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G protein–coupled olfactory receptors (ORs) enable us to
detect innumerous odorants. They are also ectopically expressed
in nonolfactory tissues and emerging as attractive drug targets.
ORs can be promiscuous or highly specific, which is part of a
larger mechanism for odor discrimination. Here, we demon-
strate that the OR extracellular loop 2 (ECL2) plays critical roles
in OR promiscuity and specificity. Using site-directed muta-
genesis and molecular modeling, we constructed 3D OR models
in which ECL2 forms a lid over the orthosteric pocket. We
demonstrate using molecular dynamics simulations that ECL2
controls the shape and volume of the odorant-binding pocket,
maintains the pocket hydrophobicity, and acts as a gatekeeper of
odorant binding. Therefore, we propose the interplay between
the specific orthosteric pocket and the variable, less specific
ECL2 controls OR specificity and promiscuity. Furthermore, the
3D models created here enabled virtual screening of new OR
agonists and antagonists, which exhibited a 70% hit rate in cell
assays. Our approach can potentially be generalized to structure-
based ligand screening for other G protein–coupled receptors
that lack high-resolution 3D structures.

G protein–coupled receptors (GPCRs) are the largest family
of membrane proteins in the human genome, comprising over
800 members. Half of the human GPCR genes code for
olfactory receptors (ORs) (1), which can discriminate an
astonishing number of different odors (2). ORs are also
ectopically expressed in nonolfactory tissues, emerging as
appealing drug targets (3–8). GPCRs detect diverse ligands
and control most of the cell signaling. Despite their diverse
functions, GPCRs conserve a seven transmembrane helical
(TM) architecture (TM1—TM7), connected by three
extracellular loops (ECL1—ECL3) and three intracellular
loops (ICL1—ICL3). ORs belong to class A GPCRs, which
account for �85% of the human GPCR genes. The orthosteric
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ligand-binding pocket in class A GPCRs is located within the
extracellular half of the TM bundle, extending �15 Å deep
into the cell membrane (9). The pocket may be solvent
accessible (e.g., in receptors for peptides or soluble molecules)
or shielded by ECL2 (e.g., in lipid receptors and rhodopsin)
(10). ECL2 is often the longest extracellular loop, which is
highly variable in length, sequence, and structure (11, 12). A
disulfide bond between ECL2 and TM3 is conserved in 92% of
human GPCRs (13). It is important for ligand binding and
receptor activation (10). Peptide-activated GPCRs mostly
contain an ECL2 in the form of a β-hairpin lying on the rim of
the orthosteric pocket. ECL2 of GPCRs that are modulated by
small-molecule endogenous ligands exhibits diverse shapes.
They are often unstructured and cover partially or fully the
pocket entrance (10). Rhodopsin is a case in-between, in
which a β-hairpin–shaped ECL2 inserts deep into the
orthosteric pocket (14). It has been suggested that rhodopsin
ECL2 represents an evolutionary transition between peptide
receptors and small-molecule receptors (12). In small-
molecule receptors, ECL2 may have evolved to mimic the
peptide ligands and occupy part of the pocket, which renders
the pocket suitable for binding small molecules. ECL2 plays
important roles in ligand binding and activation of class A
GPCRs (11). It may act as a gateway to the orthosteric pocket
(15–19), bind allosteric modulators (20, 21), or participate in
receptor activation (22, 23).

ECL2 of ORs are among the longest in class A GPCRs. ORs
can be promiscuous or highly specific, in which ECL2 may play
a central role. However, the lack of high-resolution OR
structures hampers the study of OR-odorant recognition.
Homology modeling combined with site-directed mutagenesis
have shed light on the structure and ligand specificity of the
orthosteric pocket of various ORs (24–28). Yet, the role and
structure of ECL2 remain mostly elusive. In this work, we
studied the role of ECL2 in two prototypical mouse ORs
(mORs) of the same subfamily, mOR256-3 and mOR256-8,
which share 54% sequence identity. Our previous work indi-
cated that mOR256-3 is promiscuous for a series of commonly
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ECL2 is critical for odorant recognition
encountered odorants, whereas mOR256-8 is rather specific
(29). In this study, we found that ECL2 properties strongly
modulate OR-odorant recognition. We performed site-
directed mutagenesis along ECL2 and built 3D OR models
that are in concordance with the mutagenesis data. Virtual
screening using the 3D models identified new mOR256-3 li-
gands, including an antagonist that inhibited some of the ag-
onists. The 3D models provide structural explanations to the
promiscuity of mOR256-3 and the selective antagonism.

