addi-

tional challenge that they should be sufficiently similar to the originals so as not to be assigned

to a different cluster.

Given a set X = {x1, . . ., xn} of nDNA sequences, we construct the set of pairs

fðxi; x1
i Þ; ðxi; x

2
i Þ; ðxi; x

3
i Þ; . . . ; ðxi; xmi Þ j 1 � i � ng; ð4Þ

wherem� 3 is a parameter representing the number of mimic sequences generated for each

original sequence xi, 1� i� n. We use a simple probabilistic model based on DNA substitu-

tion mutations (transitions and transversions) to produce different mimic sequences, as fol-

lows. Given a sequence xi and a particular position j in the sequence, we fixed independent

transition and transversion probabilities pts[j] and ptv[j] respectively. Next, we produce the fol-

lowing mimic sequences, probabilistically: x1
i with only transitions, x2

i with only transversions,

and xji with both transitions and transversions, for all 3� j�m. The parameterm is deter-

mined, for each experiment, based on the particulars of its dataset. Its default value is 3, to

account for the use of the two individual substitution mutations and their combination, but

may have to be increased if the number of available sequences per cluster is insufficient to

obtain a high classification accuracy.

The rationale behind using transition and transversion probabilities to generate sequence

mimics is biologically inspired. That being said, we use this method only as a mathematical

tool without attributing any biological significance, to create minimally different sequences

through randomly distributed base substitutions. In this paper we use probabilities pts = 10−4

and ptv = 0.5 × 10−4, assessed empirically to result in the best classification accuracies.

Although the mutation rates used are biologically inspired, they are not biologically precise

given that mutation rates vary regionally, with species [44, 45], and with the estimation

method [46]. Lastly, in practice, with no taxonomic label, it is impossible to select species-spe-

cific mutation rates.

Artificial Neural Network (ANN) architecture

The pairs of FCGRs of the original DNA sequences and their mimic sequences are used as

inputs, to train several independent copies of an ANN. Since the size of the genomic datasets

under study is at least an order of magnitude smaller than what is used in computer vision, we

noted that the common architectures that have proven effective in the application of deep

learning for various visual tasks were not suitable for our datasets. Hence, we designed, de
novo, a simple but general architecture that is suitable for the clustering of DNA sequences.
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The complete architecture is presented in Fig 4 and it consists of two fully connected layers,

Linear (512 neurons) and Linear (64 neurons), each one followed by a Rectified Linear Unit

(ReLU) and a Dropout layer with dropout rate of 0.5. The output layer Linear (c_clusters),
where c is a numerical parameter representing the upper bound of the number of clusters, is

followed by a Softmax activation function.

The network receives as input pairs of FCGRs (two-dimensional representations of DNA

sequence composition) and flattens them into one-dimensional representations, which are

then fed sequentially to the first Linear layer. The inclusion of ReLUs is essential for the train-

ing process, as they help mitigate the problems of vanishing gradients and other back-propaga-

tion errors. The dropout layers prevent the model from over-fitting, which in unsupervised

learning comes in the form of degenerate solutions, i.e., all the samples being assigned to the

same cluster. Finally, the Softmax layer gives as output a c-dimensional vector F(x) 2 [0, 1]c,

such that Fcj
ðxÞ, 1� cj� c, represents the probability that an input sequence x belongs to a

particular cluster cj.
Note that this general architecture was designed so as to be successful for the clustering of

all the diverse datasets presented in this study. However, the main pipeline of DeLUCS allows

it to be used also with other architectures, including architectures that make use of the two-

dimensional nature of the FCGR patterns and are performant for specific types of genomic

data (e.g., Convolutional Neural Networks).

Evaluation

Clustering results can be evaluated using both internal and external validation measures. Inter-

nal validation methods [47, 48] evaluate clustering algorithms by measuring some of the dis-

covered clusters’ internal properties (e.g., separation, compactness), while external validation

methods [49–51] evaluate clustering algorithms by measuring the similarity of the discovered

clustering with the ground truth. We note that many genomic datasets are sparse, incomplete,

and subject to sampling bias (more than 86% of existing species on Earth and 91% of species in

the oceans have not yet been classified and catalogued [52]). Thus, when taxonomic ground

truth is available for an external validation, agreement between discovered clusters and real

taxonomic groups is preferable to, and more informative than, internal validation methods.

We include performance comparison results obtained using (unsupervised) classification

accuracy (ACC), as ACC uses the optimal mapping between the discovered clusters and the

ground truth clusters, and has been used extensively in recent deep unsupervised learning

studies [53]. Comparison results obtained using two other external evaluation methods, nor-

malized mutual information of the partitions (NMI), and adjusted rand index (ARI), lead to

similar conclusions, and can be found in S6 Appendix: Using NMI and ARI to compare

DeLUCS with K-means++ and GMM.

