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Abstract: We are embarking on a new age of astrobiology, one in which numerous interplanetary
missions and telescopes will be designed, built, and launched with the explicit goal of finding
evidence for life beyond Earth. Such a profound aim warrants caution and responsibility when
interpreting and disseminating results. Scientists must take care not to overstate (or over-imply)
confidence in life detection when evidence is lacking, or only incremental advances have been made.
Recently, there has been a call for the community to create standards of evidence for the detection and
reporting of biosignatures. In this perspective, we wish to highlight a critical but often understated
element to the discussion of biosignatures: Life detection studies are deeply entwined with and rely
upon our (often preconceived) notions of what life is, the origins of life, and habitability. Where
biosignatures are concerned, these three highly related questions are frequently relegated to a low
priority, assumed to be already solved or irrelevant to the question of life detection. Therefore, our
aim is to bring to the fore how these other major astrobiological frontiers are central to searching for
life elsewhere and encourage astrobiologists to embrace the reality that all of these science questions
are interrelated and must be furthered together rather than separately. Finally, in an effort to be more
inclusive of life as we do not know it, we propose tentative criteria for a more general and expansive
characterization of habitability that we call genesity.

Keywords: habitability; origin of life; astrobiology; biosignatures; genesity; lyfe

1. How One Defines or Characterizes Life Is Critical to Logical and Lucid
Biosignatures Research

There is an old chestnut, often promulgated around Astrobiology Science Conferences,
that if you ask 100 astrobiologists for the definition of life, you will get 150 different answers.
As of this writing, there is no definitive definition of life, nor is there a complete, universally
agreed-upon theory of life [1,2]. However, the goal of biosignatures research is to find
evidence for life in the universe. So how do we know what we are looking for?

Some contend that we do not need a definition of life in order to search for it success-
fully. Frequently, this argument goes, “we’ll know it when we see it”. However, history
offers a cautionary tale. For many centuries, humans mistakenly attributed the symptoms
of microbial infections to non-living factors, such as miasma (“bad air”). Only after the
cell theory of life and germ theory of disease were developed in the 19th century did our
modern picture of infection emerge. Similarly, a universal theory for life may need to be
developed before we can appreciate the true diversity of living systems in the universe.

In scientific writing, it is often assumed that the authors and the reader share the same
conception of life. However, this is far from guaranteed; in fact, in certain instances, it
may not even be clear that the authors of a manuscript share the same conception of life
with one another. Thus, when speaking about the science of life detection (biosignatures,
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biomarkers, etc.), astrobiologists must first make plain their framework for life. How one
conceptualizes life is the foundation for all downstream astrobiological arguments, forming
the framework in which the concepts of habitability and biosignatures gain specificity.

There are many different working definitions of life; our goal here is not to advocate
for one over another. (Indeed, we would argue that, given our present state of ignorance, all
definitions thus far are actually tentative criteria for life that must be updated as knowledge
advances.) Rather, we advocate that researchers clearly define what mode they are working
within when presenting evidence and arguments for (or against) “life” elsewhere. To first
order, astrobiologists should make clear: Are they talking about detecting “life as we know
it here on Earth, but in an extraterrestrial environment” or finding evidence for “a general
characteristic of life”? Henceforth, we will follow [3]’s characterizations of life (for the
former) and lyfe (for the latter) and put “life” in quotation marks when it is meant to
be ambiguous.

Not being clear about one’s framework for “life” can lead to confusion, frustration, and
logical inconsistencies when interpreting signals and conveying their meaning to others.
For example, one might naïvely try to use a product of life (as we know it) to justify the
detection of lyfe (as we do not) in an environment that perhaps cannot support life. Let us
consider an extraterrestrial environment that is far beyond the physicochemical boundaries
for life (e.g., Venus’s sulfuric acid cloud droplets [4]) where a specific expression of life on
Earth is found (e.g., a metabolite manufactured by life). The argument that this signal is
a sign of life suffers from a logical inconsistency: It is like finding a backgammon piece
and using it to argue that chess is at play—they do not even use the same board. If a living
system does exist in this extraterrestrial environment, it would almost certainly utilize
different biochemistry from Earthly life, making it problematic to affiliate Earth-specific
biosignatures with alien lyfe simply on the basis that they are signs of life on Earth.

Note that lyfe may well exist in this environment and may even be the source of the
purported signal; however, evidence for such lyfe would require metrics that are agnostic
to the specifics of life on Earth. Hence, environments that are outside the “habitable”
parameter space with respect to Earthly life necessitate a discussion of lyfe and agnos-
tic biosignatures at the outset. Such general descriptions for lyfe may not be detailed
enough to predict specific biomolecules, but they may still predict more general classes
of biosignatures—all of which can still be effective for the detection of Earthly life—that
can be used to motivate the detection of truly alien lyfe. These agnostic approaches in-
clude homochirality, chemical disequilibria e.g., [5,6], elemental distributions [7], molecular
complexity [8], and planetary complexity [9].

