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Abstract
Background: Genomes store information for building and maintaining organisms. Complete
sequencing of many genomes provides the opportunity to study and compare global information
properties of those genomes.

Results: We have analyzed aspects of the information content of Homo sapiens, Mus musculus,
Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and
Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate
genomes while < 2% of 19 bp oligomers are present. Other species showed different ranges of >
98% to < 2% of possible oligomers in D. melanogaster (12–17 bp), C. elegans (11–17 bp), A. thaliana
(11–17 bp), S. cerevisiae (10–16 bp) and E. coli (9–15 bp). Frequencies of unique oligomers in the
genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1
nucleotide different from all 15-mers in the human genome and so could be used as probes to
detect microbes in human samples. In a human sample, these probes would detect 100% of the 433
currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human
genome is significantly more compact in sequence space than a random genome. We identified the
most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We
also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity
of oligomers given the size of its genome and its GC content. The entropy of coding regions in the
human genome is significantly higher than non-coding regions and chromosomes. However
chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high
entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively
high entropy.

Conclusion: Measures of the frequency of oligomers are useful for designing PCR assays and for
identifying chromosomes and organisms with hidden structure that had not been previously
recognized. This information may be used to detect novel microbes in human tissues.
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Background
The discovery of the structure of DNA [1] was a funda-
mental event in biology because it illuminated the mech-
anism by which information can be encoded, passed on
to future generations and even constructed by natural
selection. With the sequencing of the human and other
genomes [2,3], we are now able to compare the informa-
tion encoded in the genomes of a wide variety of organ-
isms and study the mechanisms that change genomes over
time, including sequence mutations, recombination,
duplication and deletion [4,5]. A great deal of research has
focused on the coding and regulatory regions of genomes
and regularly uses informational content measurements
to analyze the structure of loci in the genome [6-8]. In
addition, recent interest has turned to analyzing regions
that do not encode proteins [9].

Relatively little is known about the global informational
properties of most genomes. The conditional entropy was
measured for human chromosome 22 [10] along with the
frequency distributions of 3- through 7-mers in chromo-
somes 21 and 22 [11]. Stanley et al. analyzed the distribu-
tion of 1- to 4-mers within a wide variety of organisms
and found that some tend to cluster within genomes (usu-
ally in non-coding regions) and others tend to "repel"
each other [12,13]. Entropy measures have been applied
to yeast and C. elegans whole chromosomes [14].
Recently, McHardy et al. showed that the distribution of
5-mer and 6-mer oligonucleotides in a > 1 kb fragment of
DNA is characteristic of an organism and can be used in
metagenomic studies to classify and construct the poten-
tially millions of genomes in an environmental sample
[15]. We are only beginning to compare informational
properties between human chromosomes and across spe-
cies.

The set of all oligonucleotides (oligos) of length n defines
an n-dimensional discrete space, Sn where each point is a
possible n-mer and each dimension has only four states
(A, C, G or T). Here we have measured the proportion of
sequence space covered by oligos of length 1 – 20 in H.
sapien, M. musculus, D. melanogaster, C. elegans, A. thaliana,
S. cerevisiae, and E. coli k12. We have also measured the
frequency of unique n-mers in those species and the com-
pactness of the human genome in n-mer space. We also
have identified all 5- to 20-mers that appear in the human
genome more than 30,000 times, as well as the set of 15-
mers that do not appear in the human genome and are
more than 1 nucleotide different from all 15-mers in the
human genome. In addition, we have measured the infor-
mation content of the human genome for different oligo
lengths and compared the information content to the pro-
portion of coding regions in each human chromosome.
The results match empirical observations and give a global
view of the informational properties across a wide variety

of genomes. Finally, we profiled the 10-mer space cover-
age for a wide range of 433 microbial genomes and found
that the extent of sequence space coverage is largely deter-
mined by genome size and GC content.

Results
Sequence space coverage
We randomly generated 5 sets of 100,000 probes for each
oligo length n, and then determined the proportion of
those n-mers present in the genomes of Homo sapiens, Mus
musculus, Drosophila melanogaster, Caenorhabditis elegans,
Arabidopsis thaliana, Saccharomyces cerevisiae, and
Escherichia coli k12. The n-mer space coverage for each
genome is plotted against oligo length n in Figure 1 (See
additional file 1 for the data). The E. coli genome includes
all 8-mers, and less than 0.21% of all 16-mers. In contrast,
the human genome includes all 11-mers and less than
0.38% of all 20-mers. Of course, n-mer space coverage
reflects genome size to some extent. For example, the
human genome has a much higher coverage than the yeast
genome for every oligo length. The 7 genomes that we
investigated in this study differ the most in their coverage
for 13-mer space, ranging from 11.4% coverage for E. coli
to 96% coverage for human and mouse. For comparison,
we also generated a random "pseudo" human genome
with the same length and dinucleotide frequencies (see
Appendix for a formal analysis of the expected number of
n-mers in this pseudo-human genome). The fact that the
true human genome has less coverage of n-mer space than
the pseudo-human genome (Figure 1) shows that there
are more repeated n-mers in the human genome than one
would expect by chance.

The coverage analysis of genomes can be used to analyze
the complexity of any fully sequenced genome. We
applied this analysis to 433 fully sequenced microbial
genomes (Figure 2, see additional file 2 for the species,
coverage, GC content and genome sizes). A multivariate
regression of log genome size and deviation of GC content
from 0.5 frequency, on 10-mer sequence space coverage,
shows that variation in coverage can almost entirely be
explained by genome size and GC content (adjusted R2 =
0.92, p < 0.01). However, Anaeromyxobacter dehalogenans
is an outlier with lower coverage than would be predicted
by the model (actual coverage = 0.406, predicted coverage
= 0.563, 99.9% predicted interval: 0.412–0.713). In addi-
tion, we confirmed the significant association between log
genome size and GC content such that organisms with
smaller genomes have lower GC content (Figure 2, linear
regression p < 0.001) [16].

Frequency of unique n-mers
To calculate the percentage of n-mers that appear only
once in a genome, we implemented a program to estimate
the unique hits among our stochastic search results (Fig-
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ure 3). The human and mouse genome has only 5%
unique hits among all the 13-mers they contain, while
Drosophila, Arabidopsis, and yeast have only a single copy
of more than 50% of their 13-mers. Figure 3 implies that,
in order to have at least an 80% chance of hybridizing to
a unique locus, a PCR primer for human and mouse
genomes should be greater than 17 bp, while for Dro-
sophila, C. elegans, and Arabidopsis, it should be greater
than 15 bp.

