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Abstract: We formulate binary fragmentation as a discrete stochastic process in which an integer
mass k splits into two integer fragments j, k− j, with rate proportional to the fragmentation kernel
Fj,k−j. We construct the ensemble of all distributions that can form in fixed number of steps from
initial mass M and obtain their probabilities in terms of the fragmentation kernel. We obtain its
partition function, the mean distribution and its evolution in time, and determine its stability using
standard thermodynamic tools. We show that shattering is a phase transition that takes place when
the stability conditions of the partition function are violated. We further discuss the close analogy
between shattering and gelation, and between fragmentation and aggregation in general.
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1. Introduction

Binary fragmentation is the splitting of a cluster into two. It is the inverse of binary
aggregation, in which two clusters merge into a new one. Aggregation and fragmentation
are two of the most common mechanisms in population balances. Both processes are
irreversible, but in opposite directions: to ever increasing sizes in aggregation, and ever de-
creasing sizes in breakup. In addition, both processes are capable of exhibiting a remarkable
dynamic behavior manifested in the breakdown of mean-field models that describe them.
In aggregation, this behavior is known as gelation, and is characterized by the emergence
of a giant cluster with infinite mass (the “gel”) that accounts for a finite fraction of the
total mass [1–4]. An analogous behavior is known to occur in fragmentation in the form
of a ghost phase of clusters with zero mass (“dust”) that contain a finite fraction of the
total mass [5,6]. This process of “shattering” has evoked analogies to phase transitions
and motivated numerous investigations of the kinetic equations of fragmentation and the
conditions that may result to this unique behavior [7–15].

The usual approach to the study of fragmentation is through the fragmentation equa-
tion, an integro-differential equation for the mean cluster distribution [16]. In reality,
fragmentation is a discrete stochastic processes: a discrete cluster disintegrates into discrete
fragments. The distribution of clusters itself is a stochastic variable, whose evolution in
time represents one of many possible trajectories in the space of feasible distributions.
The classical treatment presumes that the solution to the fragmentation equation is the
same distribution that would be obtained by averaging over all trajectories. Whether this
assumption is correct or not requires a formal treatment of the stochastic problem, but one
case where this is clearly not true is shattering. At its most elementary level, fragmentation
is mass conserving; the loss of mass conservation in the kinetic equation is indication that
this equation no longer tracks the true mean distribution. In this paper, we formulate
fragmentation as a discrete stochastic process. The distribution of clusters is itself a random
variable and transitions in time. The set of all possible distributions that can be reached
in a fixed number of fragmentation events forms the fragmentation ensemble. The goal
of the theory is to assign probabilities to the distributions of the ensemble based on the
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breakup law. Once these probabilities are assigned, the mean distribution may be obtained
by direct averaging.

This approach is most general and encompasses the classical kinetic treatment as a
special result. It has the further advantage that it makes contact with statistical mechan-
ics. The set of feasible of distributions is a thermodynamic ensemble: its most probable
distribution in the asymptotic limit is overwhelmingly more probable than all others and
maximizes a functional similar to entropy. This connection offers the tools to treat shatter-
ing as a formal phase transition using the stability criteria of phase equilibrium. We have
previously applied this approach to binary aggregation and shown that gelation is a formal
phase transition in the thermodynamic sense [4,17–19]. Here, we formulate the statistical
mechanics of the fragmentation ensemble and show that shattering is a phase transition
mathematically symmetric to gelation.

The paper is organized as follows. In Section 2, we summarize the elements of the
ensemble theory, which forms the basis of the stochastic treatment. In Section 3, we
construct the ensembles of discrete binary fragmentation and obtain the kinetic equations
that relate transitions between generations. In Section 4, we apply the theory to random
fragmentation and obtain the complete solution in closed form. We discuss shattering in
Section 5, using stability analysis, and finally, we summarize the results in Section 6.