Thus, researchers should be careful to state the assumptions that they are making
about life and elucidate the relationship of their proposed or purported biosignature to
their characterization of life. This will allow both authors and readers to identify various
caveats based on these assumptions when interpreting scientific results. Meanwhile, all
astrobiologists—including and especially those interested in seeking biosignatures—should
encourage and take into account the continued development of a general theory of life [1].

We wish to highlight the fact that there are many possibilities with respect to the
correspondences between habitable environments and forms of lyfe. As shown in Figure 1,
there are four general possibilities: (a) there are many types of habitable environments,
and each is uniquely associated with its own form of lyfe; (b) there is only one type of
habitable environment, but it can give rise to and support many forms of lyfe; (c) there
are many potentially habitable environments but only a single form of lyfe (specifically,
life) that will emerge in all of them; and (d) there are many potentially habitable environ-
ments and each has the potential to give rise to and support different forms of lyfe. We
suggest that the present state of knowledge (lack of constraints) implies we have to accept
(d) until we find evidence to the contrary since it is the most general of the four options. Of
course, not every link between environments and lyfe will be viable due to the availability
of fundamental resources in certain environments. Hence, reality may look more like (e),
where any instance of lyfe can be supported by a range of environmental space, and any
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particular point in environmental space can support a wide array of lyfe. In any scenario
where multiple forms of lyfe may exist in the universe—i.e., in all but scenario (c)—it will
be critical to developing agnostic biosignatures techniques for identifying signs of any form
of lyfe that might exist in a given environment.
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environment produces a unique form of lyfe. (b) A one-to-many correspondence: there is just one
single class of habitable environment, but it is capable of generating and supporting myriad different
kinds of lyfe forms. (c) A many-to-one correspondence: there are many different classes of habitable
environments, but only one kind of lyfe (life) in the universe. (d) A many-to-many correspondence:
there are many different classes of habitable environments, each of which is capable of generating and
supporting myriad different kinds of lyfe forms. (e) A many-to-many correspondence but not every
environment is capable of supporting every form of lyfe. If scenario (e) represents reality, then on
other worlds—even Earth-like worlds—lyfe as we do not know it may emerge, and the development
of agnostic biosignatures will be key to the search for life in the universe.
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2. A Better Understanding of the Origins of Life Is Important to
Biosignatures Research

The detection of life may not be a single, instantaneous event. Rather, evidence col-
lected over time and through multiple approaches may lead to higher (or lower) confidence
that the hypothesis of life’s presence is true. Hence, there is a growing consensus in the
community that a probabilistic framework for life detection must be developed [10,11].

In a Bayesian framework, the probability of the life hypothesis (L) being true, rather
than the no-life hypothesis (N), given data collected (D) and the context of the environment
(C), is:

P(L|D, C) =
P(D, C|L)P(L|C)

P(D|C, L)P(L|C) + P(D|C, N)P(N|C) (1)

As seen in Equation (1), the probability of abiogenesis given the environmental con-
text, P(life|context), is especially important in a Bayesian approach to life detection.
P(life|context) constitutes the “prior” in Bayes’ equation. Note that P(no life|context)
is simply 1–P(life|context).

In other words, the likelihood of life emerging on the planet of interest plays an
important role in determining the probability that a signal of interest is due to life. However,
the question of origins is often swept under the rug, often deemed “beyond the scope of the
study.” Yet, as Equation (1) shows, the probability of the emergence of life is not “beyond
the scope” of biosignature detection but inherently crucial to it.

By way of example, a recent study applied a probabilistic framework to data col-
lected by the Cassini mission and claimed that Enceladus’ methane was most proba-
bly due to life [12]. In this study, “life” refers to direct analogs of Earth’s prokaryotic
methanogens. This study presented the likelihood of life, P(life|data, context), as a func-
tion of P(life|context). By varying P(life|context) from 0.05–0.95, the study showed that
P(life|data, context) > P(no life|data, context) when P(life|context) ≥ 0.35. But what if
P(life|context) ~ 10−3 or 10−6 or 10−47? The reality is that we simply do not know. We
applaud this study’s use of a Bayesian framework that acknowledges P(life|context) as
part of their analysis. However, the study also demonstrates how our general ignorance
about the origins of life directly impacts the interpretation of potential biosignatures. The
fact that P(life|context) remains highly unconstrained poses a fundamental concern for
the interpretation of potential biosignatures in any situation where the detection of life is
neither immediate nor obvious.