In calculating the classification accuracy ACC, we follow the standard protocol that uses the

confusion matrix as the cost matrix for the Hungarian algorithm [35, 36], to find the optimal

Fig 4. Architecture of the deep Artificial Neural Network used in this paper. The input FCGRs are flattened into one-dimensional representations

prior to entering the first Linear layer. The parameter in each linear layer except the output layer represents the number of neurons. For theDropout
layer, the parameter represents the dropout rate. The parameter c (in c_clusters) of the output linear layer, represents the expected upper bound of the

number of clusters. The Softmax layer is used to obtain a probability distribution as the output of the network.

https://doi.org/10.1371/journal.pone.0261531.g004
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mapping f that assigns to each cluster label cj, 1� cj� c found by DeLUCS, a taxonomic label f
(cj). We then use this optimal assignment to calculate the classification accuracy of the unsu-

pervised clustering method, which is defined as:

ACC ¼
Pn

i¼1
Ofli ¼ f ðciÞg
n

; ð5Þ

where n is the total number of sequences, and for each DNA sequence xi, 1� i� n, we have

that li is its true taxonomic label, ci is the cluster label found by the algorithm, f(ci) is the taxo-

nomic label assigned to ci by the optimal mapping f, and O is a comparison operator returning

1 if the equality in the argument holds and 0 otherwise.

Several unsupervised clustering methods exist in the literature, and various deep learning-

based clustering tools have been adapted to bioinformatics [53]. However, these methods are

domain specific and are not optimized to operate with DNA sequences, hence they perform

poorly when used with DNA datasets (see S5 Appendix: A note on comparing DeLUCS with

other deep learning-based clustering methodologies). In this paper, K-means++ and Gaussian

Mixture Model (GMM) were selected for comparison with DeLUCS because they are general

clustering algorithms at the core of many unsupervised learning frameworks, and have been

previously used with DNA sequence datasets [8, 10, 13, 14]. Note that the Hungarian algo-

rithm is used to find the mapping that maximizes for all the unsupervised clustering methods

considered. In all three cases, the use of the true taxonomic labels is for evaluation purposes

only, as true labels are never used during the training process.

Lastly, we compare these three unsupervised clustering methods to a supervised learning

classification method. For this purpose, the same neural network architecture described in the

previous section is trained, using labelled data and the cross-entropy loss function. The accu-

racy of the classification is calculated by first taking 70% of the data for training, and 30% of

the data for testing. The classification accuracy of the supervised learning method is then

defined as the ratio of the number of correctly predicted testing sequence labels to the total

number of testing sequences.

Implementation

During the training procedure, all the hyperparameters of the method are fixed and common

to all of the tests, and were empirically selected as yielding the best performance. All the flat-

tened FCGRk were normalized before being fed into the network, by using the L1 norm, i.e., by

dividing the values of each k-mer count vector by their sum. This normalization brings all of

the inputs of the ANN into the same range of values, which contributes to the reliability of the

ANN convergence.

The networks are initialized using the Kaiming method [54], to avoid exponential reduction

or magnification of the input magnitudes. This is crucial for our method because a poor ini-

tialization may lead to degenerate solutions, as one of the terms in the loss function becomes

dominant. We use the Adam optimizer [55], with a learning rate of 5 × 10−5, and the networks

were trained for 150 epochs with no early stopping conditions. Another vital consideration

during training is the selection of the batch size (empirically determined to be 512), because

the marginalization that is performed to find the distribution of the output is done over each

batch of pairs. If the batch size is not large enough to represent the real distribution of the data,

the entropy term in the loss function becomes dominant, leading to sub-optimal solutions.

Lastly, we fix the value of the hyperparameter λ to 2.5 (in Eq 3).

DeLUCS is fully implemented in Python 3.7, and the source code is publicly available in the

Github repository https://github.com/pmillana/DeLUCS. Users may reproduce the results
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obtained in this paper, or use their own datasets for the purpose of clustering new sequences

(see S1 Appendix: Instructions for reproduction of the tests using DeLUCS). All of the tests

were performed on one of the nodes of the Cedar cluster of Compute Canada (2 x Intel E5–

2650 v4 Broadwell @ 2.2GHz CPU, 32 GB RAM) with NVIDIA P100 Pascal(12G HBM2

memory).

Datasets

We used three different datasets in this study to confirm the applicability of our method to dif-

ferent types of genomic sequences (mitochondrial genomes, randomly selected bacterial

genome segments, viral genes, and viral genomes), and all data was retrieved from publicly

available databases. Tables 1, 2 and 3, summarize the dataset details for each of the 11 compu-

tational tests performed (see S2 Appendix: Query options for data download, for more

information).

Mitochondrial genomes (Table 1). The first dataset consists of complete vertebrate mito-

chondrial genomes. We used the software Geneious 2020.2.4 to obtain a list with 13,300 acces-

sion numbers. Sequences were downloaded from the National Center for Biotechnology

Information (NCBI) on November 16, 2020, after removing all of the sequences shorter than

14,000 bp and longer than 24,500 bp. For this dataset, the goal was to assess the performance

of DeLUCS at different taxonomic levels, starting at the sub-phylum level, down to the genus

level. To do so, the cluster with the largest number of sequences available at each taxonomic

level was selected for the next computational experiment, to ensure that we could reach as

Table 1. Details of the datasets used in computational tests 1 through 6 (full vertebrate mitochondrial genomes).