2. Statistical Thermodynamics of the Cluster Ensemble

We begin with a brief summary of the thermodynamic theory that forms the basis
of the study. A detailed exposition is given elsewhere [17,20]. We consider a discrete
distribution of clusters n = (n1, n2 · · · ), where ni is the number of clusters with mass
i = 1, 2 · · · . The number of cluster in n is N and their total mass is M:

∑
i

ni = N, ∑
i

ini = M (1)

We construct the ensemble EM,N of every possible distribution that satisfies these conditions;
this ensemble contains all possible ways to partition integer mass M into N clusters. We
assign probabilities to the distributions of the ensemble according to

P(n) =
n!W(n)
ΩM,N

, (2)

where n! is the multinomial coefficient,

n =
N!

n1! n2! · · · ; (3)

W(n) is a functional of distribution n that embodies the details of the stochastic process
and which will remain unspecified until we consider specific models of fragmentation; and
ΩM,N is the partition function, a factor that ensures proper normalization of probabilities,

ΩM,N = ∑
n∈EM,N

P(n). (4)

We refer to P(n) as microcanonical probability and to ΩM,N as its microcanonical parti-
tion function.

The most probable distribution n∗ in the ensemble is obtained by maximizing log P(n)
with respect to n under the two constraints in Equation (1). The result of this maximiza-
tion is

n∗k
N

= w∗k
e−βk

q
, (5)
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with β (inverse “temperature”), q (“canonical” partition function) and w∗k (“multiplicity” of
cluster size k) given by

β =

(
∂ log ΩM,N

∂M

)
N

, log q =

(
∂ log ΩM,N

∂N

)
M

, log w∗k =

(
∂ log W(n∗)

∂n∗k

)
n∗i 6=k

. (6)

In the asymptotic limit M > N � 1 the most probable distribution becomes overwhelm-
ingly more probable. All properties of the ensemble in the asymptotic limit reduce to the
corresponding property of the most probable distribution. The fact that n∗ maximizes the
microcanonical probability leads to the following inequality

ΩM,N ≥ H(n) + log W(n), (7)

where H(n) is the Shannon entropy of distribution

H(n) = −∑
i

ni log
ni
N

. (8)

The inequality in Equation (7) is a generalized statement of the second law: it applies to all
distributions in the ensemble and becomes an exact equality only for n = n∗.

Equations (2)–(7) provide a treatment in the language of statistical mechanics of the
ensemble of distributions defined by the two constraints in Equation (1). Next, we apply
this formulation to stochastic fragmentation.

3. Binary Fragmentation
3.1. Fragmentation Kernel

In binary fragmentation, mass k breaks into a pair of fragments with masses k − j
and j. All masses are larger than or equal to 1 (monomers do not break any further). The
process can be represented in the form of a reaction

(k)
Fk−j,j−−−→ (k− j) + (j), (9)

where Fk−j,j is the rate of formation of ordered pair of fragments (k− j, j) and satisfies the
symmetry condition Fj,k−j = Fk−j,j. A number of related functions may be defined based
on this kernel. The breakage rate of mass k is

ak =
k−1

∑
j=1

Fk−j,j, (10)

and the number of fragments with size j produced from particle mass k is

b(j|k) =
2Fk−j,j

∑k−1
j=1 Fk−j,j

. (11)

The mean fragmentation kernel within distribution n is the mean value of Fi,j among all
breakup events in the distribution:

F(n) =
1

M− N

∞

∑
i=2

i−1

∑
j=1

niFi−j,j, (12)



Entropy 2022, 24, 229 4 of 14

where M− N is the total number of fragmentation events in distribution n. The ensemble
average fragmentation kernel in ensemble EM,N is the mean value of the fragmentation
kernel Fi,j over all possible fragmentation events in the ensemble:

〈F〉M,N = ∑
n

P(n)F(n) =
1

M− N ∑
n

P(n)
∞

∑
i=2

i−1

∑
j=1

niFi−j,j, (13)

where P(n) is the probability of distribution and the outer summation is over all distribu-
tions in ensemble EM,N .

3.2. Fragmentation Ensemble

To construct the ensemble of distributions in fragmentation we begin with a single
particle with mass M and subject it to g fragmentation events, an event consisting of
replacing a cluster with two fragments. After g events the distribution contains N = g + 1
elements (clusters). The set of all distributions that can be reached in g fragmentation events
forms the fragmentation ensemble EM,N . All distribution in the ensemble satisfies the two
constraints in Equation (1) and, conversely, all distributions that satisfy these constraints
can be formed by binary breakage of mass M in g = N − 1 fragmentation steps.