Moreover, a subtle but critical confounding issue arises whenever “context” is equated
with “a presently habitable environment”, such as the oceans of icy worlds. In most
cases (excepting those dealing with fossil biosignatures from an ancient environment),
present-day habitability is the correct “context” for the term P(data|context, life), i.e.,
the probability that life in this environment today would produce the observations now.
However, where the emergence of life is concerned, “context” must relate to conditions
that could give rise to de novo life, a parameter space that may or may not be congruent
with the conditions for “habitability” (in whatever way “habitability” is defined within
the chosen framework for “life”; see Section 3). The “context” in P(life|context) implicitly
includes the planet’s evolutionary history, which may be ascertainable (as in the case of
Mars e.g., [13]) or challenging to determine (as in the case of exoplanets). The environmental
parameters conducive to the emergence of life are hotly debated for Earthly life and wildly
unconstrained for lyfe as we do not know it. Because most narratives for the emergence
of life are based upon ancient terrestrial conditions e.g., [14–17], we have hardly begun to
examine the full suite of conditions that could result in abiogenesis.

Bettering our understanding of life’s emergence not only brings us closer to pene-
trating the mystery of our own beginnings, it also affects our interpretation of potential
biosignatures through constraining P(life|context). If, for example, an origins-of-life exper-
iment of unprecedented scale, scope, and complexity is proposed, it should be undertaken
in collaboration with the biosignatures community and be simultaneously regarded as a
biosignatures project. Indeed, determining whether such an experiment succeeds or fails
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at creating de novo life would be one of the most instructive biosignatures exercises ever
conceived. Even if no life emerges, “failure” in this regard would still be instructive by way
of understanding the extent to which prebiotic chemistry (most of which has not yet been
explored or even imagined) can create life-like features without fully becoming life [18].

Yet, instead of working side-by-side, the biosignatures and origins communities largely
conduct their research separately. This is surely not helped by the fact that within the origins
community itself, great divisions remain. Some of this internal friction can be attributed to
the nebulous end goal of what “life” truly is [3,19], making the message of Section 1 equally
germane to that domain. Nonetheless, we hope to encourage greater dialogue between
biosignatures and origins researchers. While their astrobiological goals may seem to be
literally worlds apart, they are actually two sides of the same coin.

3. Developing a More General Concept of Habitability (Genesity) Is Important to
Biosignatures Research

The search for life often begins with habitable or once-habitable environments. Hab-
itability is traditionally defined, to first order, by the presence of liquid water, hence the
concept of the “habitable zone” [20]. When it comes to life as we know it, habitability is
often characterized as the confluence of liquid water, free energy (chemical or solar), and
the availability of the basic chemical ingredients for life (CHNOPS), bounded in parameter
space by the physiological limits of life on Earth e.g., [21]. However, this is unlikely to be
an adequate definition of habitability as it pertains to lyfe, which may use different free
energy sources and chemical constituents. Furthermore, once lyfe emerges, habitability
becomes a function of biological activity as well as geological, chemical, and physical forces.
Habitability is thus a dynamic concept, such that a planet’s habitability can depend on
various internal and external factors, as well as time.

3.1. Proposed Criteria for Genesity, a More General Concept of Habitability

Is there a general theory of habitability that can be extended beyond terrestrial surfaces
and ocean worlds to include hydrocarbon worlds, super-Earths, sub-Neptunes, gas giants,
and the great diversity of bio-techno-planetary environments that may arise? How should
we define the concept of habitability to encapsulate these wider possibilities?

Given our state of knowledge (or ignorance) about the nature of lyfe in the universe,
developing a general concept of habitability is as challenging as developing a universal
theory of life. Here, we identify three potentially quantifiable characteristics that could
contribute to a new metric for generalized habitability, which we call genesity (Figure 2):

1. Energetic driving force (EDF) A requisite set of one or more free energy gradients
that provide a sufficient thermodynamic force for the fluxes necessary for starting,
maintaining, and complexifying lyfe. Note the additional requirement that such
gradients cannot be trivially dissipated by abiotic processes (in such a case, the abiotic
channels would become the paths of least resistance).

2. Informational driving force (IDF) The environment must exhibit a threshold level of
complexity such that there is a selection pressure for the information processing and
learning behaviors that are at the core of the living state [22–27]. There is no physical
or computational reason for a lyfeform to emerge or evolve in an environment that
is trivially simple. The IDF highlights an important difference between habitability
and genesity: a perfectly placid pool of organic broth may be an optimally habitable
environment, but it would have a negligible IDF and, therefore, low genesity.