Accuracy of stochastic estimates
To assess the accuracy of our stochastic estimates for cov-
erage in longer n-mers, we compared the stochastic results
with exhaustive search results of all possible n-mers (Table
1). Due to the limitations of computational power, we
could only carry out exhaustive searches up to 15-mer
space. The 95% confidence interval of our stochastic sam-
pling is small and it contains the true coverage. The confi-
dence intervals also show that accuracy decreases as the

dimension of our sampling space increases. However, it is
clear from Table 1 that our 100,000 probes are statistically
powerful enough to estimate the percentage of coverage
for oligos up to length 20.

Detecting non-human organisms with non-human 15-mers
One potential use of genome coverage data is to use the n-
mers that do not appear in the human genome as probes
to detect microbes or genetic alterations in human sam-
ples. In order to do this, we must choose an oligo length
long enough that there are some n-mers that do not
appear in the human genome (i.e., > 13-mers), and long
enough that some non-human n-mers are likely to appear
in non-human organisms, yet short enough that that a
large fraction of the non-human n-mers could be probed
in a human sample (i.e., < 16-mers). We focused on 15-
mers because 38% (406.7 M) of all possible 15-mers do
not appear in the human genome. However, 404.1 M of
these differ from the reference human genome by a single

The percentage of all possible n-mers (coverage) that appear in H. sapien, M. musculus, D. melanogaster, C. elegans, A. thaliana, S. cerevisiae, E. coli k12, theoretical and pseudo-human genomesFigure 1
The percentage of all possible n-mers (coverage) that appear in H. sapien, M. musculus, D. melanogaster, C. ele-
gans, A. thaliana, S. cerevisiae, E. coli k12, theoretical and pseudo-human genomes. Theo-human is the maximum 
coverage a human-length genome could achieve if every n-mer in its genome was unique. The pseudo-human (pseudo-hs) 
genome is a random genome generated with the same length and dinucleotide frequencies of the human genome. The space 
coverage of each genome listed above is plotted against the length of the oligomer analyzed, ranging from 1 to 20.
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(a) Coverage of 10-mer sequence space as a function of genome size in 433 fully sequenced microbial genomesFigure 2
(a) Coverage of 10-mer sequence space as a function of genome size in 433 fully sequenced microbial 
genomes. The legend for the color-coding of GC content appears on the right. Smaller genomes have lower GC content. 
Anaeromyxobacter dehalogenans is an outlier with unusually low coverage for its genome size and GC content (outside of the 
99.9% predicted interval). (b) A histogram for the proportion of the 10-mer sequence space covered by each of the 433 fully 
sequenced microbial genomes.



BMC Genomics 2008, 9:509 http://www.biomedcentral.com/1471-2164/9/509

Page 5 of 17
(page number not for citation purposes)

The percentage of n-mers that appeared exactly once (unique hits), out of all the n-mers detected in each genomeFigure 3
The percentage of n-mers that appeared exactly once (unique hits), out of all the n-mers detected in each 
genome. Slightly less than 50% of 16-mers detected in humans are unique. Whereas, for E. coli, a little more than 50% of 12-
mers were unique.

Table 1: Estimates and exhaustive calculations of the human genome coverage of n-mer Space

n-mer Mean Coverage from Stochastic Sampling1 95% Confidence Interval Coverage from Exhaustive search

12 99.726% 99.718% 99.733% 99.730%
13 96.416% 96.319% 96.514% 96.458%
14 84.470% 84.308% 84.633% 84.444%
15 62.041% 61.865% 62.217% 62.124%
16 37.065% 36.934% 37.197% NA2

17 16.156% 16.058% 16.254% NA
18 5.332% 5.278% 5.386% NA
19 1.529% 1.508% 1.551% NA
20 0.382% 0.369% 0.396% NA

1100,000 n-mers were used to estimate coverage of the genome, repeated 5 times to estimate the 95% confidence interval.
2The set of all possible n-mers greater than 15 bp is too large to be exhaustively searched given our current computational resources.
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nucleotide and so may appear as single nucleotide poly-
morphisms (SNPs) in human samples. An oligonucle-
otide array of the remaining panel of 2.6 M 15-mers, that
are at least 2 SNPs different from human sequences, could
be constructed using current technology (e.g. Roche Nim-
bleGen arrays). We simulated an oligonucleotide array
hybridization experiment using these 2.6 M non-human
15-mers to determine the likelihood of detecting any of
the fully sequenced microbes. This hypothetical array
would detect 75% (2314 of 3065) viruses with a median
of 3 positive non-human 15-mers (range: 0 to 1,705) and
100% (of 433) bacterial species with a median of 3,873
positive non-human 15-mers (range: 1 in the obligate
endosymbiont Candidatus Carsonella ruddii PV, up to
92,127 in Burkholderia 383). Of course, some of the fully
sequenced microbes are closely related to each other and
so these estimates are not based on completely independ-
ent samples.

Ultra-frequent n-mers
Some n-mers appear at extremely high frequency in the
human genome. Among this set are some recognizable
functional motifs. For example, the TATA box (5'-
TATAAA-3') is ranked in the top 2% of all the possible 6-
mers and the E-box (5'-CACCTG-3') is ranked in the top
11% of all possible 6-mers. We identified all the 5- to 20-
mers that appear more than 30,000 times in the human
genome. The top 20 ultra-frequent n-mers are shown in
Table 2. A full list of high frequency n-mers is available in
additional file 3.

Density in sequence space
Based on our simulation, the pseudo-human genome has
much higher space coverage than the true human genome
for every oligo length (Figure 1). This leads to the hypoth-
esis that human genomes are much more compact in
sequence space than would be expected by chance. To
explore this hypothesis, we examined how many 1 bp var-
iants of human n-mers are also in the human genome. For
each of the n-mers found in the human genome, we gen-
erated its 3n different 1 bp variants and then scanned the
human genome for the presence of these variants. We
found that significantly more 1 bp variants of human oli-
gos were also in the human genome compared to random
n-mers (Figure 4). The same is true for 2–4 bp variants of
human oligos (Figure 4). Thus, the human genome is
more compact, or dense, in sequence space than a random
genome. When we generated variants that were more dis-
tant from the original human n-mer (up to 10 bp vari-
ants), we found in some cases that distant oligos were less
likely to be in the human genome than a random oligo
(Figure 4).