Results

Sequence analysis of OR ECL2

Sequence alignment of 1521 human and mORs showed that
their ECL2 mostly contain 34 to 35 amino acids (Fig. S1). They
are longer than ECL2 in most class A GPCRs. Three cysteines
are highly conserved (C169, C179, and C189 in mOR256-3,
conserved in 93.4%, 99.5%, and 95.0% of human and mORs,
respectively). C179 forms the classic disulfide bond with TM3,
whereas C169 and C189 have been suggested to form a second
disulfide bond within ECL2 (30). A few residues around the
two disulfide bonds are highly conserved, whereas the rest of
the OR ECL2 sequence displays low conservation (Fig. S1). It is
plausible that the two disulfide bonds are important for ECL2
structuring and OR functions.

Nonspecific roles of ECL2 in OR responses to odorants

In our previous work, we screened diverse odorants at a
near-saturating concentration (300 μM) on several ORs in the
heterologous Hana3A cells. We found a wide range of po-
tential ligands for mOR256-3 but only two for mOR256-8 (29).
Yet, one or few point mutations in mOR256-8 could signifi-
cantly expand its ligand spectrum (29). Here, we reexamined
20 of these odorants at various concentrations in Hana3A cells
expressing mOR256-3 or mOR256-8. Ten odorants activated
mOR256-3 in a dose-dependent manner, including cyclic and
acyclic alcohols, aldehydes, acids, ketones, and esters: R-car-
vone, coumarin, 1-octanol, allyl phenylacetate, benzyl acetate,
citral, geraniol, 2-heptanone, octanal, and octanoic acid
(Table S1 and Fig. S2A). mOR256-8 responded only to 1-
octanol and geraniol in a dose-response manner, which are
two primary acyclic alcohols of similar lengths (Table S1 and
Fig. S2B).

Focusing on the role of ECL2, we performed site-directed
mutagenesis to probe the residues that are responsible for
the functional differences between mOR256-3 and mOR256-8.
Based on the 3D models in our previous work (29, 31–34), we
mutated 14 residues on TM3–TM6 around the orthosteric
pocket, as well as 15 residues in ECL2 of mOR256-8 that differ
from mOR256-3. In the narrowly tuned mOR256-8, these
residues were mutated one by one into their counterpart in the
broadly tuned mOR256-3. We then tested the response of the
mutant receptors to R-carvone and coumarin, two reference
ligands of mOR256-3. While wild-type (wt) mOR256-8 does
not respond to these odorants, 14 of the mutants showed dose-
dependent responses to R-carvone, and some of them also
responded to coumarin (Fig. 1A). Four of the mutations were
2 J. Biol. Chem. (2022) 298(9) 102331
in ECL2, R173I, N175D, L181V, and L184M (Fig. 1A). These
residues flank the ECL2–TM3 disulfide bond, suggesting that
this region (residues 173–184) is important for the receptor
function. Five residues in this region are conserved in
mOR256-8 and mOR256-3 (H176, F177, E180, P182, and
A183). Therefore, we mutated these five residues in mOR256-
3 to evaluate their role in this promiscuous receptor. They
were mutated into alanine, except for A183, which was
mutated into a bulky isoleucine. While F177A impaired re-
ceptor expression on the cell surface (Fig. S3), the other four
mutations systematically diminished the receptor’s response to
R-carvone and coumarin (Fig. 1B). The aforementioned mu-
tations in the two receptors had less drastic impacts on the
response to geraniol (Fig. S4), which suggest that geraniol in-
teracts with the receptors in a different manner.

We also generated a chimeric mOR256-8 in which ECL2
was replaced with that of mOR256-3. However, it did not gain
response to the ligands of mOR256-3. The aforementioned
data highlight that residues 173–184 in ECL2 are critical but
not solely responsible for ligand recognition or receptor pro-
miscuity. This is in line with the notion that in class A GPCRs,
ECL2 acts as a vestibule or a molecular sieve of ligand binding
and/or an allosteric site of receptor activation. Since residues
173–184 in ORs surround the conserved ECL2–TM3 disulfide
bond, they are likely important in most, if not all, mammalian
ORs. For instance, mutations in this region have dramatic
impact on the response of mOR-EG to its odorants (28). This
region has also been found to interact with the orthosteric
ligands in several nonolfactory class A GPCRs (11).
3D modeling explains OR promiscuity