3. Combinatorial diversity of components (CD) A sufficiently diverse set of compo-
nents (molecular or otherwise) is required for the emergence of prebiotic systems
that can harness the EDF and find dynamical robustness in resolving the informa-
tion gradients provided by the IDF. The minimal set of such components or their
chemical identity is not yet known, but we can surmise that for a given environment,
there is a minimal component set required for the emergence of the lowest levels of
biological complexity.
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(right) a new Venn diagram highlighting the important factors for genesity as we define it for lyfe.
The arrows between the factors contributing to genesity highlight that they are each functions of one
another and that feedback exists between them (see Section 3.2).

Genesity may therefore be defined as a function of three parameters:

G = f (EDF, IDF, CD).

For each of these tentative criteria for genesity, we imagine an “ideal” region for lyfe
that is neither too high nor too low (Table 1), in accordance with the notion that lyfe is a
complex emergent phenomenon that exists “between order and chaos” [28,29].

Table 1. When any of the parameters for genesity is too high or too low, the environment is not
conducive to lyfe.

Parameter Too Low Too High

Energetic driving force

Unable to supply work
needed to maintain
complexity, growth, and
innovation

Turbulence; immediately
overcomes kinetic barriers,
producing chaotic behavior

Informational driving force No incentive for evolution; no
need for a living system

Prohibitively complex
environment requiring an
impossibly sophisticated first,
putative learning system

Combinatorial diversity

Set of available components
cannot produce systems above
biological complexity
threshold

Component configuration
space too random/dispersed
for biological emergence

We choose a new term, genesity because we believe this concept conveys something
deeper about an environment than traditional notions of habitability. The criteria for
habitability describe environmental features that allow life as we know it to survive.
Essentially, habitability asks the question, “To what degree can this environment support
Earthly biological activity now?” Genesity, on the other hand, encompasses survival but
also describes an environment’s potential for the origin (genesis) and evolution (generation
of novelty) of lyfe. Genesity asks the question, “To what degree can this environment
originate and support the open-ended development of biology over evolutionary time?”
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Because these are different queries, introducing a new term preserves the traditional, and
somewhat more specific, the meaning of “habitability” for situations in which it does
indeed apply. Because genesity is based on abstract features of the environment, it should
serve as a suitable starting point in our search for both life and lyfe.

We define an environment with a relatively high genesity value as a genial environ-
ment. A genial environment is necessary for the emergence and evolution of lyfe, but this
outcome is not guaranteed due to the chaotic and indeterminate nature of complex evolv-
ing systems. This is similar to the concept of habitability, which provides necessary but
insufficient criteria for the existence of life in an environment (hence the common caution
in astrobiological discourse that habitable does not imply inhabited). Genesity may also
describe an environment’s potential to host complex evolving systems at large, regardless
of whether they truly qualify as lyfe [30,31]. We consider the genesity of one such sublyfe
system, namely evolution within the environment of cyberspace, in Section 3.3.

The necessity of information processing phenomena for abiogenesis is a matter of
ongoing debate in the astrobiology field. Some would contend that the dividing line
between lyfe and non-lyfe lies before the point at which information processing plays
a key role. However, our own position is that any form of sub-lyfe lacking any kind of
learning or evolutionary potential does not fulfill the sufficient criteria for lyfe and is thus
likely a “dead end.” Remote detection of such sub-lyfe (e.g., a proto-metabolism, molecular
homochirality, chemical pattern formation, autocatalysis, or oscillations) would, of course,
be astrobiologically significant. Such phenomena are likely crucial for lyfe and abiogenesis
in a broad sense, but strict subsets of them do not fulfill the definition of lyfe. Although this
represents the current perspective of the authors, we welcome and appreciate the entire
spectrum of opinions on this important question.

3.2. Genesity Parameter Evolution and Co-Dependence on Planetary Context

Our three proposed criteria for genesity are interdependent upon one another and
the emergence and evolution of lyfe itself. For instance, a key feature of a high-IDF
environment is the presence of local minima in entropy, which is itself related to free energy
gradients that could be harnessed by (proto-)lyfe forms. Once it has established a foothold
in the environment, lyfe will introduce new niches and selection pressures, increasing
environmental complexity and hence the IDF. Not only will lyfe impact the evolution of
the metrics over time, but it may also redefine the ideal “sweet spot” for further evolution.

Additionally, there are likely different “ideal” regions for the emergence of lyfe and
the open-ended evolution of lyfe: for example, the modern biosphere may have increased
the environmental complexity of Earth such that it is unlikely for de novo life to arise
spontaneously. On the other hand, it is possible that life on Earth has improved the chances
for new kinds of artificial and digital lyfe to arise (see Section 3.3). This in silico and
dataomic lyfe would not be possible without extant life (humans) building its required
CD (e.g., computers) and providing high enough levels of EDF and IDF. In Figure 3,
we show various hypothetical evolutionary trajectories for our genesity parameters of
astrobiologically relevant planetary bodies.