Entropy rate
Previous studies have examined the entropy, or informa-
tion content, within regions of a genome [6-8]. We calcu-

lated the information content of each human
chromosome. This facilitates comparisons between chro-
mosomes. We used the Lempel-Ziv 77 algorithm to esti-
mate the entropy rate of both coding sequences and
whole genomic sequences for the human genome [17].
Coding sequences have a higher entropy rate (informa-
tion content) than genomic sequences (Figure 5). Note
that the highly repetitive regions of telomeres and centro-
meres are generally coded as non-specific bases ("N") in
the human genome and so are excluded from our calcula-
tions. Entropy was calculated from either the entire chro-
mosome, for chromosomes < 130 Mb, or the first 130 Mb
of longer chromosomes. This is sufficient to generate sta-
ble estimates of the entropy (Figure 5). Figure 6 shows
both the entropy and the percent of the chromosome
filled by coding regions for each human chromosome.

Discussion
We have provided an overview and comparison of some
of the informational properties of fully sequenced
genomes. We found that virtually all oligomers of length
less than 13 are represented in the human genome but
only a vanishingly small proportion (< 1.53%) of oligos
of length greater than 19. The mouse genome is the same
in these respects. Similarly, very few oligos less than 13 bp
are unique in the human genome, but the vast majority of
oligos of length greater than 19, except repeat elements,
are unique in the human genome. This is consistent with
practical experience in the design of primers for PCR.
Some of the most frequent n-mers in the human genome
are microsatellites and ALU elements, as would be
expected (Table 2). These ultra-frequent n-mers should be
useful as high density markers in the genome and as prim-
ers for assays such as random amplified polymorphic
DNA (RAPD) [18] in which a large number of regions of
the genome may be amplified in a single PCR reaction. In
fact, both microsatellites and ALU elements have been
exploited for DNA fingerprinting [19-21]. The ultra-fre-
quent n-mers we found are akin to the pyknons identified
by Rigoutsos et al., except that pyknons need only appear
40+ times in the human genome, must be at least 16 bp
long, and have the additional constraint that they appear
in both protein coding and non-coding regions [22].

Whiteford et al. have analyzed a measure of the frequency
of unique oligos in a variety of genomes [23]. However,
their measure is subtly different from ours. The Whiteford
measure of uniqueness essentially shatters a genome into
n-mers and asks what proportion of those n-mers only
occur once in the genome. This is appropriate for analyz-
ing high throughput, short sequencing reads, since high
copy-number n-mers will represent a large portion of the
reads. Our measure asks what proportion of distinct n-
mers only occur once in a genome? Thus, increasing the
copy number of an n-mer already present in the genome
would not change our statistic but would decrease the
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8-mer Freq

AAAAAAAA 9,155,123
ATATATAT 1,863,212
TGTGTGTG 1,701,426
TTTTAAAA 1,574,448
AAAATAAA 1,562,386
AAAGAAAA 1,467,003
AAAAGAAA 1,444,255
AAAAATTA 1,392,585
TAAAAATA 1,363,753
CCAGCCTG 1,308,899
CAGCCTGG 1,266,975
CTTTTTTT 1,238,232
AAAAAGAA 1,228,463
CAAAAAAA 1,223,343
AAAACAAA 1,216,247
TTTTTCTT 1,175,794
ATTTATTT 1,171,982
TTTTGTTT 1,155,387
TTAAAAAA 1,145,762
AAAAAATA 1,143,587

11-mer Freq

AAAAAAAAAAA 4,945,619
TGTGTGTGTGT 1,067,659
CTGTAATCCCA 804,201
ATATATATATA 785,762
TGTAATCCCAG 782,505
CCTGTAATCCC 762,833
GTAATCCCAGC 744,961
CCTCAGCCTCC 729,303
GAGGCTGAGGC 602,716
GCCTGTAATCC 579,838
AAAATACAAAA 564,984
CCTCCCAAAGT 561,106
GGGAGGCTGAG 556,004
AGGCTGAGGCA 555,758
CACTTTGGGAG 554,429
CTTTGGGAGGC 553,151
AGTAGCTGGGA 546,426
AAAAATACAAA 542,436
CAGGCTGGAGT 536,630
TCCCAAAGTGC 534,617
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09 Table 2: Ultra-frequent n-mers in the human genome

5-mer Freq 6-mer Freq 7-mer Freq

AAAAA 38,658,471 AAAAAA 19,638,479 AAAAAAA 12,559,969
ATTTT 23,349,997 AAAAAT 9,299,025 AAATAAA 3,521,836
TATTT 19,344,297 TATTTT 8,283,181 AAAAAAT 3,335,157
AGAAA 18,271,461 AAATAA 7,271,302 AAAGAAA 3,255,464
AAATT 16,119,174 AGAAAA 7,027,241 TTTTAAA 3,218,950
TTATT 15,608,707 TTTATT 7,015,408 TTATTTT 3,132,222
TTTTC 15,579,017 TTTTAA 6,910,624 ATATATA 3,034,879
CAAAA 15,364,161 TTTCTT 6,890,187 TTAAAAA 2,961,520
TTCTT 15,093,160 TTTAAA 6,820,966 TTTTCTT 2,913,461
TCTTT 15,053,533 AAAATT 6,559,595 TTTTATT 2,814,631
CTTTT 14,643,705 TTCTTT 6,476,513 TAAAAAT 2,811,575
CATTT 13,897,384 ATAAAA 6,284,494 AAAAATT 2,773,210
AAACA 13,686,083 TTTTTG 5,979,892 TTCTTTT 2,693,599
TTTGT 13,634,981 ATTTTA 5,829,423 AGAAAAA 2,614,232
TAAAT 13,334,177 AAATAT 5,784,598 AAAATTA 2,572,747
ATATA 13,333,472 AAAAGA 5,708,574 ACAAAAA 2,554,220
TGAAA 13,099,712 TTTTGT 5,622,008 TTTGTTT 2,514,354
ATATT 13,067,844 TATATA 5,551,066 TGTGTGT 2,500,827
AAAAC 12,161,846 TGTTTT 5,550,449 TTTTTTA 2,460,695
AGAGA 12,078,839 CTTTTT 5,515,339 TTTTTTG 2,436,880