Test
#

Dataset Total no.
of seq.

Min
clus.
size

Max
clus.
size

Min. seq.
len. (bp)

Avg. seq.
len. (bp)

Max seq.
len. (bp)

1 Subphylum Vertebrata (Actinopterygii (Fish): 500,

Amphibians: 500, Birds: 500, Mammals: 500, Reptiles: 500)

2,500 500 500 14,127 16,951 24,317

2 Class Actinopterygii (Neopterygii: 40, Polypteriformes:

33, Chondrostei: 40)

113 33 40 15,531 16,623 18,062

3 Subclass Neopterygii (Ostariophysi: 250, Clupeomorpha:

250, Elopomorpha: 226, Acanthopterygii: 250, Paracanthopterygii:

249 Protacanthopterygii: 250)

1,475 226 250 15,564 16,688 19,801

4 Superorder Ostariophysi (Cypriniformes: 130,

Characiformes: 123, Siluriformes: 130)

383 123 130 15,664 16,635 17,998

5 Order Cypriniformes (Cyprinidae: 80, Cobitidae: 80,

Balitoridae: 75, Nemacheilidae: 80, Xenocyprididae: 80,

Acheilognathidae: 70, Gobionidae: 80)

545 70 80 16,061 16,610 17,282

6 Family Cyprinidae (Acheilognathus: 47, Acrossocheilus: 46,

Carassius: 45, Labeo: 45, Microphysogobio: 35, Notropis: 26,

Onychostoma: 29, Rhodeus: 28, Schizothorax: 31,

Sarcocheilichthys: 45, Cyprinus: 43, Sinocyclocheilus: 27)

447 26 47 16,070 16,632 17,426

The choice of computational Tests 1 to 6 (datasets within the sub-phylum Vertebrata) follows a decision-tree approach whereby, at each taxonomic level, one particular

cluster is selected for further in-depth analysis. Note that, since the minimum and maximum cluster sizes are different for each test, the number of sequences selected

from a given taxon can differ from one test to another. For example, in Test 3 only 250 out of the total 2,723 available Ostariophysi sequences were selected, due to the

need to achieve cluster balance, while the min/max cluster size parameters of Test 4 allowed for 383 Ostariophysi sequences to be used. The remaining Ostariophysi

sequences could not be selected in either test since most of them belonged to the over-represented Order Cypriniformes (2,171 available sequences). Test 1 and 2

illustrate a different scenario: 500 of the total 7,876 available Actinopterygii sequences were used in Test 1, since this cluster size was sufficient to achieve high accuracy,

while in Test 2 only 113 Actinopterygii sequences could be used, due to the under-representation of class Polypteriformes (33 available sequences) and over-

representation of class Neopterygii (7,715 available sequences).

https://doi.org/10.1371/journal.pone.0261531.t001
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deep as possible into the phylogenetic tree. A decision tree illustrating the cluster choices at dif-

ferent taxonomic levels is included in Supplementary Material (see S4 Appendix: Detailed

description of the mtDNA datasets, and Fig 1 therein).

DeLUCS reaches optimal performance (in terms of classification accuracy) when a dataset

consists of balanced clusters, that is, clusters that are similar in size, and when each cluster has

more than a minimum number of sequences (herein 20 sequences). These two requirements,

together with the number of sequences per cluster available on NCBI, were used to determine

the minimum and maximum cluster size for each test.

After determining the minimum cluster size for a test (the size of the smallest cluster larger

than 20), the clusters that were smaller than this test minimum were discarded. In addition,

sequences that belonged to the parent taxon, but lacked a sub-taxon identifier (cluster label)

were excluded (see S4 Appendix: Detailed description of the mtDNA datasets, for details).

Some clusters were larger than the test maximum (a number bigger than—but not more

than 20% bigger than—the test minimum, to ensure cluster balance). For such clusters,

sequences were randomly selected until the test maximum was reached. Note that since the

minimum and maximum cluster size are test dependent, the number of sequences in a cluster

is also test dependent (for example, Test 1 uses 500 Actinopterygii sequences, while Test 2 uses

only 113). Moreover, for similar reasons, the number of sequences per cluster is usually smaller

than the total number of sequences with that cluster label that are available on NCBI.

Bacterial genomic sequences (Table 2). The second dataset consists of 3,200 randomly

selected genomic segments of bacterial DNA from the eight different families analyzed in [11].

These bacterial families belong to three different phyla: Spirochaetes (Treponemataceae),
Firmicutes (Bacillaceae, Clostridiaceae, and Staphylococcaceae), and Proteobacteria
(Enterobacteriaceae, Rhodobacteriaceae, Desulfovibrionaceae, and Burkholderiaceae).