On Earth (Figure 3a), the EDF begins too high for life during the planetary accretion
and magma ocean phases, then quickly drops to a level ideal for the emergence of life. It
rises during the Great Oxidation Event, which enables aerobic respiration and the diversity
of more complex life e.g., [32,33]. The IDF rises after the emergence of life and, due to
life’s presence, enters a regime where it is ideal for evolution but not further (organic)
emergence events. At the beginning of the rise of oxygen, the spatiotemporal variability of
oceanic O2 may have boosted the IDF and promoted evolutionary innovations in metazoan
life forms [34]. The recent rise of human civilization and the dataome provides the EDF,
IDF, and CD for the emergence and rapid evolution of artificial life forms (Alife). This
increase in genesity for life may also represent a concomitant detriment to the environment’s
genesity for organic life by way of anthropogenic climate change and a human-driven
“sixth extinction” [35].
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relevant worlds: (a) Earth, (b) Mars, (c) Venus, (d) Europa, (e) Titan, (f) a hot Jupiter, (g) a hypo-
thetical “chaotic world,” (h) a hypothetical “superhabitable” world. Only certain major events are
plotted for simplicity; in reality, these curves would be far more time-varying than shown here. We
assume here that, for all three parameters, the ideal range for emergence is less than that for evolu-
tion/complexification. Importantly, the reader should note that these diagrams are all hypothetical; a
robust calculation of these metrics over time has not yet been done.

The evolutions of Mars (Figure 3b) and Venus (Figure 3c) offer alternative trajectories
for terrestrial planets. Mars’s Noachian period may have been similar to the early Earth and
have supported the emergence of life [36–38]. However, due to atmospheric and water loss
during the Hesperian period, EDF, IDF, and CD all decay to values likely too low to support
the global proliferation of life in the present day. Ancient Venus may have been habitable
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for life as we know it, but at some point, this clement Venus would have transitioned into
its present-day runaway greenhouse state [39]. During that transition, the IDF and CD
of the planet’s surface environment would have dropped below the threshold values for
complexifying and maintaining lyfe. Note that the trajectories of these metrics for the
cloud layers may be different; for example, in the cloud layers the radiation environment
provides an EDF comparable to that of Earth’s surface [40].

In the outer Solar System, the icy satellites of Jupiter and Saturn provide different
kinds of astrobiological targets. On Europa (Figure 3d), ice radiolysis and hydrothermal
activity may contribute a redox gradient (EDF) capable of supporting microbial and even
macrofauna analogs in this icy moon’s subsurface ocean [41–46]. However, its abiotic IDF
is unlikely to be as high as that of Earth, but it may increase if life emerges and creates
new biological feedback. Photochemistry in Titan’s (Figure 3e) thick N2–CH4 atmosphere
samples a wide range of chemical space (high CD e.g., [47]. Titan’s IDF is fairly high due
to the numerous environments it supports: seas, lakes, rivers, sand dunes, cryovolcanism,
etc. However, it has a relatively low EDF due to its distance from the Sun and its low
temperature (~94 K). Titan’s surface is a representative example of a location where the
traditional concept of habitability breaks down (due to its lack of liquid water), but the
concept of genesity is still informative.

Many planetary environments may be unsuitable for any form of lyfe. The atmo-
spheres of hot Jupiters (Figure 3f), for example, may have EDFs in excess of that conducive
to lyfe. Simultaneously, these planets may have too low a CD for lyfe because they are
unable to support the existence of complex molecules in their atmospheres, which are
thermodynamically unstable at >2000 K temperatures. On the other hand, a hypothetical
“chaotic world” (Figure 3g) may experience wild environmental swings, either externally
or internally induced. Although one origin of lyfe may have occurred early on in such an
unpredictable world, the biosphere could be demolished when IDF or EDF becomes too
high or low.