We represent this process pictorially in the form of a layered graph. Figure 1 illustrates
this graph for M = 7. Nodes represent fragment distributions and edges indicate transitions
between distributions following a fragmentation event. The graph is layered the number of
fragmentation events to reach a distribution and each layer contains the complete ensemble
of distributions that can be reached in fixed number of fragmentation events. The graph is
the exact reverse of that of aggregation: by reversing the direction of all arrows we obtain
the graph for discrete binary aggregation of M monomers (bottom) advancing towards a
single cluster (top) through M− 1 binary aggregation events [19].
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M = 7

N = 7

N = 6
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Figure 1. The graph of discrete binary breakage of mass M = 7. By reversing the direction of
transitions we obtain the graph of discrete binary aggregation starting with M = 7 monomers.
A continuous path from top to bottom represents one possible trajectory through the space of
feasible distributions.
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3.3. Transitions between Distributions

When a cluster with mass i in distribution n′ of ensemble EM,N−1 breaks up into
fragments i− j and j the result is a distribution n in the ensemble of the next generation,
EM,N ; schematically,

n′
(i)→(i−j)+(j)−−−−−−−−→ n. (14)

The probability of this transition is proportional to the number n′i of clusters with mass i in
the parent distribution and to the fragmentation rate Fi−j,j:

P(n′ → n) =
n′iFi−j,j

(M− N + 1)〈F〉M,N−1
. (15)

Here, 〈F〉M,N−1 is the mean fragmentation kernel over all fragmentation events in the
parent ensemble:

〈F〉M,N−1 =
∑n′ P(n′)∑∞

i=2 ∑i−1
j=1 n′iFi−j,j

M− N + 1
, (16)

where P(n′) is the probability of distribution in the parent ensemble. There are M− N + 1
ordered pairs of fragments in any distribution that contains N − 1 clusters with total
mass M. Accordingly, (M− N + 1)〈F〉M,N−1, which appears as the normalizing constant
in the transition probability in Equation (15), is the total fragmentation rate in parent
ensemble EM,N−1.

The probability of distribution propagates from one generation to the next with
transition probability P(n′ → n) according to the Master Equation,

P(n) = ∑
n′

P(n′ → n)P(n′), (17)

with the summation taken over all parents n′ of distribution n; in terms of Figure 1 the
summation is over all edges of the fragmentation graph that lead to n. At the initial state
distribution n0 consists of a single cluster with mass M. In this state, we have

n0! = W(n0) = P(n0!) = ΩM,1 = 1. (18)

With Equation (18) as the initial condition, the Master Equation fixes the probabilities
of all distributions in all future generations. Expressing the probability of parent and
offspring distributions in terms of the sampling functional and the partition function,
and using Equation (15) for the transition probabilities the Master Equation produces the
following result

ΩM,N−1

ΩM,N
=

N − 1
(M− N + 1)〈F〉M,N−1

{
∞

∑
i=2

i−1

∑
j=1

ni−j(nj − δi−j,j)Fi−j,j

N(N − 1)
W(n′)
W(n)

}
. (19)

To obtain this result, we used the fact that the parent-offspring relationship is reversible
(Figure 1): if parent distribution n′ produces offspring n via the fragmentation event
(i) → (i − j) + (j), this parent can be constructed by applying the aggregation reaction
(i− j) + (j)→ (i) to the offspring distribution. In view of this observation, each element
of the double summation in Equation (19) is a fragmentation parent of n that contributes
towards the offspring distribution with rate Fi−j,j. Accordingly, the double summation
goes over all parents of offspring distribution n. Since the left-hand side is independent
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of distribution n, so must be the right-hand side. This can be true only if the quantity in
braces is independent of distribution n,

∞

∑
i=2

i−1

∑
j=1

ni−j(nj − δi−j,j)Fi−j,j

N(N − 1)
W(n′)
W(n)

= Λ. (20)

We fix Λ by imposing a normalization condition on the sampling functional: if W(n) is
constant for all distributions, we require W(n) = 1. We will confirm in Section 4 that if
Fi,j = 1 then W(n) = const. This implies Λ = 1. Accordingly Equation (19) separates
into two independent recursions, one for the partition function and one for the sampling
functional. For the partition function, we have

ΩM,N−1

ΩM,N
=

N − 1
(M− N + 1)〈F〉M,N−1

, (21)

which is readily solved for ΩM,N starting with ΩM,1 = 1 in generation 0. The result is

ΩM,N =

(
M− 1
N − 1

) N−1

∏
N′=1
〈F〉M,N′ . (22)

The corresponding expression for the sampling functional is

W(n) =
∞

∑
i=2

i−1

∑
j=1

ni−j(nj − δi−j,j)Fi−j,j

N(N − 1)
W(n′), (23)

which gives the sampling functional of distribution in terms of the sampling functional of
its parents. The parameters β and q are

β = log
ΩM+1,N

ΩM,N
= log

(
M

M− N + 1

)
+

N−1

∑
N′=1

log
〈F〉M+1,N′

〈F〉M,N′
, (24)

q =
ΩM,N+1

ΩM,N
=

M− N
N
〈F〉M,N (25)

and are obtained by applying the finite-difference form of the derivatives in Equation (6) to
the partition function in Equation (22).