To construct a balanced dataset that captured as much diversity as possible, we considered

all of the available species per family, according to GTDB (release 95), [6], and first excluded

those species for which none of the sequences had a contig that was of the minimum length

(herein, 150 kbp). For these computational tests, the cluster size was selected to be 400

Table 2. Details of the datasets used in computational test 7 and 8 (randomly selected bacterial genome segments, 400 segments per family, each of length between

150 kbp and 500 kbp).

Test
#

Phylum Family No. Species No. Genomes Total No. of Seg. Avg.No. Seg./Genome Avg. Seg.len. (bp)

7 Spirochaetes Treponemataceae 46 153 400 2.3 387,939

Firmicutes Bacillaceae 47 400 400 1 493,999

Clostridiaceae 136 400 400 1 443,267

Staphylococcaceae 77 400 400 1 404,889

Proteobacteria Enterobacteriaceae 379 400 400 1 446,887

Rhodobacteriaceae 400 400 400 1 464,632

Desulfovibrionaceae 73 99 400 2.5 359,337

Burkholderiaceae 400 400 400 1 465,707

8 Proteobacteria Enterobacteriaceae 379 400 400 1 446,887

Rhodobacteriaceae 400 400 400 1 464,632

Desulfovibrionaceae 73 99 400 2.5 359,337

Burkholderiaceae 400 400 400 1 465,707

Test 7 comprises randomly selected genome segments from bacterial families across several phyla (min. segment length 150,499 bp, average segment length 433,613 bp,

max. segment length 500,000 bp). Test 8 consists of the genome segments in Test 7 that belong to phylum Proteobacteria (min. segment length 150,499 bp, average

segment length 434,150 bp).

https://doi.org/10.1371/journal.pone.0261531.t002
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sequences per cluster. This led to the following cases and corresponding experiment design

choices:

1. The number of available species in a family is larger than 400
(Rhodocacteriaceae and Burkholderiaceae)
We selected 400 species at random and, for each of the selected species, we randomly

selected one genome. Then we selected a random segment of at most 500 kbp from each

genome. If there was only one genome available for a particular species, and the length of

its largest contig was between 150 kbp and 500 kbp, the entire contig was selected. The

selection strategy was designed to include as many families as possible in the final dataset.

2. The number of available species in a family is less than 400

A. The total number of genomes in that family is larger than
400
(Bacillaceae, Clostridiaceae, Staphylococcaceae, Enterobacteriaceae)
We calculated the medianM of the number of genomes per species, for that family, and

randomly chose at mostM genomes per species (M = 2 for Bacillaceae,M = 1 for Clostri-
diaceae,M = 7 for Staphylococcaceae, andM = 2 Enterobacteriaceae). We then selected a

random segment of at most 500 kbp from each genome. If there were fewer thanM
genomes representing a species, and the length of their largest contig was between 150

kbp and 500 kbp, then the entire contig was selected. Since after this selection more

sequences were still required to reach the required 400 sequences per cluster, we chose

the rest of the genomes at random from the family, without repetition, and selected a seg-

ment of 500 kbp from each such genome.

B. The total number of genomes in the family is less than 400
(Treponemataceae and Desulfovibrionaceae)
For every genome, whenever possible, contigs were divided into successive segments of at

most 500 kbp, that were added to a “pool”. If the length of a contig was between 150 kbp

and 500 kp, the entire contig was added to the pool. From this pool, 400 segments were

selected for inclusion in the final dataset. This selection strategy ensured that all of the

species were represented, and that the shortest segments were selected last.

A description of the final composition of each cluster is presented in Table 2. In addition to

the inter-phylum classification of bacterial sequences into families (Test 7), we assessed the

performance of DeLUCS for an intra-phylum classification into families, within the Proteo-
bacteria phylum only (Test 8). The dataset for Test 8 was simply the subset of the dataset

in Test 7 that included only the segments from genomes in bacterial families from phylum

Proteobacteria.

Viral genomes (Table 3). The third group of datasets consists of three different sets of

viral genome sequences. The minimum and maximum cluster sizes were determined in a

manner similar to that of the mitochondrial DNA datasets, i.e., for all the tests, the minimum

cluster size was fixed to the size of the smallest cluster available and the maximum cluster size

was fixed manually to a number exceeding the minimum cluster size by no more than 20%, to

ensure cluster balance.

To asses the performance of DeLUCS at the gene level, the dataset of Test 9 comprises 949

sequences of segment 6 of the Influenza A virus genome (encoding the neuraminidase protein,

average length 1,409 bp). The sequences were downloaded from NCBI, [56], as belonging to

subtypes H1N1, H2N2, H5N1, H7N3, and H7N9, as per [11]. The dataset of Test 10 comprises

1,633 Dengue virus full genome sequences downloaded from NCBI, [57], comprising four
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different subtypes. Finally, the dataset for Test 11 comprises 1,562Hepatitis B virus (HBV) full

genome sequences, downloaded from the Hepatitis Virus Database, [58], comprising six dif-

ferent subtypes. A description of the composition of each dataset is presented in Table 3.