At the other end of the spectrum, there is no reason to believe that Earth represents the
pinnacle of planetary genesity. For a hypothetical superhabitable environment (Figure 3h),
EDF, IDF, and CD would promote the emergence of lyfe early in the planet’s history,
then quickly evolve to a near-optimal state for the evolution and complexification of lyfe,
maintaining that state through a network of planetary-scale homeostatic feedbacks. Such
long-term homeostasis could be achieved through the onset of “planetary intelligence” at
the pre- and post-civilization levels [48,49]. There are many potential superhabitable sys-
tems that Figure 3h could describe. Here we propose one set of planetological parameters
that could satisfy a superhabitable state: First, with regard to EDF, we can imagine a plane-
tary trajectory where EDF increases in a similar manner to the Great Oxygenation Event on
Earth but without reliance on the evolution of oxygenic photosynthesis. Perhaps a more
UV-active star would create abundant O2 via photochemical reactions, e.g., H2O or CO2
photolysis e.g., [50–52], enabling the evolution of more complex forms of life earlier in the
planet’s history [53]. At the same time, this hypothetical world could generate a large flux
of geochemical reductants if it has vigorous interior dynamics resulting in plate tectonics
and magmatism. Such activity would result in copious volcanism, serpentinization, and
other hydrothermal activity that emits ample amounts of reduced gasses, e.g., H2, H2S,
Fe2+, or NH3. Not only would this robust geologic activity contribute to a high EDF but also
to high CD and IDF by creating rich geochemical settings and time-varying environments,
promoting profuse ecological diversity. Such a world may contain a superset of Earth’s
geochemical environments, including biomes our minds are unable to comprehend yet,
contributing even further to its IDF.

The process of organisms learning environmental features itself feeds back to the IDF:
As living systems build more accurate models of their environments, those environments
become modified away from the configurations in which the initial learning processes took
place. Assuming again that the combinatorics of components permit, living systems would
be expected to expand their predictive capacities further due to the enhanced free energy
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gains that would be yielded from such abilities. In addition to modifying the external
environment, such systems would experience a selection pressure for the modeling of the
biological agents as well, also contributing to increasing IDF values (as well as increasing
the upper limit of the ideal IDF window) over time.

A deep philosophical question exists in this realm: What are the necessary and suf-
ficient characteristics required for such open-ended learning and environmental modi-
fications (as opposed to saturation of learning and emergence over time, as seen in the
non-living world)? This is explored in the field of “open-ended evolution” e.g., [54–62].
The nature of open-ended learning and evolution is a deeply challenging and open area.
It is entirely possible that learning or evolution can proceed to a certain extent and then
experience a “saturation of complexity,” reach some kind of configurational upper bound,
or get indefinitely stuck in an evolutionary local optimum. In such a case, for a planet
with a relatively low upper bound of this kind, remote detection of its biosphere would
be particularly challenging since it may be indistinguishable from its abiotic environs [9].
However, open-ended complexification is not a necessary component of the genesity frame-
work: limited or saturating complexification of a biosphere is entirely compatible with the
concept. Indeed, future observations of a range of biospheric complexity levels will be
crucial to understanding our place in the universe.

We also wish to highlight the possibility of a binary distribution of biospheric com-
plexity in the universe due to the Gaian bottleneck effect e.g., [63–65]. If there is a threshold
level of complexity required for a biosphere to achieve the requisite homeostasis that
guarantees long-term viability, then those biospheres that fall short of passing through the
Gaian bottleneck would remain at low levels of complexity or simply disappear, and those
that pass through may universally experience open-ended complexification. This would
result in a binary distribution of biospheric complexities (with a heavy tail for the higher
group due to open-endedness).

3.3. The Genesity of Cyberspace and the Dataome

In social networks—in particular, cyberspace—where data are well documented and
there are fewer thermodynamic constraints than in the physical world, we can observe a
range of complex and emergent phenomena [66], which can also be viewed as another form
of lyfe under this particular type of environment see also [67]. Therefore, our proposed
metrics for genesity may also apply to the realm of artificial and digital lyfe forms, as well
as to technology and the dataome [68].

Perhaps the most salient form of a lyfe-like entity in cyberspace could be described as
a meme or a popular application. The replication advantage for such an entity is obtained
when people spend more time engaging with it and give kudos to it (e.g., likes). Hence,
the free energy analog, in this case, can be defined to be the associated attention and time
commitment by internet users. Like genes, memes experience a selection pressure: those
that allow people to express more information within a more compact expression will go
viral faster. A key driving force for the memes’ propagation is the information gradient
with respect to existing memes, i.e., people without knowledge of the memes will start to
engage with them when they offer greater novelty or higher information density. When a
meme has depleted such an information gradient (everyone has seen it, and it becomes “old
news”), its replication will slow, and the next generation of memes will become popular.
However, it is still possible (indeed likely) that components of the early memes will remain
in the evolutionary process (the next generation is likely to contain elements of the previous
one, having exchanged content through various mechanisms).

In the cyberspace environment, combinatorial diversity includes the technologies
involved, the types of communication channels available, and the groups of users that
have access to the internet. With a higher combinatorial diversity, more complex memes
are made possible. For example, when internet bandwidth and storage devices improved
significantly over the past decade, more GIF memes with higher information density
emerged, while primarily word memes were prevalent before that.
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Treating cyberspace as a special form of environment allows us to observe a special
case of emergence and evolution in which replication, mutation, and selection take on
different forms to the biosphere, and potentially new forms of lyfe are arising before our
own eyes. A rudimentary understanding of evolution in this realm could have significant
consequences for a more general and agnostic classification scheme for biological learning
beyond Earth.