To date, there are no high-resolution OR structures or
structural information on the structural fold of OR ECL2. We
generated three types of 3D models using AlphaFold 2
(DeepMind Technologies) (35), Modeller (University of Cali-
fornia San Francisco) (36), and SWISS-MODEL (Swiss
Institute of Bioinformatics) (37). The three models displayed
distinct structures in ECL2 (Figs. 1C and S5). We evaluated the
predictivity of the models using site-directed mutagenesis data
and docking. The model that best matched these data was
generated by Modeller based on our hand-curated multiple
sequence alignment (Fig. S6). In this model, ECL2 appears as
an unstructured coil, in which residues 173–184 form a lid of
the orthosteric pocket (Fig. 1C). Residues 180–183 may
interact directly with the ligands (Fig. 1C). The model also
suggests that the pocket of mOR256-3 is much larger than
mOR256-8, showing two connected cavities (Fig. 2A). This
may allow mOR256-3 to accommodate odorants of diverse
size and shape. Molecular docking suggests that the upper
cavity can accommodate the cyclic ligands, whereas the deeper
cavity accommodates the acyclic ones (Figs. 2A and S7). The
pocket of mOR256-8 shows only one small cavity for its acyclic
ligands. We estimated the pocket volume of all the human and
mORs by summing up the side-chain volume of the residues
outlining the pocket with or without ECL2. We found that the
pocket size of mOR256-3 is ranked in the 47th and 46th



Figure 1. Site-directed mutagenesis and location of the mutation sites. Mutations in (A) mOR256-8 pocket and ECL2 and (B) mOR256-3 ECL2 affected
the response to various odorants. Data are mean ± SEM of three independent experiments. C, homology model of mOR256-3 selected according to the data
in A and B. D, consensus ECL2 sequence of human and mouse ORs and location of the mutation sites. Effective mutations are colored in pink (in the pocket)
or red (in ECL2). Noneffective mutations are colored in blue, including V993.27A, V1103.38T, L1985.38E, S2546.50T, R172ECL2N, I174ECL2L, L178ECL2F, I185ECL2L,
M187ECL2L, V190ECL2T, A192ECL2T, and V195ECL2N in mOR256-8. In the 3D models, consistently, the noneffective mutation sites (blue) do not constitute the
ligand-binding site or the pathway to the binding site. ECL2, extracellular loop 2.

ECL2 is critical for odorant recognition
percentile with and without ECL2, respectively, whereas that of
mOR256-8 is at the 26th and 22nd, respectively (Fig. S8).
Thus, the larger pocket volume of mOR256-3 than mOR256-8
may provide a structural explanation to the promiscuity of the
former. In order to assess this hypothesis and the model pre-
dictivity, we use the model to virtually screen for new
mOR256-3 ligands by molecular docking.

Docking benchmarks were first performed with 52 com-
pounds, including 10 known ligands of mOR256-3 and 42 de-
coys (Table S2) (29). An ensemble-docking protocol (Fig. S9)
was used to account for the conformational flexibility of the OR.
Namely, enhanced sampling molecular dynamics (MD) simu-
lations were performed on the initial model of mOR256-3 to
sample the receptor conformations (see the Experimental
procedures section for details). Ten receptor conformers
(snapshots) were extracted from a clustering analysis of the MD
trajectory. The 52 benchmark compounds were docked to each
of the 20 conformers using AutoDock Vina (The Scripps
Research Institute) (38) and ranked by their Vina scores for the
given conformer. The “best” conformers were chosen as those
that could best separate the ligands from the decoys by the Vina
scores (Fig. S9). We performed this benchmarking process for
our in-house model as well as for the models generated by
AlphaFold 2 and SWISS-MODEL. The in-house model—
generated by Modeller and selected according to site-directed
mutagenesis data—gave the best predictions on the bench-
mark compounds (Table 1). Removing ECL2 from this model
significantly reduced the predictivity (Table 1).