Results

Qualitative and quantitative DeLUCS performance results

We first used a qualitative measure to assess DeLUCS’s ability to group DNA sequences into

meaningful clusters within the previously described datasets. Fig 5 illustrates how, during the

training stage, the ANN discovers meaningful clusters as the learning process evolves. The

progress of DeLUCS is demonstrated in terms of the number of epochs (one epoch means a

single pass of the ANN through the entire dataset, trying to discover new patterns). In Fig 5,

the number of clusters is c = 5 and it corresponds to the number of vertices in the regular poly-

gon, whereby each vertex represents a taxonomic label. The coordinates of each point are cal-

culated using a convex combination of the components of the c-dimensional probability

vector (see section Artificial Neural Network (ANN) Architecture) [36]. When the learning

process starts, all the sequences are located at the center of the polygon, which means that each

sequence is equally likely to be assigned any of the five cluster labels. As the learning process

continues, the network starts assigning the sequences to clusters (with similar sequences being

grouped together closer to their respective vertex/cluster), with higher and higher probability.

Note that if two sequences are assigned the same probability vectors, their corresponding

points in Fig 5 will overlap.

Fig 5. Learning process for the clustering of 2,500 vertebrate mtDNA full genomes into c = 5 different clusters, each

corresponding to one corner of the pentagon. Each point represents a sequence, and its position indicates the probability that it is

assigned to different classes. Hence, a point in the center has equal probabilities to be assigned to all 5 vertices/clusters, while a point

located in a vertex has probability of 1 of belonging to that vertex/cluster. With successive epochs, the learning progresses until, at

epoch 149, all sequences are correctly placed in their respective vertex/cluster. Note that points in the figure overlap if they have the

same probability vector.

https://doi.org/10.1371/journal.pone.0261531.g005

Table 3. Details of the datasets used in computational tests 9, 10 and 11 (Influenza virus NA-encoding gene, Dengue virus full genomes, Hepatitis B virus full

genomes).

Test
#

Dataset Total no.
of seq.

Min clus.
size

Max clus.
size

Min. seq.
len. (bp)

Avg. seq.
len. (bp)

Max seq.
len. (bp)

9 Influenza A (NA-encoding gene) (Subtypes H1N1:

191, H2N2: 187, H5N1: 188, H7N3: 193, H7N9: 190)

949 187 193 1,345 1,409 1,469

10 Dengue complete genomes (Subtypes 1: 409, 2: 409, 3:

408, 4: 407)

1,633 407 409 10,161 10,559 10,991

11 Hepatitis B complete genomes (Subtypes A: 258,

B: 262, C: 263, D: 260, E: 261, F: 258)

1,562 258 263 3,182 3,210 3,227

https://doi.org/10.1371/journal.pone.0261531.t003
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For a quantitative assessment of DeLUCS, we calculated its “classification accuracy” as

defined in the Evaluation section. For the vertebrate mtDNA dataset, Table 4 shows that, at

each taxonomic level, down to the genus level, our unsupervised deep learning algorithm out-

performs the other two unsupervised clustering methods. Surprisingly, DeLUCS also outper-

forms a supervised learning algorithm that uses the same architecture in some tests (e.g., in

Test 2, Class to Subclass), sometimes by a significant margin (e.g., in Test 6, Family to Genus,

by 11%). Note that, in order to obtain a reasonable classification accuracy, the numberm of

mimics had to be increased for the tests/datasets with less than 150 sequences per cluster.

To test the ability of DeLUCS to cluster bacterial genome segments, and achieve a direct

accuracy comparison with other unsupervised learning methods, we first attempted clustering

a dataset comprising genome segments, averaging 400,000 bp, from the eight different bacte-

rial families considered in [11] (Table 5, Test 7). The DeLUCS classification accuracy of 77% is

19% to 21% higher than the accuracies of the other two unsupervised learning methods

(GMM 58%, and K-means++ 56%). The relatively low classification accuracies for all three

unsupervised methods may be due in part to this dataset having a very heterogeneous evolu-

tionary composition, with recent changes in the taxonomy of all eight bacterial families result-

ing during the reclassification and transition from NCBI to GTDB. In particular, Bacillaceae/
Staphylococcaceae and Clostridiaceae (formerly all Firmicutes) are now split into two different

phyla, and similarly Enterobacteriaceae/ Burkholderiaceae/ Rhodobacteraceae and Desulfovi-
brionaceae (formerly all Proteobacteria) are now split into two different phyla. The heteroge-

neity of the dataset makes clustering a challenging task, as the algorithm attempts to determine

cluster labels simultaneously for both closely related families and distantly related families.