3.4. Toward the Quantification of Gensity Parameters for Biosignature Science

The traditional view of habitability (liquid water, energy sources, presence of CHNOPS)
is attractive due to its ease of use; it is relatively straightforward to seek these attributes of
a planetary environment using present-day and near-future technology. On the other hand,
genesity may be significantly more difficult to put into use immediately. For instance, it
would be difficult to ascertain the CD or IDF of a distant extrasolar world without detailed
knowledge of its surface features and composition—capabilities just beyond the reach of
today’s technology. Hence, at present, robustly determining signs of traditional habitability
may represent the state of the art. Nonetheless, we believe it is important to introduce
a theoretical framework for genesity because: (1) its greater abstractness makes it more
widely suitable for considerations of lyfe as we do not know it; (2) it may reveal deeper
insights into the connections between conditions suitable for the emergence of lyfe and
conditions that support the maintenance and evolution of lyfe; (3) it may incentivize the
development of new tools for quantifying EDF, IDF, and CD.

In this contribution, we have presented our criteria for genesity as qualitative sketches,
but they all have promising avenues for rigorous quantification. For example, IDF could be
estimated using the framework of statistical complexity and epsilon machine reconstruction
from complexity science [28,69,70], in addition to the idea of requisite variety [71], i.e., that
in order to exhibit homeostasis, systems must somehow implement a model of the sources
of perturbations (the environment) against which homeostasis is being leveraged. The
statistical complexity of a system is computed by analyzing time series measurements
from that system and deducing the most compact and predictive finite state machine
model for the variations in the time series. We can surmise that environments of very
low statistical complexity do not provide any form of selection pressure or advantage to
systems that can perform information processing (lyfe). Thus, in such environments, any
free energy gradients would either be dissipated abiotically or become kinetic bottlenecks.
In contrast, in environments where free energy gradients exist but can only be harnessed
once a minimal level of information processing emerges, we would expect to see such
biological emergence, assuming the combinatorics and availability of components (CD)
allow for such.

At the same time, CD may be determined via molecular assembly theory, more specifi-
cally the molecular assembly index (MA), which provides a scale to measure molecular
complexity (the higher the MA, the more complex the molecule is). By analyzing molec-
ular assembly pathways (the steps required to form the molecule from its basic building
blocks), MA illustrates the smallest number of steps required for molecule formation [8].
Using mass spectrometry, the mass-to-charge ratio of sample fragments can be measured,
creating fragmentation spectra. The diversity of the fragmentation spectra correlates with
MA; hence, such spectra can be used to infer the MA of the parent molecule. Furthermore,
molecular assembly can be applied to a diverse array of samples through mass spectrometry
and has the potential to be utilized on future missions to assess the molecular complexity
of an environment. Hence, one could estimate CD by analyzing the distributions of MA
values for a given planetary environment. In addition to the molecular assembly method,
chemometric fingerprinting could also be utilized to quantify CD. Chemometric finger-
printing is a method in life detection in which many different DNA strands are projected
onto a sample. The diversity of the strands that binds to the sample can be used as a proxy
for the sample’s chemical complexity [72].
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Finally, EDF may be determined via a combination of chemical disequilibria and the
stellar input free energy. The atmospheric chemical disequilibrium, for instance, is a mea-
sure of the free energy that could be utilized by lyfe through chemotrophic metabolisms that
involve atmospheric gasses e.g., [5]. Aqueous chemical disequilibria have been described
for ocean worlds e.g., [73].

Stellar irradiation also provides a planetary system with free energy that can be
harnessed by biological systems. Where genesity is concerned, it may be of interest to
consider not just the total free energy input rate but also local gradients of free energy input
across regions of a planetary surface. We would expect the origin of lyfe only when biotic
processes are more favorable in terms of harvesting free energy compared to non-biotic
processes. Processing information, in any form, could lead to increased information entropy
and affect local free energy gradients. In the absence of a local free energy gradient, the
emergence of lyfe would not be permissible.

If we consider two regions of the planet’s surface with different albedo values, their
difference in free energy flux can be considered as a local free energy gradient. While
the absolute free energy influx peaks close to the host star’s surface and decreases with
orbital distance, it can be shown that this fractional difference increases monotonically with
distance from the star. Thus, we may find an orbital distance where the absolute free energy
influx and the local free energy gradient values compromise to create a high-genesity
environment, where the system is both active enough to maintain competition and promote
learning systems. We hypothesize that, over long timescales, a planetary biosphere may
create new local free energy gradients through the introduction of new biomes and via its
impacts on biogeochemical cycles and climate feedback, thereby enhancing the complexity
and hence the genesity of the environment.