9-mer Freq 10-mer Freq

AAAAAAAAA 7,276,886 AAAAAAAAAA 5,952,617
TGTGTGTGT 1,424,846 TGTGTGTGTG 1,168,929
ATATATATA 1,253,711 ATATATATAT 967,302

CCAGGCTGG 1,043,029 TGTAATCCCA 857,278
CTGGGATTA 921,482 GCTGGGATTA 840,776
CCTGTAATC 917,990 GGATTACAGG 835,847
GGATTACAG 916,302 CTGTAATCCC 826,256
GAGGCTGAG 911,055 GGAGGCTGAG 810,203
GCTGGGATT 899,822 CTGGGATTAC 802,982
TGTAATCCC 897,744 CCTCAGCCTC 795,109
GGAGGCTGA 891,406 AGGCTGAGGC 644,447
GTAATCCCA 887,639 CCAGCCTGGG 644,416
AGGCTGAGG 881,036 GCCTGTAATC 629,425
TTGGGAGGC 847,581 AAAAAAAAAG 626,192
CTTTTTTTT 794,742 TTTGTATTTT 619,817
TTTTATTTT 780,751 TTTGGGAGGC 619,461
CAAAAAAAA 758,731 AAATACAAAA 611,794
AAAAAAAAT 741,719 CAAAAAAAAA 602,719
AAATACAAA 740,229 ACTTTGGGAG 600,711
CCCAGGCTG 740,090 TCAGCCTCCC 600,206
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14-mer Freq

AAAAAAAAAAAAAA 2,889,704
GTGTGTGTGTGTGT 775,928
CCTGTAATCCCAGC 639,010
ATATATATATATAT 503,574

CTGGGATTACAGGC 478,945
AGCACTTTGGGAGG 459,948
GCACTTTGGGAGGC 448,768
AAGTGCTGGGATTA 448,388
AAAGTGCTGGGATT 445,915
CTCCCAAAGTGCTG 443,681
GGAGGCTGAGGCAG 437,319
CAAAGTGCTGGGAT 436,625
CAGGCTGGAGTGCA 436,504
CCAGCACTTTGGGA 434,713
TGCTGGGATTACAG 428,229
CCAGGCTGGAGTGC 425,904
CCTGCCTCAGCCTC 423,801
TCCCAGCACTTTGG 423,684
TGTAATCCCAGCAC 417,426
AGTGCTGGGATTAC 416,557

17-mer Freq

AAAAAAAAAAAAAAAAA 1,634,441
TGTGTGTGTGTGTGTGT 624,344
TAATCCCAGCACTTTGG 386,886
ATCCCAGCACTTTGGGA 385,642
AATCCCAGCACTTTGGG 381,085
AAAGTGCTGGGATTACA 375,216
CTCCCAAAGTGCTGGGA 373,151
AAGTGCTGGGATTACAG 369,056
GCCTCCCAAAGTGCTGG 368,350
CAAAGTGCTGGGATTAC 364,621
CCCAGCACTTTGGGAGG 363,569
ATATATATATATATATA 363,206

AGTGCTGGGATTACAGG 358,629
TCTACTAAAAATACAAA 340,685
CTACTAAAAATACAAAA 340,602
CTCCTGCCTCAGCCTCC 328,239
TTGTATTTTTAGTAGAG 325,500
TTCTCCTGCCTCAGCCT 324,096
TCTCTACTAAAAATACA 319,930

GGCTGAGGCAGGAGAAT 318,655
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12-mer Freq 13-mer Freq

AAAAAAAAAAAA 4,144,156 AAAAAAAAAAAAA 3,468,084
TGTGTGTGTGTG 928,266 TGTGTGTGTGTGT 867,556
TGGGATTACAGG 744,980 CTGTAATCCCAGC 687,709
CTGGGATTACAG 737,944 CTGGGATTACAGG 684,576
GCTGGGATTACA 727,608 ATATATATATATA 571,291
ATATATATATAT 664,692 GCCTGTAATCCCA 520,611

GGAGGCTGAGGC 562,149 GCCTCCCAAAGTG 493,408
GCCTGTAATCCC 532,230 GGAGGCTGAGGCA 489,998
GCCTCCCAAAGT 527,552 CTCCCAAAGTGCT 486,025
TGCCTCAGCCTC 523,666 GCACTTTGGGAGG 474,289
CCTCCCAAAGTG 522,504 CAGCACTTTGGGA 471,479
TCCCAAAGTGCT 517,353 AGTGCTGGGATTA 468,425
AAAAATACAAAA 513,200 TGCACTCCAGCCT 466,972

GGGAGGCTGAGG 507,919 GAGGCTGAGGCAG 465,893
GCACTTTGGGAG 501,469 AAGTGCTGGGATT 464,827
CCAGGCTGGAGT 499,800 ATCCCAGCACTTT 460,277
AGGCTGAGGCAG 492,943 GCACTCCAGCCTG 454,751
AGGCTGGAGTGC 486,794 TGTAATCCCAGCA 453,696
AGTGCTGGGATT 486,236 CCAGGCTGGAGTG 453,312
CAGGCTGGAGTG 484,927 TCCCAGCACTTTG 448,301

15-mer Freq 16-mer Freq

AAAAAAAAAAAAAAA 2,397,399 AAAAAAAAAAAAAAAA 1,981,757
TGTGTGTGTGTGTGT 729,915 TGTGTGTGTGTGTGTG 662,157
GCCTGTAATCCCAGC 448,640 TAATCCCAGCACTTTG 408,698
ATATATATATATATA 446,009 ATATATATATATATAT 402,936