The patterns observed in the confusion matrix (see S3 Appendix: Confusion matrices) support

the hypothesis of heterogeneity in genetic distance between members of the dataset. Indeed,

misclassification between phyla are a minority, and most of the misclassifications occur

among families that were previously placed within the same phylum, but are now placed in dif-

ferent phyla.

Table 4. Classification accuracies for the mtDNA dataset in Table 1, Tests 1 to 6.

Test # Classification Number of Mimics Supervised Unsupervised

GMM K-Means++ DeLUCS

1 Subphylum 3 99% 72% 81% 93%

2 Class to Subclass 8 98% 92% 96% 100%

3 Subclass to Superorder 3 99% 70% 82% 85%

4 Superorder to Order 8 100% 68% 73% 94%

5 Order to Family 8 87% 66% 77% 79%

6 Family to Genus 8 80% 84% 87% 91%

For unsupervised learning, reported accuracy values are the average over 10 runs of the algorithm. For supervised learning, the accuracy is that of classifying the test set.

https://doi.org/10.1371/journal.pone.0261531.t004

Table 5. Classification accuracy for the bacterial datasets in Table 2, Test 7 and 8.

Test # Classification Number of Mimics Supervised Unsupervised

GMM K-Means++ DeLUCS

7 Bacteria into families 3 98% 58% 60% 77%

8 Proteobacteria into families 3 99% 50% 43% 90%

For unsupervised learning, reported accuracy values are the average over ten runs. For supervised learning, the reported accuracy is that of classifying the test set.

https://doi.org/10.1371/journal.pone.0261531.t005
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To verify that the lower classification accuracy could be partially caused by the heterogene-

ity of the dataset, we next considered an intra-phylum clustering of a subset of this dataset,

comprising only sequences belonging to phylum Proteobacteria (Table 5, Test 8). As predicted,

the classification accuracy of DeLUCS shows a significant increase, from 77% to 90%, now out-

performing the other two unsupervised learning methods by 40% and 48% respectively. The

majority of the misclassified genome segments in Test 8 belong to the family Desulfobivriona-
ceae. This may be partly due to this family having the shortest genome segments: The average

Desulfobivrionaceae genome segment length is 359,337 bp, significantly shorter than the aver-

age genome segment length in Test 7, which is 433,613 bp.

Note that, in both Tests 7 and 8, we used the default valuem = 3 for the number of mimic

sequences. This is because the number of available sequences (genome segments of the

required size) per cluster was large, and the classification accuracy did not increase by increas-

ing the number of mimic sequences.

To test the ability of DeLUCS to cluster closely related sequences, we next attempted clus-

tering of three viral sequence datasets, Influenza A virus NA-encoding gene, Dengue virus

complete genomes, and Hepatitis B virus complete genomes into clusters corresponding to

virus subtypes. The classification accuracies presented in Table 6 show that all machine learn-

ing methods, supervised or unsupervised, perform well, in spite of the fact that the viral

sequences are very similar. In Tests 9, 10, 11 the default valuem = 3 for the number of mimic

sequences was used, since this was sufficient to obtain near perfect classification accuracy.

Together, these computational tests show that, in spite of the absence of any information

external to the primary sequences, DeLUCS is capable of learning meaningful clusters from

unlabelled, raw, and sometimes non-homologous DNA sequences. Moreover, DeLUCS out-

performs classical unsupervised clustering algorithms that use k-mer counts as input features,

often by a significant margin.

Methodology results

Number of mimic sequences. The default number of mimic sequences was chosen to be

m = 3, to correspond to the three different mechanisms used to generate mimic sequences

from the original sequences: transitions, transversions, or combinations of both.

For the datasets in this study it was empirically determined that, if the cluster sizes are simi-

lar, and each cluster has more than 150 sequences, then the default value ofm = 3 results in

optimal performances (as is the case in Tests 1, 3, 7, 8, 9, 10 and 11).

For the datasets with less than 150 sequences per cluster, we tested the hypothesis that the

classification accuracy could be improved by generating more artificial mimic sequences per

original DNA sequence. Our observations confirmed this hypothesis in Tests 2, 4, 5, and 6,

where increasing the number of mimics tom = 8 resulted in improved classification

accuracies.

Table 6. Classification accuracy for the viral sequences datasets, Table 3, Tests 9, 10, and 11.

Test # Classification Number of Mimics Supervised Unsupervised

GMM K-Means++ DeLUCS

9 Influenza A 3 100% 96% 99% 99%

10 Dengue 3 100% 100% 100% 100%

11 HBV 3 100% 100% 100% 100%

For unsupervised learning, reported accuracy values are the average over ten runs. For supervised learning, the reported accuracy is that of classifying the test set.

https://doi.org/10.1371/journal.pone.0261531.t006
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Note that, for the datasets with more than 150 DNA sequences per cluster (e.g., Tests 1, 3, 7,

8), increasing the number of mimics did not always result in increased classification accuracy.