3.4. Kinetics and Thermodynamics

We may now summarize the key results of the stochastic theory of fragmentation.
Equations (22) and (23) represent kinetic properties of the ensemble and embody the tran-
sition probabilities in all possible trajectories in the event space of distributions. One
additional kinetic result is obtained in Section 3.5 where we derive the classical fragmen-
tation equation. Equations (22)–(25) represent thermodynamic properties. The partition
function characterizes the ensemble of feasible distributions; the parameters β and q are
the derivatives of the partition function and appear in the most probable distribution in
Equation (5). The factors w∗k , which are also needed in in Equation (5), are to be obtained
from the derivatives of the sampling functional according to Equation (6). In the context
of this theory, the mathematical problem reduces to the calculation of Ω and log W. We
demonstrate this procedure in Section 4 with an example that produces analytic results for
the partition function and the sampling functional.
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3.5. Mean Distribution

The mean number of clusters with mass k is

〈nk〉 = ∑
n

nkP(n), (26)

where nk is the kth element of distribution n, P(n) is the probability of distribution, and
the summation is over all n in the ensemble. Using P(n) from Equation (17) and the
stoichiometry of the fragmentation reaction we obtain

〈nk〉M,N = ∑
n

∞

∑
i=2

i−1

∑
j=1

P(n′ → n)
(

n′k − δk,i + δk,i−j + δk,j

)
P(n′) =〈

∞

∑
i=2

i−1

∑
j=1

P(n′ → n)
(

n′k − δk,i + δk,i−j + δk,j

)〉
M,N−1

. (27)

Here primed terms refer to parent elements of element nk and the ensemble average on the
right-hand side is over the parent ensemble EN,N−1. Lastly, we use Equation (15) for the
transition probability P and perform the summations over the Kronecker deltas. The final
result is

〈nk〉M,N −
〈
n′k
〉

M,N−1 =

〈
−∑k−1

j=1 n′k Fk−j,j + 2 ∑∞
j=k+1 n′j Fj−k,k

〉
M,N−1

(M− N + 1)〈F〉M,N−1
. (28)

This is the governing equation for the evolution of the mean distribution: on the left-hand
side, we have the change in the mean number of cluster of size k between generations;
on the right-hand side, we have the average over all trajectories emanating from the the
parent generation.

If the ensemble is represented by a single distribution, the mean distribution n̄, the
result can be written as as difference equation for n̄k with the ensemble averages dropped:

∆n̄k
∆N

=
−∑k−1

j=1 n̄k Fk−j,j + 2 ∑∞
j=1k+1 n̄j Fj−k,k

(M− N + 1)F̄
. (29)

Here, ∆N = 1 is the change in the number of clusters between successive generations and
F̄ is the mean kernel over all fragmentation events in n̄. To make full connection with the
classical treatment we write the rate equation for the number of clusters N. Each binary
fragmentation event produces one net new cluster, therefore, the rate at which the parent
generation produces clusters is

∆N
∆t

= ∑
n′

P(n′)
∞

∑
i=2

i−1

∑
j=1

n′iFi−j,j = (M− N + 1)〈F〉M,N+1. (30)

Dividing Equation (29) by (30) we obtain

∆n̄k
∆t

= −
k−1

∑
j=1

n̄k Fk−j,j + 2
∞

∑
j=k+1

n̄j Fj−k,k. (31)

We recognize the result as the classical fragmentation equation for the mean distribution. It
is the appropriate limit of of Equation (28) if the probability of distribution, P(n), is sharply
peaked around a single distribution. In this case, and in this only, all average quantities over
the ensemble can be replaced by the same quantity evaluated over a single distribution,
the most probable distribution of its generation, also equal to the mean distribution in
the ensemble.
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4. Special Case: Random Fragmentation (Fi−j,j = 1)

The constant kernel, Fi−j,j = 1, represents random fragmentation, a process in which
all possible fragmentation events are equally probable. The fragmentation rate is ak = k− 1,
equal to the number of possible events within mass k, and the fragment distribution is
uniform, b(i|k) = 2/(k− 1). For this model we obtain the full solution of the stochastic
problem in closed form.