Finally, we chose two best conformers of the aforemen-
tioned in-house model to virtually screen a library of 80
odorants in our laboratory (Tables S3 and S4). The screening
returned 10 candidate compounds (Table S3), which were
tested in functional assays in Hana3A cells. Six of them turned
out to be mOR256-3 agonists and one (benzaldehyde) was an
antagonist, giving 70% hit rate (Fig. 2B and C and Table S3).
Benzaldehyde antagonized R-carvone, coumarin, and geraniol
(Fig. 2C). Docking predicted that benzaldehyde may bind in
the upper cavity of the mOR256-3 pocket for cyclic ligands,
similar to R-carvone and coumarin (Fig. 2C).
ECL2 controls pocket shape and hydrophobicity

To further examine the role of ECL2 in odorant recognition,
we constructed three mOR256-3 chimeras, by replacing its
ECL2 with that of M2 muscarinic receptor, β2 adrenergic re-
ceptor, and 5HT serotonin 2C receptor, respectively (denoted
as ch-β2AR

ECL2, ch-M2R
ECL2, and ch-5HT2CR

ECL2). ECL2 of
these receptors exhibit distinct structures (Fig. 3A). In Hana3A
cells, the chimeras showed no significant response to the
mOR256-3 ligands (Fig. S10). Nevertheless, they all displayed
J. Biol. Chem. (2022) 298(9) 102331 3



Figure 2. Selected 3D models and new mOR256-3 ligands discovered by virtual screening. A, cross-section of the best model of mOR256-3 and
mOR256-8, illustrating ECL2 as the pocket lid. mOR256-3 displays two connected cavities in the pocket, in which the upper cavity binds cyclic ligands and
the lower one accommodates acyclic molecules. B, dose-dependent curves of new mOR256-3 agonists from virtual screening. C, benzaldehyde binds in the
same cavity as R-carvone and coumarin. It inhibits R-carvone, coumarin, and geraniol. Data are mean ± SEM of three independent experiments. ECL2,
extracellular loop 2.

ECL2 is critical for odorant recognition
specific dose-dependent response to transcinnamaldehyde
(Fig. 3B), whereas wt mOR256-3 does not respond to this
odorant (29). To understand how the chimeric mOR256-3
became specific receptors of transcinnamaldehyde, we built
homology models for the chimeras and performed all-atom
MD simulations in an explicit membrane–water environ-
ment. The homology models were built by assuming that
ECL2 of the chimeras preserve the same fold as in β2AR, M2R,
and 5HT2CR, respectively. The models illustrated that ECL2 of
the chimeras only partly covered the ligand entrance. The
orthosteric pocket of the chimeras was hydrated during the
MD, whereas that of wt mOR256-3 was shielded from hy-
dration by ECL2 (Fig. 3A). This might be the reason why the
chimeras did not respond to the hydrophobic ligands of
mOR256-3. Rather, they responded to the less hydrophobic
transcinnamaldehyde (Fig. 3C).

We then added transcinnamaldehyde in the MD simulations
of wt mOR256-3 and the chimeras to monitor the ligand
binding. The ligand was initially placed at 10 Å above ECL2
and was restrained within a 15 Å radius around ECL2. Each
system underwent 30 independent MD runs of 200 ns. We
observed two binding events in ch-β2AR

ECL2, in which trans-
cinnamaldehyde entered the orthosteric pocket near the toggle
switch residue Y6.48 (Fig. 3D). It caused the side chain of
Y6.48 to flip toward TM5, which is likely an early step of OR
activation (32). In the case of wt mOR256-3, ch-M2R

ECL2, and
ch-5HT2CR

ECL2, transcinnamaldehyde associated with ECL2
4 J. Biol. Chem. (2022) 298(9) 102331
but could not enter the pocket. The binding pose of trans-
cinnamaldehyde in ch-β2AR

ECL2 suggests that wt mOR256-3
cannot accommodate this ligand, since ECL2 occupies part
of its pocket (Fig. 3D). Indeed, mOR256-3 ligands are generally
smaller or more flexible than transcinnamaldehyde. The lack
of ligand binding in ch-M2R

ECL2 and ch-5HT2CR
ECL2 was

likely because of insufficient sampling of the ECL2 confor-
mations in these very short simulations. The entrance to the
pocket is narrower in the initial models in ch-M2R

ECL2 and ch-
5HT2CR

ECL2 than that in ch-β2AR
ECL2. To verify the binding

pose of transcinnamaldehyde observed in the MD simulations,
we mutated three pocket residues that are in close contact with
the ligand. Mutations L3.33A and L5.46A abolished the receptor
response to transcinnamaldehyde (Fig. 3D). F3.32A impaired
the receptor expression on the cell surface (Fig. S3) and is thus
not discussed. The results suggest that the recognition of
transcinnamaldehyde is specific to the orthosteric pocket,
whereas ECL2 served as an unspecific molecular sieve for the
ligand entrance.
Discussion