Fig 6 illustrates the effect of increasing the number of mimic sequences on classification accu-

racy for four different tests (Tests 2, 4 and 6, with fewer than 150 sequences/cluster, and Test 3

with more than 150 sequences/cluster). Note also that Tests 9, 10, 11 had more than 150

sequences per cluster, as well as near perfect classification accuracies, and thus no increase in

the number of mimic sequences was explored.

In general, the optimal number of mimics per sequence may depend on the number of

available sequences per cluster, as well as on other particulars of the dataset being analyzed.

The values ofmmentioned above (m = 3, respectivelym = 8) are suggested, but further optimi-

zation may be possible through a hyperparameter search.

Adding Gaussian noise. We now provide further insight into the performance of our

method by showing the relationship between the loss function and the DeLUCS classification

accuracy. The learning curves presented in Fig 7 illustrate the optimization process of a single

ANN. During each epoch, the entire set of training sequences is utilized for optimizing the net-

work parameters, and we observe an inverse correlation between the classification accuracy

and the unsupervised loss function for each epoch (Fig 7, top). The same graph illustrates that

the ANN sometimes tends to converge to a suboptimal solution, and this is because the mutual

information might still be high for suboptimal solutions where relatively many related

Fig 6. The effect of the number of mimic sequences on classification accuracy. Blue—Class Actinopterygii (Test 2); Red—

Subclass Neopterygii (Test 3); Yellow—SuperOrder Ostariophysi (Test 4); Green—Family Cyprinidae (Test 6). In Tests 2, 4,

and 6, with fewer than 150 sequences per cluster, increasing the number of mimics per sequence results in a marked increase

in classification accuracy. In Test 3 (red), where the number of available sequences per cluster is sufficiently high (226 to 250),

increasing the number of mimics to more than 3 does not result in an increase the classification accuracy.

https://doi.org/10.1371/journal.pone.0261531.g006
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sequences are similarly misplaced (i.e., assigned to the wrong cluster, while still being close to

each other within their subgroup).

To prevent the model from converging to suboptimal solutions, we added Gaussian noise

to the network parameters every 50 epochs. We confirmed empirically that the introduction of

noise is beneficial, as the accuracy increases after the introduction of noise every 50 epochs

(Fig 7, bottom).

Majority voting for variance mitigation. The training process of an ANN is a random-

ized algorithm, with the randomness introduced by the initialization of the ANN, and the

selection of random batches of training data in each epoch. The random selection of batches is

beneficial for the marginalization that is performed to calculate the loss function. However, we

also observed a high variance in the outcomes of training several independent copies of the

Fig 7. Learning curves for the training process of a single ANN in Step 2 of the Method, for the dataset in Test 1 (vertebrate mtDNA genomes)

with (top), and without (bottom) the addition of Gaussian noise to the parameters of the networks every 50 epochs. Each graph displays the

relation between the unsupervised loss function that is being minimized and the overall accuracy of the method. The true labels of the sequences are

only used to evaluate the accuracy at each epoch, but they do not influence the learning process. The graph illustrates the positive effect that the periodic

addition of Gaussian noise has on the prevention of convergence to suboptimal solutions, and on the classification accuracy (from� 82% top, to�

96%, bottom).

https://doi.org/10.1371/journal.pone.0261531.g007
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ANN over the same dataset, likely due to the aforementioned randomness. To overcome this

challenge, for each dataset, we independently trained ten ANNs, and integrated the obtained

clustering results using a majority voting scheme. Fig 8 compares the accuracy of six tests that

use an ensemble of 10 ANNs, with majority voting, compared to six tests that use a single

ANN. Each test was repeated ten times to compare the variance of the two approaches. As

Fig 8 shows, majority voting not only reduced the variance of predictions but also improved

the overall classification accuracies.

Discussion

The use of FCGR as a numerical representation of genomic sequences, in combination with

invariant information clustering (a deep unsupervised learning method for computer vision),

allows DeLUCS to accurately cluster large datasets of genomic sequences. The largest compu-

tational experiment in this paper comprises 3,200 randomly selected bacterial genome seg-

ments, totalling more than 1 billion bp, a dataset which is a full order of magnitude larger than

previous studies clustering genomic data [8–14].

In addition, DeLUCS achieves significantly higher classification accuracies compared to

other unsupervised machine learning clustering methods (K-means++ and GMM), in

Fig 8. Comparison between training a single ANN (yellow), versus training an ensemble of 10 ANNs (blue) and using majority

voting to decide the final cluster label for each sequence (Tests 1–6). All tests were repeated 10 times. The minimum, first quartile

(Q1), median, third quartile (Q3), and maxima of the distributions are shown. The diamonds outside the boxes represent outliers.

Note that the result variance for single ANNs is larger than the result variance for the corresponding ensembles of 10 ANNs. In

addition, the classification accuracy is higher for the majority voting, in all cases.

https://doi.org/10.1371/journal.pone.0261531.g008

PLOS ONE DeLUCS: Deep learning for unsupervised clustering of DNA sequences

PLOS ONE | https://doi.org/10.1371/journal.pone.0261531 January 21, 2022 20 / 25

https://doi.org/10.1371/journal.pone.0261531.g008
https://doi.org/10.1371/journal.pone.0261531


comparable time. The running time of the whole pipeline of DeLUCS, considering both train-

ing and testing time, is less than 40 minutes for the largest bacterial dataset.