The mean kernel in any distribution n is F(n) = 1 and it follows that 〈F〉M,N = 1 for
all M, N. The partition function follows from Equation (22)

ΩM,N =

(
M− 1
N − 1

)
, (32)

and is equal to the number of ways to break mass M into N ordered fragments [21]. To
obtain the sampling functional we note the identity

∞

∑
i=2

i−1

∑
j=1

ni−j(nj − δi−j,j)

N(N − 1)
= 1. (33)

We conclude from Equation (23) that W(n) must be the same for all distributions in all
generations, and since W(n0) in generation zero, we obtain

W(n) = 1. (34)

with wi = 1. This is a special case of functionals that factorize in the form

W(n) =
∞

∏
i=1

wni
i . (35)

Such systems, also known as Gibbs ensembles, appear in various probabilistic contexts and
their properties are well known [22–24]. In particular, the mean cluster distribution is given
in terms of the partition function and the factors wk by [17]

〈nk〉M,N

N
= wk

ΩM−k,N−1

ΩM,N
=

(
M− k− 1

N − 2

)/(M− 1
N − 1

)
. (36)

The derivatives β and q are

β = log
(

M
M− N + 1

)
∼ log

(
M

M− N

)
(37)

q =
M− N

N
(38)

and the most probable distribution is exponential:

n∗k
N

=
e−βk

q
=

1
x̄− 1

(
1− 1

x̄

)k
(39)

where x̄ = M/N is the mean cluster size. It is easy to show that the mean distribution in
Equation (36) and the most probable distribution converge to each other.

Equation (36) for the mean fragment distribution is exact for all integer masses M > N
and fragment masses M− N + 1 ≥ k ≥ 1. The first few fragment distributions for general
M are shown in Table 1. For N = 2 the distribution is uniform; for N = 3 it is linear
in fragment size; in general the distribution is a polynomial of degree N − 1 and always
monotonically decaying in the size range (0, M). It is interesting to point out that these
distributions are the same as those produced by a single random fragmentation event into
N pieces (see Equation (12) in [21]). That is, g consecutive random binary fragmentation
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events produce the same ensemble of fragments as as a single random fragmentation
event into g− 1 pieces. These distributions are also the same as those in discrete binary
aggregation with constant aggregation kernel Ki,j = 1 [19]. That is, fragmentation with
Fi,j = 1 and aggregation with Ki,j = 1 both assign the same probabilities to all distributions
int he event space, even though the two processes move in opposite directions with different
transition probabilities each. This symmetry between fragmentation and aggregation has
not been recognized previously.

As a demonstration of the exactness of Equation (36) we perform a Monte Carlo simu-
lation of random fragmentation with M = 50 (Figure 2). The agreement between simulation
and the theoretical distribution is excellent. (Details on the Monte Carlo simulation are
given in Section 5.3).
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Figure 2. Random fragmentation of M = 50 into N = 2, 3, 4 and 5 pieces. The results from the Monte
Carlo simulation are in full agreement with the theoretical distribution of fragments, Equation (36),
also in Table 1.

Table 1. Mean distributions of random binary fragmentation with constant kernel Fi,j = 1 for
N = 2, 3, 4 and 5.

Number of Fragments, N Distribution of Fragments

2 1
M−1

3 2(M−k−1)
(M−2)(M−1)

4 3(M−k−2)(M−k−1)
(M−3)(M−2)(M−1)

5 4(M−k−3)(M−k+−2)(M−k−1)
(M−4)(M−3)(M−2)(M−1)

5. Shattering
5.1. Power-Law Breakage

A special family of fragmentation kernels is of the power-law form

Fi,j = (i + j− 1)ν, (40)
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where ν is a constant. This kernel represents binary breakage with power-law rate
ak = (k− 1)ν+1 and uniform fragment distribution b(i|k) = 2/(k − 1). The power-law
kernel has been studied extensively, especially since it leads to shattering when the ex-
ponent is negative [5–8,16]. From a kinetic perspective, shattering is the result of the
accelerated fragmentation rate with decreasing size that produces an accumulation at the
low end of the distribution. Here, we examine shattering under the criteria for thermody-
namic stability. In molecular thermodynamics phase splitting occurs when the concavity
of the microcanonical partition function is violated. The same condition identifies the
presence of shattering, as we will see.