AGCACTTTGGGAGGC 435,271 CCAAAGTGCTGGGATT 400,385
TAATCCCAGCACTTT 430,431 GCCTCCCAAAGTGCTG 398,210
CAAAGTGCTGGGATT 423,190 TCCCAGCACTTTGGGA 395,536
CCTCCCAAAGTGCTG 420,378 CCCAAAGTGCTGGGAT 392,938
ATCCCAGCACTTTGG 412,897 TGTAATCCCAGCACTT 390,400
CCAGCACTTTGGGAG 409,630 CCTCCCAAAGTGCTGG 388,489
CCAGGCTGGAGTGCA 409,063 CTGTAATCCCAGCACT 385,038
TGTAATCCCAGCACT 407,346 AAAGTGCTGGGATTAC 383,514
CCCAGCACTTTGGGA 406,238 CCCAGCACTTTGGGAG 383,068
TCCCAGCACTTTGGG 403,080 GTGCTGGGATTACAGG 367,247
AAGTGCTGGGATTAC 399,124 TGCACTCCAGCCTGGG 361,996
CCTGCCTCAGCCTCC 398,260 TACTAAAAATACAAAA 360,995
TGCTGGGATTACAGG 398,070 GAGGCTGAGGCAGGAG 349,118
GTGCTGGGATTACAG 394,430 CTACTAAAAATACAAA 348,511
GCACTCCAGCCTGGG 376,640 TCCTGCCTCAGCCTCC 346,669
TTTTGTATTTTTAGT 374,747 TTGTATTTTTAGTAGA 346,193

Table 2: Ultra-frequent n-mers in the human genome (Continued)
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CTCCCAAAGTGCTGGGATTA 341,542
AATCCCAGCACTTTGGGAGG 335,334
GCCTCCCAAAGTGCTGGGAT 328,159
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CTGTAATCCCAGCACTTTGG 320,216
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GTCTCTACTAAAAATACAAA 195,075
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AAAAAAAAAAAAAAAAAA 1,345,821 AAAAAAAAAAAAAAAAAAA 1,104,496
GTGTGTGTGTGTGTGTGT 569,504 TGTGTGTGTGTGTGTGTGT 536,547
TCCCAAAGTGCTGGGATT 374,035 TAATCCCAGCACTTTGGGA 361,679
TAATCCCAGCACTTTGGG 368,428 AATCCCAGCACTTTGGGAG 353,065
ATCCCAGCACTTTGGGAG 363,933 ATCCCAGCACTTTGGGAGG 345,608
TGTAATCCCAGCACTTTG 356,809 TGTAATCCCAGCACTTTGG 338,285
CTGTAATCCCAGCACTTT 354,805 CAAAGTGCTGGGATTACAG 337,559
TCCCAGCACTTTGGGAGG 354,247 GCCTCCCAAAGTGCTGGGA 336,291
GTAATCCCAGCACTTTGG 345,648 CCTGTAATCCCAGCACTTT 330,885
CCCAGCACTTTGGGAGGC 345,007 CCCAAAGTGCTGGGATTAC 329,491
CCTGTAATCCCAGCACTT 343,923 CTCTACTAAAAATACAAAA 313,148
TTTTGTATTTTTAGTAGA 333,004 TCTCTACTAAAAATACAAA 307,152
ATATATATATATATATAT 332,710 ATATATATATATATATATA 302,986
TTTGTATTTTTAGTAGAG 320,328 GAGGCTGAGGCAGGAGAAT 296,297
TCTCTACTAAAAATACAA 312,108 GGAGGCTGAGGCAGGAGAA 291,488

AGGCTGAGGCAGGAGAAT 311,358 TTTTTGTATTTTTAGTAGA 290,073
GAGGCTGAGGCAGGAGAA 308,372 CCAGGCTGGAGTGCAGTGG 273,189
TCTCCTGCCTCAGCCTCC 298,682 CACTGCACTCCAGCCTGGG 256,220
TTTTTGTATTTTTAGTAG 296,585 GCCTGTAATCCCAGCACTT 247,562

CCAGGCTGGAGTGCAGTG 292,150 GGCCTCCCAAAGTGCTGGG 230,427

Table 2: Ultra-frequent n-mers in the human genome (Continued)
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Whiteford measure of the frequency of unique n-mers.
Our analysis suggests that the 25+bp reads of current high
throughput sequencers are unlikely to produce sequences
that would appear by chance in a genome other than the
genome being sequenced (Figure 1). These longer n-mers
should only be shared between species due to descent
from a common ancestor.

The human genome is not spread evenly across sequence
space but is rather compacted in closely related sequences
(Figure 4). Compaction in sequence space may be the
result of molecular evolution. Duplication events fol-
lowed by divergence between the duplicated regions is
thought to be a common mechanism for genome evolu-
tion [5] and would lead to such compaction. Similarly,
transposons and other repeat elements lead to structure in
the non-coding region of the genome that can be detected
in the difference between the entropy of the coding
regions versus the non-coding regions (Figure 5). Previous
work has used Renyi entropy to address the problem of

failure of convergence for entropy measures on short DNA
sequences [24]. We have used the simpler and more tradi-
tional definition of entropy because convergence is not a
problem for the analysis of whole human chromosomes
(Figure 5).

The difference between the entropy of coding versus non-
coding regions of the genome has long been known [14]
and may help to explain why chromosomes 13, 18, 21
and the Y chromosome appear to have relatively low
entropy compared to the rest of the genome (Figure 6).
The correlation between nucleotides at varying distances
("mutual information") is also known to be higher in
coding regions than non-coding regions [25]. However,
there are a number of chromosomes for which the
entropy does not track with the proportion of coding
regions in chromosome. Chromosomes 1, 2, 9, 12, and 14
have relatively high proportions of coding regions with-
out relatively high entropy while chromosome 20 has a
relatively low proportion of coding regions without rela-

The density of the human genome in sequence spaceFigure 4
The density of the human genome in sequence space. For every randomly generated n-mer that was detected in the 
human genome, we generated all single basepair variants (3n variants for each n-mer) and tested them to see if they were also 
represented in the human genome (1nn). We also generated 3n of the 2 bp variants (2nn), 3n of the 3 bp variants, and so on up 
to variants that differed in 10 bp from the original human n-mer. The sequences that are only a few SNPs away from the origi-
nal human n-mer are significantly more likely to be in the human genome compared to a random n-mer (black bars, "random"). 
This shows that the human genome is relatively compact in sequence space. The standard error for all points is < 0.003.
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tively low entropy (Figure 6). This may be a signal of func-
tional, non-coding RNA on chromosome 20, for
chromosome 20 does not have an unusually low fre-
quency of repeats, an unusual G+C content, or an unusual
density of CpG islands [2,3,26]. All of chromosome 20 is
conserved as a single segment in the mouse chromosome
2 [2], suggesting it contains little junk DNA. However, the
anomaly of non-protein coding information content on
chromosome 20 cannot yet be explained by an over-abun-
dance of miRNAs. Out of the 475 currently confirmed
miRNAs in the human genome, 11 are located on chro-
mosome 20 [27,28]. This is no more than would be
expected by chance (Binomial probability of 11 or more
miRNAs, p = 0.46).

