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Current drug discovery is dominated by label-dependent molecular approaches, which
screen drugs in the context of a predefined and target-based hypothesis in vitro. Given that
target-based discovery has not transformed the industry, phenotypic screen that identifies
drugs based on a specific phenotype of cells, tissues, or animals has gained renewed
interest. However, owing to the intrinsic complexity in drug–target interactions, there
is often a significant gap between the phenotype screened and the ultimate molecular
mechanism of action sought. This paper presents a label-free strategy for early drug
discovery. This strategy combines label-free cell phenotypic profiling with computational
approaches, and holds promise to bridge the gap by offering a kinetic and holistic
representation of the functional consequences of drugs in disease relevant cells that is
amenable to mechanistic deconvolution.
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INTRODUCTION
Early drug discovery is achieved mainly through two strategies,
target-based and phenotypic approaches (Hart, 2005; Swinney
and Anthony, 2011). Target-based screens use high-throughput
and label-dependent molecular assays to measure the effect of
compounds on a specific target protein in vitro, while phenotypic
screen use unbiased phenotypic assays to examine the effect of
compounds on a specific phenotype of cells, tissues or animals.
Target-based approaches have been dominating early drug dis-
covery in the past quarter of century, which is coincident with
the continuous decline in productivity of pharmaceutical research
and development (Paul et al., 2010; Pammolli et al., 2011; Scan-
nell, 2012). Several factors contribute to this productivity crisis.
First, there have been increasing efforts in high-risk projects
for unmet therapeutic needs and associated with unexploited
biological mechanisms in the past decades (Kamb et al., 2007;
Hopkins, 2008; Rask-Andersen et al., 2011). Second, the target
chosen in a screen may be not essential to disease pathogene-
sis or induce undesired toxicity, and the molecular mechanism
of action (MMOA) investigated may be unable to produce ther-
apeutic benefits (Hopkins, 2008; Swinney and Anthony, 2011).
The MMOA describes the interaction between a drug and its
target (or targets) that creates a specific response. Third, many,
if not all, drugs display clinically relevant polypharmacology –
the specific binding of a drug to more than one target (Roth
et al., 2004; Yildirim et al., 2007; Hopkins, 2008; Rask-Andersen
et al., 2011), suggesting that single target-based screen may de
facto be ineffective. Fourth, molecular assays for target-based
screens generally rely on the use of labels, which may cause
artifacts in results (Beher et al., 2009; Pacholec et al., 2010; Hu
et al., 2012). Lastly, traditional phenotypic approaches suffer dis-
advantages associated with low-to-moderate throughput, and
difficulty in target deconvolution and in governing medicinal
chemistry optimization (Kenakin, 2009; Swinney and Anthony,
2011).

In the past years, phenotypic screens have gained renewed
interest in discovering first-in-class or best-in-class medicines
(Lee et al., 2012; Eggert, 2013). Comparing to traditional pheno-
typic approaches, label-free cell phenotypic profiling techniques
afforded by optical or electric biosensors offer clear advantages in
rich information content, real-time kinetics, highly flexible assay
formats, and high-throughput, beside wide pathway coverage and
ability in multi-target profiling and screening that are common to
all phenotypic assays (Fang, 2013). Optical biosensors such as res-
onant waveguide grating (RWG) measure drug-induced dynamic
mass redistribution (DMR) signals, while electric biosensors mea-
sure drug-induced impedance signals (Fang, 2010). In parallel,
similarity analysis based on two-dimensional structures of com-
pounds has been used to predict drug–target interactions (Keiser
et al., 2007, 2009; Lounkine et al., 2012), while molecular dock-
ing using ever increasing numbers of three-dimensional protein
structures are also productive (Carlsson et al., 2011; Koutsoukas
et al., 2011; Shoichet and Kobilka, 2012; Stevens et al., 2012).

Herein, I propose a label-free strategy combining label-free cell
phenotypic profiling techniques with computational approaches
for early drug discovery (Figure 1). Essential to this strategy is that
label-free cell phenotypic profiling techniques are used for multi-
target screening, target identification, MMOA determination, and
lead selection. Bioinformatics analysis of the label-free profiles
of compounds is used to provide analytical support for target
identification, and chemical similarity analysis is used to expand
compound library for lead optimization and selection. Of note,
the principles and applications of label-free biosensors for cell
analysis have been widely reviewed in literature (Fang,2006,2011b;
McGuinness, 2007), and thus not included in the present review.