The mean fragmentation rate of the power-law kernel in distribution n is

F(n) =
1

M− N

∞

∑
i=2

i−1

∑
j=1

ni(i− 1)ν =
1

M− N

∞

∑
i=2

ni(i− 1)ν+1 ∼ N
M− N

(
M
N

)ν+1
∼
(

M
N

)ν

, (41)

when M� N � 1. Thus we obtain the scaling

F(n) ∼ 〈F〉M,N ∼
(

M
N

)ν

. (42)

We may now obtain the partition function. Using Equation (22) we find

ΩM,N =

(
M− 1
N − 1

)(
MN−1

(N − 1)!

)ν−1

. (43)

Its parameters β and q are obtained from the derivatives of the partition function according
to Equation (6). The result can be expressed as

β = − log θ + (ν− 1)(1− θ), (44)

q = θ(1− θ)−ν, (45)

where θ is a scaled size variable, defined as

θ = 1− N
M

. (46)

The scaled variable maps the complete evolution of the system into the interval 0 ≤ θ ≤ 1:
Fragmentation commences at θ = 1− 1/M ∼ 1 and ends at θ = 0.

5.2. Stability and Phase Transitions

Stability requires log ΩM,N to be concave function of M and N. The condition ensures
that the most probable distribution is the solution to ∂ log P(n∗)/∂n∗ = 0 and is given by
Equation (5). Concavity requires the second derivatives of log ΩM,N to be negative. In
terms of the scaled variable θ the conditions reduce to the concave conditions are(

∂2 log Ω
∂M2

)
N
≤ 0⇒

(
dβ

dM

)
N
≤ 0 and

(
∂2 log Ω

∂N2

)
M
≤ 0⇒

(
d log q

dN

)
M
≤ 0.

Expressing M or N in terms of θ = 1− N/M we obtain

dβ

dθ
≤ 0;

d log q
dθ

≥ 0. (47)

Using Equations (44) and (45), both inequalities in Equation (47) reduce to the same result:

θ ≤ 1
1− ν

. (48)
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This condition guarantees concavity of the partition function. In the language of thermo-
dynamics, it guarantees the stability of a single-phase system; if it is violated the system
splits into two distinct coexisting phases. The stability maps of power-law fragmentation
are shown in Figure 3 on the (β, θ) and (q, θ) planes. For ν > 0 the system is always stable
and is represented by a single phase, a distribution of clusters given by Equation (5). When
ν is negative stability depends the critical value θ∗ = 1/(1− ν) falls within the interval
(0, 1) and splits it into two regions. Below θ∗ the system is stable, above θ∗ is not. As
fragmentation always starts at θ = 1, the system begins in the unstable regime: shattering
is observed at all times.
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Figure 3. Stability map of power-law kernel in terms of the parameters β (left) and q (right). Stable
branches are shown blue, unstable in red.

5.3. Monte Carlo Simulations of Shattering

The most direct way to illustrate the shattering instability is through simulation. We
use Monte Carlo to sample trajectories in the phase space of fragmentation. The simulations
are conducted as follows. Given N clusters we choose a cluster to break with probability
proportional to (k− 1)ν, where k is the mass of the cluster. Mass k is then split into integer
fragments i and k− i, which are chosen with equal probability among all possible k− 1
fragments. The simulation begins with a single cluster with mass M, which is then subjected
to M− 1 fragmentation events until it forms M fragments with unit mass. This constitutes
one trajectory that tracks the distribution of fragments from generation g = 0 to generation
g = M− 1. The mean distribution is calculated by averaging 5000 trajectories.