Gaps remain in most of the sequenced genomes, but these
are unlikely to significantly affect most of our analyses. In
the sequence files, missing nucleotides are coded as N's
and are skipped over by our algorithms. Build 35 of the
human genome was missing 225 Mbp of the human
sequence (7% of the genome), 200 Mbp of which is made
up of heterochromatin [29]. Heterochromatin is highly
repetitive sequence, including telomeres and centromeres.
Since the sequenced part of the genome often extends past
the borders of heterochromatin [29], it is likely that most
of the n-mers in the heterochromatin (for n < 20) would
have been counted in our analyses of coverage and
uniqueness. The remaining 25 Mbp of euchromatic gaps

are often associated with segmental duplications and copy
number variations between subjects used for the reference
sequencing [30]. Again, many of the n-mers in those gaps
are probably represented elsewhere in the sequenced
genome. However, the absence from our analysis of the
7% of the human genome with highly repetitive hetero-
chromatin means that our estimates of entropy in the
human genome (Figure 6) are probably slightly higher
than the true values.

Coverage of sequence space is probably not subject to
selection in and of itself, except in specialized cases of
diversifying selection, such as occurs in the evolution of
major histone compatibility complex (MHC) [31] and
some testis genes [32]. However, coverage of sequence
space may be a metric of evolvability because it represents
the library of genetic sequences that may be duplicated,
recombined and modified to generate new genes and
functions. All things being equal (including genome size
and mutation rates), we would predict that a population
of organisms with greater coverage of sequence space
should evolve more quickly to new environmental pres-
sures than a population of organisms with fewer sub-
sequences. This could be tested in evolvability experi-

Entropy rate, using the Lempel-Ziv 77 algorithm, for the cod-ing sequence (red) and the genomic sequence for chromo-some 20 (green), as a function of the length of the sequence analyzedFigure 5
Entropy rate, using the Lempel-Ziv 77 algorithm, for 
the coding sequence (red) and the genomic sequence 
for chromosome 20 (green), as a function of the 
length of the sequence analyzed. The entropy calcula-
tion converges after 10 million bases.

The entropy, or information content (solid line, left Y axis) and percent of the sequence coding for proteins (dashed line, right Y axis, log scale) for each human chromosome as well as the full set of coding regions (CCDS)Figure 6
The entropy, or information content (solid line, left Y 
axis) and percent of the sequence coding for proteins 
(dashed line, right Y axis, log scale) for each human 
chromosome as well as the full set of coding regions 
(CCDS). Given the higher entropy rate of coding regions to 
non-coding regions, we expect a correlation between the 
two measurements. However, chromosomes 1, 2, 9, 12, and 
14 have a lower information content than might be expected 
for the percent of those chromosomes occupied by protein 
coding regions. Chromosome 20 appears to have a higher 
entropy than would be expected given its gene poor content. 
This may be a signal of extensive non-protein coding, yet 
functional RNA on chromosome 20.
Page 11 of 17
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ments on bacteria with different degrees of sequence space
coverage but similar mutation rates and genome sizes.

When we performed the analysis of coverage versus
genome size in 10-mer sequence space. Anaeromyxobacter
dehalogenans stands out as having an exceptionally low
sequence coverage for its genome size and GC content
(outside of the 99.9% predicted range). A. dehalogenans is
an anaerobic bacterium with a GC content of 75%. It is
able to reduce a variety of metals including ferric iron and
Uranium (VI) and has been studied for its potential role
in bioremediation [33,34].

One potential use of our results would be to develop
assays to detect non-human organisms and sequences in
human tissue samples. We found that with a panel of 2.6
M 15-mers that are at least 2 SNPs different from human
15-mers, we could easily detect all bacterial genomes and
75% of fully sequenced viruses. This approach is inspired
by the negative selection algorithm used by the immune
system: generate random amino acid sequence (peptide)
detectors and then remove those that match self. Patterns
of positive probes on an array of non-human 15-mers are
likely to be enough to identify known microbes. To iden-
tify an unknown microbe, any non-human probe that
hybridized to DNA from a human sample could be used
as a PCR primer to sequence in both directions from that
probe and thereby generate longer sequences of the non-
human DNA. This would be important both for identify-
ing pathogens in the etiology of diseases as well as for
identifying symbiotic microbes that have received little
attention because they either do not cause disease or they
only cause disease through their absence. Such an array
could also identify non-human sequences generated
through insertions, deletions and translocations in cancer
where such lesions may be targeted for therapy [35,36]. A
number of other approaches have been taken to identify-
ing non-human organisms in human samples. Cellular
organisms can be identified by sequencing the 16S rRNA
genes in the sample [37-40], though this misses viruses.
DeRisi and colleagues have developed an oligonucleotide
array with 70-mers of highly conserved sequences within
most fully sequenced virus families [41]. This was used to
identify the SARS virus as a coronavirus[42,43], though
the array may not identify novel viruses that are dissimilar
from the known viral families. A brute force metagenom-
ics approach involves sequencing all the DNA or RNA in
the sample and removing any sequences that match the
human genome [44-47]. Currently, efforts are proceeding
to sequence all the microbes found in the human body
[48].

We have focused on an elegant and relatively simple met-
ric of genome complexity: sequence space coverage. It can
be calculated exhaustively or, more efficiently, through

sampling based on a set of randomly generated oligos.
While sequence space coverage is clearly influenced by
genome size and GC content, we have also shown that the
human genome is more compact in sequence space than
a random genome. This is probably the signature of
molecular evolution. Our measurements of sequence
space coverage and entropy allow for the comparison
between genomes and between chromosomes within a
genome. This has led to the detection of outliers that may
help to reveal properties of organisms and chromosomes
that are not currently understood. Coverage data can also
be used in a negative selection algorithm to develop assays
to detect novel microbes in tissue samples.

Methods
We used the Human Genome NCBI build 36 version 1,
the reference Mouse sequence for C57BL/6J (NCBI build
36), and Escherichia coli strain K-12 substrain MG1655
(accession number U00096). See additional file 4 for all
the build numbers and accession IDs of the genomes for
Figure 1. All genomes sequences can be found on ftp://
ftp.ncbi.nih.gov/genbank/genomes/. The build number
for all the bacteria genomes for Figure 2 can be found in
our additional file 5. Genome statistics are based on all
chromosomes and reverse complement strands for each
organism.