LABEL-FREE CELL PHENOTYPIC SCREENING
CHOICE OF CELLS
As the basic unit of life cells have been widely used for drug
discovery, mostly because the functional responses of drugs in
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FIGURE 1 | Label-free drug discovery strategy. Combining computational
approaches with label-free cell phenotypic profiling and screening
techniques can be used for high-throughput screening, target engagement

determination, compound library expansion, lead optimization, molecular
mechanism of action determination, drug safety/toxicity assessment, and
lead prioritization and selection.

cells provide better understanding of receptor physiology and
drug pharmacology than in vitro binding studies. Target-based
approaches often use recombinant cell lines expressing a specific
target implicated in a disease, while cell phenotypic approaches
often use native cells including immortalized cell lines, primary
cells, and stem cells. As surface sensitive and non-invasive tech-
niques label-free biosensors can examine drug-induced minute
changes in a confluent layer of eventually all types of cells (Fang,
2010, 2011a), including primary (Hennen et al., 2013) or stem cells
(Bagnaninchi and Drummond, 2011; Abassi et al., 2012; Pai et al.,
2012). Compared to recombinant cell lines, primary or stem cells
retain many functions seen in vivo and express endogenous targets
of interest in their native signaling circuitry, thus permitting drug
profiling using more physiologically and clinically relevant cell
phenotypes (Kenakin, 2009; Eglen and Reisine, 2011). Owing to
its spatially resolved capability the recently developed RWG imager
enables drug profiling using partially confluent cells (Ferrie et al.,
2010) or even single cells (Ferrie et al., 2012), and thus opens an
unique opportunity to screen drugs using primary or stem cells
when homogeneous cell populations are difficult to obtain (Pai
et al., 2012).

CHOICE OF CELLULAR PHENOTYPES
Disease relevant cellular phenotypes can be structural, mor-
phological, or physiological abnormalities involving cells or cell
components. Structural abnormalities can be classified based on
cellular component hierarchy, whereas abnormal morphology
phenotypes is either the (abnormal) absence of required cellu-
lar parts, the (abnormal) presence of additional cellular parts, or
abnormal qualities of cellular parts, and abnormal physiology of a
cell component refers to abnormal functionality of a cell compo-
nent (Hoehndorf et al., 2012). Thus, drug profiling and screening
can be performed using a great number of cellular phenotypes
such as angiogenesis, cell death, cell division, and inflammation;
depending on the MMOA of interest one or more specific cellular
phenotype may be examined (Welsh et al., 2009; Kepp et al., 2011).
For label-free cell phenotypic screening, two common approaches
developed are endpoint and kinetic based screens (see below).
Given that label-free biosensors are sensitive to cell numbers,

cell signaling and morphological changes, these biosensors per-
mit screening and profiling compounds in the context of a great
number of cellular phenotypes ranging from cell adhesion to cell
life cycle (cell cycle progression, division, and growth), receptor
signaling, cell death, viral infection, cell migration and invasion,
and cell-cell communication (Figure 2).

ENDPOINT HIGH-THROUGHPUT SCREENS
The endpoint screens leverage the ability of a biosensor to record
and encode the signaling events of a specific receptor in a pop-
ulation of cells (typically confluent cells) into an integrated and
kinetic biosensor response for identifying active molecules specific
to the receptor (Fang, 2010). Here, once the biosensor profile of
a receptor cognate agonist in the cells is obtained, its response
at a specific time point is monitored and used as the readout to
fish out ligands for the receptor of interest from a compound
library. In order to identify distinct classes of ligands screening
can be performed using different formats. For instance, one-step
assay may be useful for discovering agonists, wherein the cells
are stimulated with compounds, each individually. Considering
the wide presence of compensatory pathways in cell signaling,
the one-step agonist screen may result in relatively high false
positives for the receptor of interest. Such false positives can be
minimized using two-step endpoint screens, wherein the cells are
stimulated with compounds first, followed by stimulation with
a cognate agonist specific to the receptor. Compounds that are
active in the first step and also desensitize the second agonist stim-
ulation would be agonists for the receptor, while compounds that
are inactive in the first step but block the second agonist stim-
ulation would be antagonists for the receptor (Tran and Fang,
2008; Deng et al., 2011a). In addition, a three-step assay wherein
a compound washout step is introduced between compound and
receptor cognate agonist stimulation steps can be useful for identi-
fying long-acting antagonists or agonists (Goral et al., 2011; Deng
et al., 2012b).