Figure 4 shows results for three different masses, M = 50, 100 and 200, to highlight
the convergence to asymptotic behavior. Cluster distributions are plotted against the scaled
mass z = i/M. In the limit M→ ∞ this scaling amounts to breaking a particle of unit mass
into fragments in the continuous interval from 0 and 1. For ν = 1 (random fragmentation),
the system is stable at all times and its distribution is given by Equation (39). The results
of the simulation in Figure 4a–c For ν = −3, the system is unstable and the distribution
of clusters contains a new feature: the number of the smallest fragment size (unit mass)
deviates markedly above the distribution of the rest of the fragments. This feature persists:
it does not go away as M is increased, neither does is subside as fragmentation goes on.
In fact, the divergence of this segment of the population becomes more pronounced as
M→ ∞. In this limit the divergent mass is z∗ = 1/M→ 0: accordingly, a finite fraction of
the mass of the system is accumulated into fragments of zero size.
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Figure 4. Cluster size distributions by Monte Carlo simulations of breakup with Fi,j = (i + j)ν.
(a–c) ν = 0: The system is stable and its distribution is given by Equation (36). The concentration of
particles with scaled mass z = k/M ∼ 1 is zero. (d–f) ν = −3: The system is unstable and undergoes
shattering. Distributions in the scaled cluster size z = k/M are characterized by the simultaneous
presence of cluster masses of the order 0 and of the order 1 (arrows).

6. Discussion

The emergence of a ghost fraction of particles (“dust”) with zero mass has been termed
“shattering” by McGrady and Ziff [6] and in the asymptotic limit manifests itself as a
breakdown of mass conservation. It is characteristic of kernels that preferentially favor
the fragmentation of smaller sizes, producing a current of mass to the monomers. The
power-law kernel with negative exponent is of this type. This kernel was studied by Ziff
and coworkers [6,16] who discussed shattering as a phase transition analogous to gelation
in aggregation. Our treatment provides a rigorous basis to these analogies, which up to
now were were drawn qualitatively: shattering is a phase transition. Ir occurs when the
partition function violates the criterion of thermodynamic stability.
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McGrady and Ziff [6] pointed out the close connection between shattering and gela-
tion. Aggregation with power-law kernel Ki,j = (ij)α/2 is analogous to the power-law
fragmentation kernel Fi,j = (i + j)ν: it produces stable solutions for α ≤ 1 but leads to
gelation for α > 1. This connection is not merely qualitative. The parameters β and q for
power-law aggregation were obtained by [19]. We compare them to those for power-law
fragmentation (Table 2). With the substitution α = 1− ν, the parameter q and the region
of stability are the same in both processes. Gelation occurs when a cluster appears in the
giant region (M− N + 1)/2 + 1 < kM− N + 1, a region defined by the condition that it
may contain at most one cluster [4]. In the scaling limit of aggregation (M > N → ∞ at
fixed M/N) the giant cluster goes over to infinity and disappears from the size distribution,
giving rise to an apparent loss of mass and the breakdown of mass conservation. The giant
cluster is also present in shattering. In terms of the scaled mass z = i/M, the giant cluster
in fragmentation is asymptotically of the order 1. Under shattering conditions (Figure 4d–f)
the neighborhood of z ≈ 1 remains populated at all times. By contrast, stable solutions are
devoid of clusters in this region (Figure 4a–c). The presence of a giant cluster is a universal
feature of instability, whether the process is aggregation or fragmentation.

Table 2. Comparison between power-law fragmentation and power-law aggregation.

Fragmentation Aggregation

kernel (i + j)ν (ij)α/2

β −log θ + (ν− 1)(1− θ) −log θ + αθ
q θ(1− θ)−ν θ(1− θ)α−1

stability ν ≥ 0 α ≤ 1

Fundamentally shattering and gelation represent the same condition: the presence of a
single cluster in the giant region that coexists with a distribution of clusters in the sub-giant
region. It is the different scaling between fragmentation and aggregation that sends the
ghost phase to zero size (shattering) or infinite size (gelation), where it becomes invisible
either in the form of an infinite concentration of clusters with zero mass (shattering) or
as a zero concentration of particles with infinite mass. There is, however, one difference:
in gelation the system begins in the stable branch and within finite time crosses into
the unstable regime. As we have shown previously [4,19] in this case we can construct
the tie line between the two phases by standard thermodynamic arguments to obtain
the distribution of the dispersed phase and the gel fraction at all times. In shattering, the
system begins in the unstable region and never crosses over to the stable regime. Though we
believe that in this case also it ought to be possible to construct the tie line, we were not able
to do it here. This requires a more detailed treatment of the unstable partition function, in
particular, the asymptotic scaling of the mean fragmentation kernel in Equation (42) when
the exponent is negative. In discrete finite systems instability cannot occur instantaneously.
The initial state is stable and it must take a finite number of fragmentation events to reach
instability. The scaling form of the mean kernel in Equation (42), while sufficient to map
the stability boundary, it is not of sufficient accuracy to study the onset of phase splitting.
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