Mammalian OR sequences have highly diversified during
evolution to detect and discriminate a vast spectrum of
odorants. Specific (or narrowly turned) ORs may be respon-
sible for the detection of specific odorants or endogenous
ligands when ectopically expressed in nonolfactory tissues



Ta
b
le

1
D
oc

ki
ng

b
en

ch
m
ar
k
us
in
g
d
iff
er
en

t
3D

m
od

el
s
of

m
O
R2

56
-3

an
d
52

co
m
p
ou

nd
s

M
od

el
M
D

sn
ap

sh
ot

a
M
C
C

H
it
ra
te

b
(p
re
ci
si
on

)
R
ec
al
lc

T
ru
e
po

si
ti
ve

T
ru
e
n
eg
at
iv
e

Fa
ls
e
po

si
ti
ve

Fa
ls
e
n
eg
at
iv
e

In
-h
ou

se
m
od

el
1

0.
50

0.
60

0.
60

6
38

4
4

2
0.
26

0.
40

0.
40

4
36

6
6

In
-h
ou

se
m
od

el
w
it
ho

ut
E
C
L
2

1
0.
26

0.
40

0.
40

4
36

6
6

2
0.
13

0.
30

0.
30

3
35

7
7

SW
IS
S-
M
O
D
E
L

1
0.
23

0.
36

0.
40

4
35

7
6

2
0.
20

0.
33

0.
40

4
34

8
6

A
lp
ha
Fo

ld
2

1
0.
38

0.
50

0.
50

5
37

5
5

2
0.
26

0.
40

0.
40

4
36

6
6

a
T
w
o
sn
ap
sh
ot
s
th
at

ga
ve

th
e
be
st

M
at
th
ew

’s
co
rr
el
at
io
n
co
ef
fi
ci
en
t
(M

C
C
)
as

a
st
at
is
ti
ca
l
m
ea
su
re

of
th
e
m
od

el
’s
pr
ed
ic
ti
vi
ty

(6
4)
.M

C
C

re
tu
rn
s
a
va
lu
e
be
tw

ee
n
−
1
(t
ot
al

di
sa
gr
ee
m
en
t
be
tw

ee
n
pr
ed
ic
ti
on

an
d
ob

se
rv
at
io
n)

an
d
+
1

(p
er
fe
ct

pr
ed
ic
ti
on

).
b
H
it
ra
te

or
pr
ec
is
io
n,

th
e
fr
ac
ti
on

of
tr
ue

lig
an
ds

am
on

g
th
e
m
od

el
pr
ed
ic
te
d
on

es
.

c
R
ec
al
l
in
di
ca
te
s
th
e
fr
ac
ti
on

of
tr
ue

lig
an
ds

re
tr
ie
ve
d
by

th
e
m
od

el
ou

t
of

al
l
th
e
tr
ue

lig
an
ds

in
th
e
be
nc
hm

ar
k
co
m
po

un
ds
.

ECL2 is critical for odorant recognition
(3–6). Promiscuous (or broadly tuned) ORs may play exert
important functions in olfaction, such as expanding the
detection spectrum, diversifying the combinatorial code, and
acting as general odor detectors or odor intensity analyzers
(29). Promiscuous ORs feature mostly nonpolar interactions in
the orthosteric pocket with odorants, which are more adapt-
able to different odorant structures (33, 39). Here, we showed
that ECL2 is indispensable for OR promiscuity. ECL2 acts as a
pocket lid to maintain the pocket hydrophobicity and also
forms the upper part of the pocket to control its shape and
volume. Its structural flexibility and mostly hydrophobic na-
ture may tolerate diverse odorants, resulting in promiscuity.
Indeed, in class A GPCRs, ECL2 may change conformations
upon ligand binding and adopt different forms for different
ligands (11). The evolution of ECL2 in class A GPCRs is
strongly coupled to that of the orthosteric pocket (12).
Therefore, class A GPCR–ligand recognition relies on the
interplay between ECL2 and the orthosteric pocket. ECL2 may
also take part in receptor activation via allosteric coupling with
the receptor movements on the intracellular side (11). How-
ever, this aspect is beyond the scope of the current study. Note
that the 3D models reported here are not to present the exact
structural fold of ECL2. Rather, they are to illustrate the
approximate position of the ECL2 residues according to the
mutagenesis data. Since mOR256-3 ECL2 features mostly
nonpolar interactions with the odorants, such approximate
models serve as suitable structural basis for ligand discovery, as
demonstrated by the virtual screening performance. The MD
simulations based on these models are insufficient to sample
the ECL2 conformational changes upon ligand binding. High-
resolution OR structures may enable further investigations on
this challenging question. Nevertheless, the models provide an
explanation to competitive antagonism, which has been shown
to be essential for the perception of odor mixtures (40).
Therefore, the models and the virtual screening approach
established here may serve the design of biosensors with wide
odor detection spectrum or specific odor maskers and/or drug
candidates targeting ectopic ORs in nonolfactory tissues.