MULTI-PARAMETER SCREENS
Receptor signaling is encoded by the coupling of temporal dynam-
ics with spatial gradients of signaling activities (Kholodenko,
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FIGURE 2 | Representative label-free cellular phenotypes examined

with label-free techniques. Label-free biosensors can be used to
monitor in real-time a great number of cellular process ranging from
cell adhesion (A) to cell proliferation (B), cell death (C), cell barrier

function (D), cell migration (E), viral infection (F), cell morphology
(G), cell–cell communication (H), and cell signaling (I). To monitor
different cellular phenotypes, different assay conditions may be
applied.

2006), and may come in multiple pathways and waves (Ferrie
et al., 2013; Lohse and Calebiro, 2013). Consequently, label-free
biosensors as a non-invasive recorder mirror the dynamics of
receptor signaling, and the biosensor signature arising from the
activation of a receptor could contain multiple phases. Therefore,
multi-parameter profiling and screening may be feasible and offer
additional information regarding to the specificity and mecha-
nisms of action of hits to a receptor, a signaling protein, or a
pathway.

REAL-TIME KINETIC PROFILING
For label-free cell phenotypic screens, real-time kinetic mea-
surements of drug action would be more informative but with
lower throughput than end-point screens. The kinetic profiling
of compounds may be performed in the context of a specific
cellular process such as cell adhesion, cell growth and death, or
cell signaling. Label-free biosensors allow for interrogating drug
molecules with wide coverage in targets and pathways of native
cells (Figure 3; Fang, 2011b, 2013). The modulation of many
classes of targets including G protein-coupled receptors (GPCRs),
receptor tyrosine Kinases (RTKs), transporters, Toll-like receptors
(TLRs), immune receptors, enzymes, cell structural proteins, and
kinases can directly lead to rapid biosensor responses. The most
popular is to profile compound-induced cell signaling in conflu-
ent cells, given that the cells once reach confluency start to enter a
new growth cycle or a quiescent state and the compound-induced

response is almost exclusively due to cell signaling (Fang, 2010,
2011a). Alternatively, the long-term impacts of compounds on cell
growth can also be used to screen compound library (Abassi et al.,
2009; Fu et al., 2011). Of note, this approach may be able to identify
ligands for other classes of targets such as nuclear receptors whose
activation by themselves may not result in rapid signaling-related
biosensor responses.

CELL PANEL PROFILING AND SCREENING
Large panels of disease relevant cell lines annotated with both
genetic and pharmacological data are powerful tools for drug dis-
covery (Barretina et al., 2012; Garnett et al., 2012). For instance,
NCI60 consists of 60 (now 59) human cancer cell lines from
nine different tissues introduced in 1990 by the US National Can-
cer Institute (NCI) in Bethesda, Maryland, and has been widely
used for discovering new anticancer drugs (Shoemaker, 2006). For
label-free profiling, cell panels may consist of multiple cell lines
for a disease, a parental cell line and its recombinant counter-
parts, or a stem cell and its differentiated cells. Each cell line has
unique expression pattern of functional receptors and signaling
circuitry. Thus, the use of cell panels not only expands the num-
ber of addressable targets/pathways, but also offers confirmative
information regarding to the potential mechanism of action of
active compounds identified in label-free cell phenotypic screens
(Verdonk et al., 2006; Morse et al., 2011, 2013; Pai et al., 2012; Fer-
rie et al., 2014). For instance, using the DMR assay we profiled
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FIGURE 3 |Target receptor classes whose activation or modulation has been shown to trigger characteristic biosensor responses in living cells.

Label-free receptor signaling profiling has wide coverage in targets and pathways. GPCR, G protein-coupled receptor; RTK, receptor tyrosine kinase; TLR,
Toll-like receptor.

a library of sixty-nine ligands of adrenergic receptor (AR) with
a cell panel consisting of the parental HEK-293 and four β2-AR-
stably expressed cell lines, and found that HEK-293 endogenously
expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR,
and these ligands displayed divergent label-free cell phenotypic
pharmacology (Ferrie et al., 2014).