Exactly how stellar input free energy gradients may impact EDF and IDF, especially
in the presence of a biosphere, is a matter that we leave for future work. This question
is complicated by the fact that, for any given planet, the stellar input free energy will be
determined not just by the planet’s orbital distance but also by its atmosphere. While
the addition of an atmosphere reduces the free energy influx to the planet’s surface, the
maximum position of free energy flux moves outwards from the star. This problem awaits
further investigation with more detailed radiative transfer modeling.

4. Concluding Remarks

The NASA-sponsored “NfoLD/NExSS Standards of Evidence for Life Detection Com-
munity Workshop” laid out a general framework for rigorous biosignature assessment:
(1) the detection of a signal; (2) the identification of that signal; (3) an assessment of abiotic
sources for that signal; (4) an assessment of biological sources for that signal; and (5) inde-
pendent lines of evidence to support the hypothesis. Steps 1 and 2 deal with the detection
of a signal of interest, while steps 3–5 serve to interpret that signal in the context of its
environment, our understanding of life, and subsequent data [74,75].

In this perspective, we have highlighted how Step 4 (phrased as the question, “Is it
likely that life would produce this expression in this environment?”) is highly contingent
upon our understanding of what life is, how it emerges, and what it means for an environ-
ment to be habitable. In other words, answering fundamental questions about the nature
of life impacts the quality of biosignature science directly by improving the interpretation
of signals of interest. Astrobiology is highly interdisciplinary: Steps 1–3 rely openly on
the foundations of geology, atmospheric science, planetary science, astronomy, etc. We
advocate that in approaching Step 4, biosignatures researchers form similar ties with the
origins-of-life community and those who engage in developing a universal theory of life.
The quest for life in the universe should be tackled hand-in-hand with the study of the
nature and emergence of life.

However, beyond the interpretation of signals, these sister pillars of astrobiological
inquiry impact the whole project of searching for life by guiding our overall approach
to looking for signals of interest. Thus, we conclude this perspective by advocating for
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an open-minded approach to life in the universe. If we confine ourselves to defining life
exactly as we know it on Earth instead of taking a general characterization of the living
state, we may bias ourselves toward looking for certain Earth-specific biosignatures that
are not fundamental or universal to lyfe. Operating under definitions that are too narrow
may blind us to detections hiding in plain sight, presenting the possibility of confirmation
bias (or the so-called “streetlight effect”). Hence, we consider the development of agnostic
biosignatures e.g., [8,9,72,76] critical to the future of lyfe detection.

Additionally, if we confine ourselves to one class of origins theory, we risk neglecting
worlds where living systems could emerge in a different way. For example, operating in
the paradigm that “warm, little ponds” exposed to atmosphere and sunlight were crucial
to the onset of life would bias searches against ice-covered ocean worlds. To us, this stance
seems premature given present uncertainties regarding geochemical environments suitable
for abiogenesis. Even if “warm, little ponds” resulted in life here on Earth, this is no reason
to discount the possibility that lyfe can emerge in various ways from various substrates in
various milieus.

Similarly, if we confine ourselves to thinking about habitability as it is thought of on
Earth, we may focus our search with too limited a scope [77]. In a Bayesian framework, our
prior for lyfe in uninhabitable environments may implicitly be set so low that we fail to
gather the relevant data or identify the relevant basis vectors for detecting it. Our planet is
but one example of a living world—one particle on one path in an ensemble of evolutionary
trajectories. A new, broader definition of habitability is needed for prioritizing the search
for living systems in the universe. Here, we have proposed the concept of genesity based
on three abstract environmental features that describe an environment’s ability to support
the emergence and evolution of life: energetic driving force, informational driving force,
and combinatorial diversity. Adopting the concept of genesity may embolden us to search
for lyfe in places where life cannot exist.

To be clear, we are not discouraging research into signs of life (rather than lyfe), the
origin of life (rather than lyfe), or habitability (rather than genesity). With limited time
and resources, astrobiologists cannot be faulted for the relatively risk-averse position of
looking for a second genesis of the single instance of life that we know to exist thus far.
Our perspective is simply that a broader, more inclusive theoretical framing of lyfe has the
potential to strengthen the astrobiological community and reshape our questions in ways
that will eventually teach us more about our place in the universe.

We are embarking on a new age of astrobiology, and we must approach it together with
humility and open-mindedness. This applies both to each other’s work and the greatest
teacher of all: whatever is out there.
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