Experimental procedures

Chemicals and OR constructs

Odorants were purchased from Sigma–Aldrich. They were
dissolved in dimethyl sulfoxide to make stock solutions at
1 mM and then diluted freshly in optimal MEM (Thermo
Fisher Scientific) to prepare the odorant stimuli. The OR
constructs were kindly provided by Dr Hiroaki Matsunami
(Duke University). Site-directed mutants were constructed
using the Quikchange site-directed mutagenesis kit (Agilent
Technologies). The sequences of all plasmid constructs were
verified by both forward and reverse sequencing (Sangon
Biotech).

Chimera construction

All chimeras were constructed by three PCR steps with
modification (41). Briefly, two fragments were amplified from
the mOR256-3, whereas ECL2 of β2AR, M2R, and 5HT2CR was
J. Biol. Chem. (2022) 298(9) 102331 5



Figure 3. Structure models and functional assays of mOR256-3 chimeras. A, homology models of mOR256-3 variants with different ECL2 sequences and
structures (in cartoon presentation, colored by secondary structure). B, the pocket of the chimeras was hydrated during molecular dynamics (MD) simu-
lations without ligand in the pocket, whereas that of wt mOR256-3 remained dehydrated during the same simulation course. Shown here is the final MD
simulation frame in cross-section. The water molecules within the pocket are shown in red balls, and the surface of ECL2 is shown in orange. C, dose-
dependent responses of the three chimeras to transcinnamaldehyde. D, transcinnamaldehyde entered the pocket of β2AR

ECL2 via the ECL2–TM7 gap
during MD simulations. It adopted a binding pose that interacts with the toggle switch Y6.48. Mutating the transcinnamaldehyde-binding residues L3.33 and
L5.46 diminished the receptor response to this ligand. An overlay with wt mOR256-3 (orange) shows a steric clash of transcinnamaldehyde with ECL2, which
is likely the reason why wt mOR256-3 does not respond to this odorant. Data are mean ± SEM of three independent experiments. ECL2, extracellular loop 2;
TM, transmembrane.

ECL2 is critical for odorant recognition
synthesized by Sangon Biotech Co. The primers were partially
complementary at their 50 ends to the adjacent fragments,
necessary to fuse the different fragments together. Three
fragments were purified and fused together in a second PCR
step. Equal amount of each fragment was mixed with dNTP
and Phusion High-Fidelity DNA Polymerase (NEB) in the
absence of primers. The PCR program consisted of 10 repet-
itive cycles with a denaturation step at 98 �C for 10 s, an
annealing step at 55 �C for 30 s, and an elongation step for 30 s
at 72 �C. The third step corresponded to the PCR amplification
of the fusion product using the primers of mOR256-3. The
PCR product was purified and ligated into PCI vector. The
6 J. Biol. Chem. (2022) 298(9) 102331
sequences of all chimeras were verified by both forward and
reverse sequencing.
Cell culture and transfection

We used Hana3A cells, a human embryonic kidney 293T–
derived cell line that stably expresses receptor-transporting
proteins (RTP1L and RTP2), receptor expression–enhancing
protein 1 (REEP1), and olfactory G protein (Gαolf) (42). The
cells were grown in MEM (Corning) supplemented with 10%
(v/v) fetal bovine serum (FBS; Thermo Fisher Scientific) plus
100 μg/ml penicillin–streptomycin (Thermo Fisher Scientific),
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1.25 μg/ml amphotericin (Sigma–Aldrich), and 1 μg/ml pu-
romycin (Sigma–Aldrich).