TARGET IDENTIFICATION AND VALIDATION
Identifying the target for a specific phenotype is vital to guide lead
optimization and to understand the potential toxicity for the target
(Hart, 2005). Common to classic phenotypic approaches for deter-
mining target engagement is to first generate target hypotheses
using pattern recognition to compare small molecule phenotypic
profiles to those of known reference molecules, followed by con-
firmation using direct proteomic approaches (Young et al., 2008;
Schenone et al., 2013). However, classical phenotypic approaches
mostly rely on descriptive, empirical, and end-point measure-
ments, which, by themselves, generally offer little insights about
the biological mechanisms of action of drugs (Feng et al., 2009).
In contrast, label-free cell phenotypic approaches all measure
real-time kinetic responses of compounds in cells, which con-
tain target- and pathway-specific information (Fang, 2011a). For
label-free endpoint and multi-parameter screens, target hypothe-
sis is predefined by the reference agonist cognate to the receptor of
interest, so target engagement can be confirmed using direct bind-
ing assays or counter profiling using another cell line that does not
express the target receptor. For instance, using the DMR signal
at 25 min post-stimulation with methacholine in CHO-M3 cells
as the readout, screening a library of 83,000 compounds led to
identification of 49 novel muscarinic M3 receptor ligands that had
pIC50 values between 4.8 and 6.3 and were further confirmed using
radiobinding assays (Dodgson et al., 2009). Here, methacholine is
used as the reference agonist for the M3 receptor. Of note, these
novel ligands were found to be false negatives in a calcium flux
assay.

For label-free kinetic profiling, target hypothesis can be gener-
ated using several approaches. First, target/pathway deconvolution
may be directly achieved through investigating the impact of

chemical probes and/or genetic manipulations (e.g., RNAi) on the
kinetic response of a compound itself (Fang et al., 2005; Deng et al.,
2011b; Verrier et al., 2011). Second, counter profiling between a
recombinant cell line expressing the receptor of interest and its
parental cell line without the receptor is also effective to con-
firm the target specificity (Ferrie et al., 2014). Third, multiple
assays including agonist, antagonist, desensitization, and antag-
onist reversal assays when respective pharmacological tools are
available can be used to ascertain the specificity of a compound
to the receptor of interest (Ferrie et al., 2013). Fourth, pattern
recognition based on label-free profiles of compounds can be
used to generate target hypothesis through comparison of their
profiles with databases of the activity profiles of other reference
molecules with known targets (Abassi et al., 2009; Fu et al., 2011).
Traditional approaches including proteomics-, genetics-, and
bioinformatics-based approaches can then be used for determin-
ing target engagement (Ziegler et al., 2013). Fifth, computational
approaches based on similarity analysis of known probe molecules
(Keiser et al., 2007, 2009; Lounkine et al., 2012) or molecular dock-
ing (Carlsson et al., 2011; Shoichet and Kobilka, 2012) can be used
to predict the probability of the binding of small molecules to a
specific target.

HIT IDENTIFICATION
For label-free endpoint screens, hits are selected based on the label-
free profile arising from the activation of the receptor of interest,
similar to classical target-based screens (Dodgson et al., 2009). For
label-free kinetic profiles, hits are selected based on a specific phe-
notypic response in the context of a specific cellular process, such
as the increase in label-free profile of cell adhesion, alteration of
the label-free profile of cell growth, or a specific label-free profile of
cell signaling. For instance, screening a library of 660 compounds
led to identification a characteristic DMR signal in HT-29 cells for
a subset of compounds (Deng et al., 2011b). Combining DMR
antagonist/desensitization assays with GPR35 knockdown with
interference RNA, receptor internalization, and Tango β-arrestin
translocation assays revealed that two novel series of chemical
compounds, 2-(4-methylfuran-2(5H)-ylidene)malononitrile and
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thieno[3,2-b]-thiophene-2-carboxylic acid derivatives, are GPR35
agonists.