Exhaustive search
To find all the oligonucleotides of length n that are
present in a genome is difficult for large n, due to compu-
tational memory constraints. We exhaustively searched
the genomes for all possible 1- to 15-mers. The algorithm
follows:

1. Given oligo length n, create a boolean array of size 4n

2. For each chromosome and its reverse complement:

a. For each nucleotide location i in the chromosome:

i. Convert the n-mer at location i into an array
index (coding it as a 2n bit number with each
nucleotide represented by 2 bits).

ii. Set the Boolean array [index] = true

3. Divide the number array locations set to true by the size
of the array (4n).

Stochastic sampling
The set of all oligonucleotides of length n has cardinality
of 4n. The size of sequence space increases exponentially
with respect to the oligo length. For example, if n = 18, the
set contains 8G different oligos. For large n, it is impossi-
ble to save all the entries in the space to the memory of
Page 12 of 17
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any 64-bit machine. Therefore, we choose to use stochas-
tic sampling to estimate the sequence space coverage of
the genomes as follows:

1. Randomly generate 100,000 n-mers and save them into
a hash table

2. For each n-mer in the hash table:

a. For each chromosome and its reverse complement:

i. Scan the chromosome and record the number of
times the n-mer appears in the genome

3. Calculate the coverage by dividing the total number of
n-mers that appeared at least once in the genome by
100,000.

We found the stochastic sampling algorithm accurately
estimates the true coverage of the genomes (Table 1).

Identification of Ultra-Frequent Oligomers
In order to identify all oligomers of length 10–20 bp that
appear > 30,000 times in the human genome we:

1. Identified all 10-mers that appeared in the human
genome > 30,000 times by exhaustive search

2. Let K = the number of n-mers previously identified as
appearing > 30,000 times. We generated 4K (n+1)-mers
by concatenating one of the four possible nucleotides (A,
C, G or T) to the end of the K n-mers that appeared >
30,000 times in the human genome.

3. We counted the number of times the 4K (n+1)-mers
appear in the human genome and discarded any that
appear less than 30,000 times.

4. If n+1 < 20, we incremented n and looped to step 2 with
the new list.

This algorithm is guaranteed to find all n-mers that appear
at least 30,000 times in the human genome. If a 20-mer
occurs > 30,000 times in the human genome, then all pre-
fixes of that 20-mer must occur at least as many times as
the 20-mer. So the 10-mer prefix must also occur > 30,000
times and so would have been identified in step 1. The 11-
to 19-mer prefixes, as well as the final 20-mer, would then
have been generated in step 2 and not discarded in step 3.
Therefore, all 20-mers that appear > 30,000 times are
identified by the algorithm. This algorithm can be
extended to arbitrary length oligomers for any positive
lower bound on the frequency of the oligomers. We chose
this approach, rather than the brute force approach of
counting the frequency of all n-mers in the human

genome because the above algorithm need only maintain
a small list of the ultra-frequent n-mers at any step and so
is more computationally efficient.

Lempel-Ziv estimators of entropy rate
The Lempel-Ziv algorithm [49] is a computationally effi-
cient scheme for universal data compression. The algo-
rithm requires no a priori knowledge of source statistics
(hence is "universal"), is particularly elegant, has a very
low computational complexity, and produces very com-
pact descriptions of large alphabets. These virtues have
established the algorithm firmly as the standard data com-
pression algorithm for the transmission and storage of
large files over the Internet and on computers.

Given a sequence of letters from an alphabet, the algo-
rithm parses the string sequentially to produce a diction-
ary of new phrases, in order of occurrence in the sequence.
Specialized to the genome, the algorithm proceeds as fol-
lows.

The four phrases corresponding to the single nucleotides
'A', 'C', 'G' and 'T' form the first entries in the dictionary of
phrases. The parsing procedure now proceeds recursively
finding each new phrase in the sequence in turn.

The Lempel-Ziv parsing procedure:

1. Search for the longest oligomer subsequence S that has
appeared in the dictionary.

2. Add S concatenated with the next nucleotide in the
genome as a new, previously unobserved, phrase into the
dictionary.

3. If the sequence is exhausted without discovering a new
phrase, exit.

4. Else, with the pointer set to the location following the
last observed nucleotide, go back to step 1.

Let d(n) denote the number of dictionary items that have
been generated after parsing n consecutive symbols in the
genome string. Then, the number of bits needed to
describe the dictionary up to this point provides a simple
compression mechanism to describe the entire string up
to this point. The pervasive utility of Lempel-Ziv rests
upon the observation that such a description is compact
and efficient. The theoretical basis for the Lempel-Ziv
algorithm is discussed briefly in the Appendix.

All the Java code for implementing the above algorithms
and calculating the statistics for the figures and tables is
freely available from the authors.
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Statistical methods
All statistical analyses were performed in R. For the analy-
sis of 10-mer sequence space coverage, Figure 2 shows that
the association with genome size is non-linear, so we log
transformed genome size. In addition, the chance of
evenly covering sequence space in a random genome
decreases as the frequency of nucleotides is skewed from a
uniform distribution. Thus, we transformed GC content
by taking the absolute value of (0.5 – GC content). These
transformed variables were used as predictors of coverage
in a multivariate linear regression that included an inter-
action term between the predictors. Both variables and
their interaction were significant at p < 0.01. We used
Cook's distance to identify the top 1% of genomes that
have the strongest influence on the regression analysis.
We excluded those five genomes and refit the multivariate
regression model. We then used that model to predict the
coverage values of the five excluded genomes based on
their log genome sizes and GC content deviation from
0.5. Only one of the five genomes had a 10-mer coverage
value that fell outside the 99.9% prediction range and was
therefore identified as an outlier in the model.

Authors' contributions
CCM conceived the study. ZL performed all the analyses.
SSV carried out the theoretical entropy analysis. CCM, ZL
and SSV wrote the paper. All authors approved the final
manuscript.

Appendix
Theoretical basis for the Lempel-Ziv algorithm
The Lempel-Ziv procedure forms a very competitive and
computationally appealing entropy estimator for long,
complex sequences like the human genome. The technical
justification for the Lempel-Ziv algorithm in such contexts
is provided by a fundamental convergence theorem: the
superior limit of the ratio of the number of bits needed to
describe the Lempel-Ziv dictionary of phrases to the length of
the sequence almost surely bounds the entropy rate of any
ergodic, stationary random sequence from below [50]. More
formally, if the entropy rate of the source X is denoted by
H(X), then

Theorems of this nature form at once the motivation and
the ultimate justification of the procedure. The estimates
obtained converge very quickly as seen in Figure 5.