All constructs were transfected into the cells using Lip-
ofectamine 2000 (Thermo Fisher Scientific). Before the
transfection, the cells were plated on 96-well plates (NEST)
and incubated overnight in MEM with 10% FBS at 37 �C and
5% CO2. For each 96-well plate, 2.4 μg of pRL-SV40 (simian
virus 40), 2.4 μg of CRE-Luc, 2.4 μg of mouse RTP1S, and
12 μg of receptor plasmid DNA were transfected. The cells
were subjected to a luciferase assay 24 h after transfection.

Luciferase assay

The luciferase assay was performed with the Dual-Glo
Luciferase Assay Kit (Promega) following the protocol (42).
OR activation triggers the Gαolf-driven AC-cAMP-PKA
signaling cascade and phosphorylates cAMP response
element–binding protein. Activated cAMP response element–
binding protein induces luciferase gene expression, which can
be quantified luminometrically (measured here with a biolu-
minescence plate reader [MD SPECTRAMAX L]). Cells were
cotransfected with firefly and Renilla luciferases where firefly
luciferase served as the cAMP reporter. Renilla luciferase is
driven by a constitutively active SV40 promoter (pRL-SV40;
Promega), which served as a control for cell viability and
transfection efficiency. The ratio between firefly luciferase
versus Renilla luciferase was measured. Normalized OR ac-
tivity was calculated as (LN − Lmin)/(Lmax − Lmin), where LN is
the luminescence in response to the odorant, and Lmin and
Lmax are the minimum and maximum luminescence values on
a plate, respectively. The assay was carried out as follows: 24 h
after transfection, medium was replaced with 100 μl of odorant
solution (at different doses) diluted in Optimal MEM, and cells
were further incubated for 4 h at 37 �C and 5% CO2. After
incubation in lysis buffer for 15 min, 20 μl of Dual-Glo
Luciferase Reagent was added to each well of 96-well plate,
and firefly luciferase luminescence was measured. Next, 20 μl
Stop-Glo Luciferase Reagent was added to each well, and
Renilla luciferase luminescence was measured. Data analysis
followed the published procedure (42). Three-parameter
dose–response curves were fitted with GraphPad Prism 9
(GraphPad Software, Inc).

Flow cytometry analysis

Hana3A cells were seeded in 35 mm dishes. The cells were
cultured overnight to >80% confluence and transfected with
0.3 μg RTP1S, 0.3 μg GFP, and 0.8 μg OR plasmid by Lip-
ofectamine 2000. At 24 h after transfection, the cells were
stripped with TrypLE Express Enzyme (Thermo Fisher Sci-
entific) and then kept in round bottom polystyrene tubes on
ice. The cells were spun down at 200g for 3 min at 4 �C and
resuspended in PBS containing 2% FBS and 15 mM NaN3.
They were incubated with primary antibody mouse anti-
rhodopsin for 45 min and then with phycoerythrin (PE)-con-
jugated donkey antimouse immunoglobulin G (Jackson
ImmunoResearch; catalog no.: 715-116-150) in the dark for
30 min on ice. After washing twice, the cells were analyzed
using Beckman Coulter CytoFLEX with gating for GFP posi-
tive, single, viable cells. The measured PE fluorescence in-
tensities were analyzed and visualized using FlowJo (BD),
version 10. The PE fluorescence intensity was normalized to
the average value of wt ORs for statistical analysis.

Molecular modeling

The in-house models of mOR256-3 and mOR256-8 were
generated with Modeller 9.21 (36) using our hand-curated
sequence alignment to four structure templates: human
a2AR (Protein Data Bank [PDB] ID: 2YDV), human CXCR1
(PDB ID: 2LNL), human CXCR4 (PDB ID: 3ODU), and bovine
rhodopsin (PDB ID: 1U19). The N and C termini were
excluded. The template structures are all in inactive state. The
sequence similarity between the templates and the two target
ORs ranged from 31% to 38%. In the TM regions, the sequence
similarity was 38–44%. For the three chimeras, the ECL2
structure of β2AR (PDB ID: 2RH1), M2R (PDB ID: 3UON), and
5HT2CR (PDB ID: 6BQH), respectively, was used as templates
for the ECL2. For each receptor, 2500 models were generated
and ranked by the DOPE score (43). The 250 top ranked
models were selected and clustered using the k-means algo-
rithm. We obtained five clusters for each receptor and selected
a representative model that was the most compatible with the
mutagenesis data. The SWISS-MODELS were generated using
the SWISS-MODEL webserver (37) and the target OR
sequence. Template search and model building were per-
formed using default settings of the webserver. The AlphaFold
2 models (35) were generated using the API hosted at the
Söding Laboratory based on the MMseqs2 server (44). Using
the target OR sequence as input, the models were generated
using the parameters (35). Docking was performed with
AutoDock Vina (38). The receptors were prepared with
AutodockTools to add nonpolar hydrogens and Gasteiger
charges. A grid box was set to encompass the pocket and the
lid, with a 0.375 Å grid point spacing. Initial 3D coordinates of
the ligands were generated using Balloon (Åbo Akademi
University) (45) and converted by AutoDock Raccoon (The
Scripps Research Institute) for the docking (46). Pocket resi-
dues and ligand rotatable bonds were set flexible. For virtual
screening, however, pocket residues were kept rigid and
multiple receptor conformers were used. Other parameters for
the docking were left as their default values.