LEAD OPTIMIZATION
Once hits are identified and confirmed, searching similar com-
pounds from commercial and public databases can quickly
expand compound library for generating structure-activity rela-
tionship (SAR) analysis. These databases include PubChem
(Wang et al., 2009), ChemBank (Seiler et al., 2008), DrugBank
(Knox et al., 2011), ChemBL (Gaulton et al., 2012), and ZINC
(Irwin and Shoichet, 2005). With the ever-increasing number
of compounds annotated with biological and pharmacological
activities in these databases, it is highly possible to quickly iden-
tify lead-like compounds with high specificity and potency to
the target receptor. For instance, according to the similarity
of tyrphostins to 2-(4-methylfuran-2(5H)-ylidene)malononitrile
compounds, we hypothesized and confirmed that a group of
tyrphostins such as tyrphostin-51 are GPR35 agonists with mod-
erate potency (Deng et al., 2011a). Given that tyrphostins, the
first generation of tyrosine kinase inhibitors, are tyrosine analogs
(Levitzki and Mishani, 2006), we hypothesized and confirmed
that multiple tyrosine metabolites are GPR35 agonists (Deng
and Fang, 2012b; Deng et al., 2012a). From these SAR studies,
we further expanded the chemical library by searching pub-
lic databases and identified a group of nitrophenols as GPR35
agonists, among which 4,4’-(2,2-dichloroethene-1,1-diyl)bis(2,6-
dinitrophenol) displays high potency with an EC50 of 6nM (Deng
and Fang, 2012a).

DRUG SAFETY/TOXICITY ASSESSMENT
Drug toxicity/safety assessment is essential to drug discovery and
development, and may be studied using several label-free cell phe-
notypic profiling approaches. First, the recently developed high
frequency electric impedance biosensor system can be used to
monitor the impact of drugs on the beating patterns of primary
or stem cell-derived cardiomyocytes; and this system can reca-
pitulate known effects of various known modulators of cardiac
function (Abassi et al., 2012). Cardiac toxicity is one of the major
concerns in drug development, and accounts for one-third of all
drug withdrawals from the market (Wilke et al., 2007). Second,
potential adverse drug reactions (ADRs) of compounds can be
assessed using a panel of cells consisting a parental cell line and
a number of recombinant cell lines, each expressing a specific
target receptor that is known to be associated with and prone
to cause ADRs. ADRs are the second leading cause for attri-
tion of drug candidates in clinical trials, behind lack of efficacy
(Arrowsmith, 2011). Factors that cause ADRs include the pri-
mary target of the drug itself, non-specific interactions of reactive
metabolites of the drug, or unintended activity at off-targets.
The number of off-targets that is known to be associated with
ADRs is relatively small (∼75; Bender et al., 2007; Campillos et al.,
2008; Lounkine et al., 2012), almost all of which can be directly
examined using label-free profiling. Practically, these recombi-
nant cell lines can be made readily to be profiled as cell bank
(e.g., frozen cell batches), or transitly transfected in situ using
classical viral or plasmid DNA-based approaches. Third, compu-
tational approaches based on chemical structures or molecular

docking can be used to calculate the probability of drug candidate
molecules binding to these ADR-related targets (Lounkine et al.,
2012).

MMOA DETERMINATION
Elucidating the MMOA of drug candidate molecules is a criti-
cal step in drug discovery. Label-free biosensor such as surface
plasmon resonance and RWG is well-known for its ability to
determine the affinity and kinetics of drugs binding to their pri-
mary target (Schuck, 1997; Fang, 2012). Label-free cell phenotypic
profiling also can provide information regarding to the MMOA
of compounds. This is done through leveraging the sensitivity
of the label-free profiles of compounds to their polypharmacol-
ogy (Wermuth, 2004), functional selectivity (or biased agonism;
Kenakin, 2012), binding kinetics (Deng et al., 2013a), binding
orientation (Bock et al., 2014), cell membrane permeability (Fer-
rie et al., 2013), and transport mechanisms (Deng et al., 2013b;
reviewed in Fang, 2013).