Note that for datasets comprising sequences with minimal homology (Tests 1–6, and 10–

11) using alignment-based methods would be near impossible, while for datasets comprising

non-homologous sequences (Tests 7, 8) using alignment-based methods would be impossible.

Indeed, in the former case (vertebrate mitochondrial genomes, and virus genomes respec-

tively), the time complexity of multiple-sequence alignment is prohibitive. In the latter case

(bacterial genome segments averaging 400 kbp), the random sampling of genome segments

from bacterial genomes almost guarantees non-homologous regions, thus making alignment

impossible even if time complexity were not an issue. Test 9, of the NA-encoding gene of Influ-
enza A virus, where an alignment-based method would be possible and probably successful,

was included to showcase the applicability of our method to a variety of genomic data.

This study serves as a proof of concept of the ability of unsupervised deep learning to effec-

tively cluster unlabelled raw DNA sequences. DeLUCS is a fully-automated method that could

be used for successful clustering of datasets where traditional methods are not applicable, such

as: large datasets of dissimilar and variable length raw DNA sequences, DNA sequences with

incomplete or missing biological annotations, and DNA sequences for which taxonomic infor-

mation or other sequence identifiers are insufficient or unavailable. Future work can address

some of the current limitations of this approach, as described below.

First, in order to achieve accurate clustering, DeLUCS requires its training dataset to have

balanced and well-represented clusters, with at least a minimum number of sequences per

cluster. The minimum and maximum cluster size were determined individually for each

computational test, based on the number of available sequences and the aforementioned

requirements. As a result, many available sequences were not included in the training data,

either due to the fact that under-represented clusters were discarded, or due to the fact that the

excess sequences from over-represented clusters were not used. This limitation could be

addressed, e.g., by adjusting the loss function to be able to deal with unbalanced training data-

bases, that is, datasets where clusters are of different sizes.

Second, we observe that the classification accuracy of an ANN is heavily dependent on the

initialization of the parameters, which is random for each run of the experiment. In other

words, the classification accuracy for a dataset can vary from run to run of an ANN, sometimes

by a large amount. On the other hand, one of the reasons behind DeLUCS’ successful cluster-

ing capability lies in this randomness in the parameter initialization. We attempted to address

this trade-off between performance and reproducibility by training several copies of the same

ANN, and using majority voting to determine the final cluster labels. The overall classification

accuracy stabilized and increased as a result, with the downside being that this approach

increased the running time of the training step, since ten ANNs were sequentially trained.

More time-efficient solutions, such as training the ANNs in parallel, would lead to a tenfold

improvement of the running time.

Third, we observed that for the datasets with fewer than 150 sequences per cluster, an

increase in the number of mimics resulted in classification accuracy improvements (Tests 2, 4,

5, 6). However, this was not the case for some of the datasets with more than 150 sequences

per cluster (Tests 1, 3, 7, 8). Some other tests, e.g., Tests 9, 10, 11, resulted in near perfect accu-

racy from the start and needed no further optimization. For experiments in this paper, the

number of mimic sequences per cluster was empirically determined to be optimal with respect

to the cluster size. Further exploration is needed to determine the relationship between cluster

size and the number of mimics per sequence, as well as to find other mechanisms to boost clas-

sification accuracy for specific datasets, such as the use of Convolutional Neural Networks

which make full use of the two-dimensional aspect of the FCGR representation.
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Conclusions

In this work we introduce DeLUCS, a novel unsupervised deep learning clustering method for

DNA sequences. DeLUCS leverages deep learning to discover identity-relevant patterns in

raw, primary DNA sequence data, without requiring homology, biological annotations, or the

time-consuming and laborious step of defining taxonomic labels for the training data.

DeLUCS obtains high classification accuracies by the novel fusion of bioinformatics

approaches with recent developments in the field of deep learning for computer vision,

through the use of Chaos Game Representation of original and mimic DNA sequences as

input for invariant information clustering.

This is, to the best of our knowledge, the first effective alignment-free method that utilizes

deep ANNs for unsupervised clustering of unlabelled DNA sequences. DeLUCS clusters

diverse datasets comprising thousands of homology-free, identifier-free sequences (vertebrate

mtDNA full genomes at various taxonomic levels; random segments of bacterial genomes into

families; viral genomes into virus subtypes). Following the determination of the optimal map-

ping between the clusters learned by DeLUCS and true taxonomic groups (via the Hungarian

algorithm), we note that the resulting classification is of the highest sensitivity at the species

into subtypes level (99% to 100%), while in all other tests classification accuracy is double-digit

higher than that of classic unsupervised machine learning clustering methods.
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