MD simulations

The receptor N and C termini were truncated at residues 23
and 305, respectively. Protonation state of titratable residues in
the receptors were predicted at pH 7 using the H++ server
(47). The receptors or receptor-odorant complexes were
embedded in a bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine using PACKMOL-Memgen (Heinrich Heine
University Düsseldorf) (48). Each system was solvated in a
periodic 75 × 75 × 105 Å3 box of explicit water and neutralized
with 0.15 M of Na+ and Cl− ions. Effective point charges of the
ligands were obtained by restrained electrostatic potential
fitting (49) of the electrostatic potentials calculated with the
J. Biol. Chem. (2022) 298(9) 102331 7
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HF/6-31G* basis set using Gaussian 09 (50). The Amber 14SB
(51), lipid 14 (52), and GAFF (53) force fields were used for the
proteins, lipids, and ligands, respectively. The TIP3P model
(54) and the Joung–Cheatham parameters (55) were used for
the water and the ions, respectively.

The process of ligand binding was simulated with 30 runs of
200 ns of all-atom brute-force MD for each OR–ligand pair
using Amber18. The ligand was initially placed 10 Å above
ECL2. After energy minimization, each system was gradually
heated to 310 K with a restraint of 200 kcal/mol on the re-
ceptor and ligand. This was followed by 5 ns of pre-
equilibration with a restraint of 5 kcal/mol and 5 ns of unre-
strained equilibration. Bonds involving hydrogen atoms were
constrained using the SHAKE algorithm (56), allowing for a
2-fs time step. van der Waals and short-range electrostatic
interactions were cut off at 12 Å. Long-range electrostatic
interactions were computed using particle mesh Ewald (57)
method with a Fourier grid spacing of 1.2 Å. During the
production run, when the ligand exceeded 15 Å from the
center of ECL2, a distance restraint of 10 kcal/mol was applied
to drive the ligand toward the center. Finally, the trajectories
were visualized with VMD 1.9.2 (University of Illinois Urbana-
Champaign) to inspect the binding events.

To thoroughly sample the conformations of mOR256-3 for
ensemble docking, we used an enhanced sampling technique,
replica exchange with solute scaling 2 (REST2) (58). REST2
MD was performed with 48 replicas in the NVT ensemble
using Gromacs 5.1 (University of Groningen, Uppsala Uni-
versitet) (59) patched with the PLUMED 2.3 plugin (the
PLUMED consortium) (60). The protein and ligands were
considered as “solute” in the REST2 scheme. The force con-
stants van der Waals, electrostatic, and dihedral terms of the
protein and ligands were scaled down to facilitate conforma-
tional changes. The effective temperatures used for generating
the REST2 scaling factors ranged from 310 to 700 K, following
a distribution calculated with the Patriksson–van der Spoel
approach (61). Exchange between replicas was attempted every
1000 simulation steps. This setup resulted in an average ex-
change probability of �40%. A total of 60 ns × 48 replicas of
REST2 MD was carried out. The first 10 ns were discarded for
equilibration, and only the original unscaled replica (at 310 K
effective temperature) was collected. The Gromacs clustering
tool was used to analyze the simulation trajectory. An RMSD-
based clustering was performed on the Cα atoms using the
GROMOS method (62) and a 1 Å cutoff. The representative
frames of the top 20 clusters (covering 97% of the trajectory)
were extracted for ensemble docking.

Data availability

All data generated or analyzed during this study are
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