The biased agonism describes ligand-dependent selectivity for
a specific signal transduction pathway over others downstream
the same receptor, and is common to ligands for GPCRs and
potentially other classes of receptors (Fang, 2013). Owing to its
integrative nature in measurement (Fang et al., 2006), label-free
cell phenotypic profiling, by de facto, is not ideal for directly assess-
ing biased agonism (Morse et al., 2013). However, several label-free
approaches may be useful to manifest biased agonism. First, multi-
parameter kinetic analysis may sort ligands for a specific target into
different clusters. For instance, profiling of a set of β2-adrenergic
receptor (β2-AR) ligands in A431 cells using DMR assays revealed
that multiple kinetic parameters extracted from their responses
allow fine classification of these ligands based on their efficacy
and biased agonism (Fang and Ferrie, 2008; Fang, 2010). Second,
the recent developed integrative pharmacology ontarget (iPOT)
approach can classify ligands based on their specificity, pathway
selectivity, and efficacy for the target receptor of interest (Ferrie
et al., 2011; Morse et al., 2011, 2013). The iPOT approach lever-
ages distinct sensitivity of the label-free profiles of different drugs
acting through the same receptor in different cell lines, or the
same cell line but with different preconditioning. The cell pre-
conditioning can be achieved using specific probe molecules to
impair or alter specific pathways, or genetic tools to alter the
expression of a specific signaling protein. Using this approach,
we had obtained a pharmacological heatmap of all adrenergic
receptor drugs approved by the US Food and Drug Administra-
tion that correlates well with their in vivo indications (Ferrie et al.,
2011).

The functional consequence of different binding kinetics of a
family of ligands for a specific receptor can also be assessed using
label-free biosensor ligand washout assay. The onboard microflu-
idics is the most effective means to control the duration of a ligand
exposed to the cells, so it is possible to determine whether the effect
of the ligand is short or long acting. For instance, using microflu-
idics to control the agonist stimulation duration we found that the
activation of the β2-AR in A431 with a pulse of its agonist as short
as 1 min is sufficient to trigger a sustained response, whose sus-
tainability is dependent on the type and concentration of agonists,
and the stimulation duration (Goral et al., 2011; Ferrie et al., 2013).
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In another study, combining radiobinding results with electric
biosensor profiling results revealed that the efficacy of adenosine
A2A receptor agonists is positively correlated to their receptor res-
idence time (the reciprocal of off rate; Guo et al., 2012). Almost
identical trend was found for a family of agonists for endogenous
muscarinic M3 receptors in six different cell lines (Deng et al.,
2013a).

The cell membrane permeability and transport mechanism are
important mostly for the efficacy of drugs acting at intracellu-
lar targets. A recent DMR study of three inhibitors for epidermal
growth factor receptor (EGFR) in A431 and HT-29 showed that
the recovery of EGFR signaling after inhibitor removal from the
extracellular buffer was faster in HT-29 than in A431, and also
dependent on the duration of inhibitor removal (Deng et al.,
2013b). Furthermore, the potency of three inhibitors including
gefitinib, erlotinib, and AG1478 was generally higher in A431
than HT-29 cells. The most possible mechanism for this is that
the drug uptake and retention paly a dominating role in deter-
mining the whole cell efficacy of these kinase inhibitors. The
cellular retention of these inhibitors is a function of cell uptake
and effluxing via efflux transporter such as breast cancer resistance
protein (BCRP/ABCG2). All three inhibitors tested are ABCG2
substrates; A431 cells express little ABCG2, while HT-29 expresses
high amount of ABCG2.

LEAD SELECTION AND PRIORITIZATION
Effective lead selection and prioritization is essential for getting the
cost of early drug discovery under control. In a typical screening
campaign, tens of thousands of hits are often identified. After opti-
mization, about one hundred lead-like molecules are selected for
animal testing. The iPOT approach, label-free profiling techniques
in general, are useful to classify these lead-like molecules into dis-
tinct clusters, each of which may share a common MMOA (Ferrie
et al., 2011). Representative lead-like molecules from each cluster
can then be selected for in vivo testing (Morse et al., 2013). Com-
putational approaches, in particular chemical similarity analysis
against the ADR-related receptor panel, would also be beneficial
to lead selection process.

CONCLUSION
In the recent years, there has been a renaissance in pheno-
typic approaches for drug discovery. Label-free cell phenotypic
profiling and screening holds great promise in discovering disease-
modifying activities of drug molecules via validated or previously
undescribed targets, or by acting simultaneously on more than
one target. Combining computational approaches, in particular
similarity analysis based on chemical structures and molecular
docking based on three-dimensional structures of target pro-
teins, with label-free approaches would greatly facilitate early
drug discovery by permitting target engagement determination,
compound library expansion, MMOA deconvolution, safety and
toxicity assessment, and lead optimization and selection.
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