Theoretical analysis of the random pseudo-human genome
Clustering and repetitions of n-mers in the human
genome over and beyond the chance fluctuations that
govern a truly random sequence will manifest themselves
in a lower coverage of sequences in n-mer space than can

be accounted for by chance. It is informative to consider
the n-mer coverage of a random pseudo-human genome
of the same length as the human genome and with the
nucleotides A, C, G, and T appearing with equal frequency
in the genome. This model is equivalent to a sequence of
dinucleotides chosen by independent sampling from the
set of sixteen dinucleotides {AA, AC, ..., TG, TT}, each
dinucleotide selected with equal probability. This permits
a more refined comparison with the human genome in
view of features such as the marked depletion of CG dinu-
cleotides in mammalian genomes [51], which are not cap-
tured by single nucleotide frequencies alone. As we shall
see, however, from an analytical perspective, a considera-
tion of dinucleotide frequencies makes very little differ-
ence to the conclusions. The n-mer space coverage of the
pseudo-human genome will bound from above the corre-
sponding n-mer space coverage of the human genome
(see Figure 1), the discrepancy between the two providing
evidence of statistical clustering or bunching of n-mers in
the human genome. Such discrepancies in coverage are
manifested in the entropy rate: the pseudo-human
genome has entropy rate equal to the maximal value log2
4 or 2 bits per symbol and bounds from above the entropy
rate of the human genome (Figure 5).

Accordingly, consider the simplest model of a random
pseudo-human genome as a sequence of nucleotides
drawn by independent sampling from the alphabet {A, C,
G, T}, with each nucleotide having equal probability of
selection. The 4n possible n-mers each appear with equal
probability in the nucleotide sequence. If one considers a
random sequence of t n-mers (corresponding to a
''genome'' length of N = nt base pairs), the number of n-
mers that are absent in the sequence follows the classical
coupon collector's paradigm [52]. The probability that
exactly m of the possible n-mers is absent in the random
sequence is given by

When t is large, say of the order of one billion as in the
human genome, the probabilities Pm are approximated by
a Poisson distribution. More precisely, if

where logarithms are to the Napier base e, c is any fixed
real constant, and the order term represents a quantity
that grows asymptotically no faster than the vanishing
term log log(t)2/log(t)2 as t becomes large, then the
number of excluded n-mers approaches a Poisson distri-
bution with mean exp(-c) for large values of t. More spe-
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cifically, the probability that exactly m n-mers are
excluded in the random sequence is asymptotically given
by

for large values of t. In particular, the probability that all
the n-mers are present in the sequence is approximately
given by

In view of the very rapid extinction of the double expo-
nential for very small values of c, say, between -3 and +3
for typical genome sizes, a small positive c will result in a
probability close to one that all n-mers are present while a
small negative c will result in gaps in coverage with over-
whelming probability. As the term involving c is sub-
dominant in the expression for n in terms of t, a phase tran-
sition in n-mer coverage in the random pseudo-human
genome occurs around the critical value of

For instance, when t is one billion, of the order of the size
of the human genome, the critical value for n is 13: with
overwhelming probability all n-mers of length 13 or fewer
will be found in the random pseudo-human genome with
uniform nucleotide frequencies, while there is a break-
down in coverage for n-mers of length in excess of 14.

The results are not materially affected if the uniform
nucleotide frequencies in the random pseudo-human
genome are replaced by the actual observed nucleotide
frequencies of 0.295, 0.204, 0.205, and 0.296 for the
nucleotides A, C, G, and T in the human genome, or even,
in a slightly more refined calculation, the pseudo-human
genome is constructed by independent sampling from the
set of sixteen dinucleotides with each dinucleotide
appearing not with equal probability but in the same fre-
quency as in the human genome (the CG dinucleotide, in
particular, being markedly depleted [51]). The n-mer cov-
erage for the actual distribution of nucleotide (or dinucle-
otide) frequencies is bounded below by the coverage of n-
mer space by a uniform random sequence over an alpha-
bet of size 5 as the probability 1/5 = 0.2 of selecting a
given nucleotide (or probability 1/25 = 0.04 of selecting a
given dinucleotide) from an alphabet of size 5 lies below
the observed nucleotide (respectively, dinucleotide) fre-
quencies in the human genome. We can get increasingly

conservative bounds in this fashion by increasing the
alphabet size as, under uniform selection, the nucleotide
frequency decreases inversely proportional to alphabet
size, while the dinucleotide frequency decreases inversely
with the square of the alphabet size. The size of alphabet,
however, makes little difference to the point where a
phase transition in n-mer coverage is observed as the
expression for the phase transition point for n is relatively
insensitive to alphabet size (the expression for n depends
only on the logarithm of the alphabet size). Conse-
quently, random pseudo-human genomes with nucle-
otide and dinucleotide frequencies matching that of the
human genome exhibit an essentially complete coverage
of n-mers with n up to 13, with gaps in coverage occurring
abruptly for n-mers of size 14 and beyond. For the analy-
sis in Figure 1, we generated a random pseudo-human
genome with the same dinucleotide frequencies as the
human genome by using a first-order Markov process with
transition probabilities that match the probabilities for
each nucleotide following the previous nucleotide in the
human genome. The substantial agreement of the stochas-
tic simulation results for the pseudo-human genome in
Figure 1 with the theoretical predictions serves to provide
a validation of the sampling methodology.
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Additional file 1
Supplementary-1. Space coverage of n-mer space (1–20) for Homo 
sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis 
elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and 
Escherichia coli (K-12) genomes by the stochastic searching algorithm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-509-S1.txt]

Additional file 2
Supplementary-2. The 10-mer space coverage for 433 fully sequenced 
microbial with genomes GC content and genome sizes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-509-S2.txt]

Additional file 3
A full list of high frequency n-mers for Homo sapiens genome.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-509-S3.zip]

Additional file 4
Supplementary-4. The NCBI genome sequence accession ID for Dro-
sophila melanogaster, Arabidopsis thaliana, Caenorhabditis ele-
gans, Saccharomyces cerevisiae.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-509-S4.txt]
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