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ABSTRACT

Background: The human body is made up of hundreds—perhaps thousands—of cell types and states, most of which are
currently inaccessible genetically. Intersectional genetic approaches can increase the number of genetically accessible cells,
but the scope and safety of these approaches have not been systematically assessed. A typical intersectional method acts
like an “AND” logic gate by converting the input of 2 or more active, yet unspecific, regulatory elements (REs) into a single
cell type specific synthetic output. Results: Here, we systematically assessed the intersectional genetics landscape of the
human genome using a subset of cells from a large RE usage atlas (Functional ANnoTation Of the Mammalian genome 5
consortium, FANTOM5) obtained by cap analysis of gene expression sequencing (CAGE-seq). We developed the heuristics
and algorithms to retrieve and quality-rank “AND” gate intersections. Of the 154 primary cell types surveyed, >90% can be
distinguished from each other with as few as 3 to 4 active REs, with quantifiable safety and robustness. We call these
minimal intersections of active REs with cell-type diagnostic potential “versatile entry codes” (VEnCodes). Each of the 158
cancer cell types surveyed could also be distinguished from the healthy primary cell types with small VEnCodes, most of
which were robust to intra- and interindividual variation. Methods for the cross-validation of CAGE-seq–derived VEnCodes
and for the extraction of VEnCodes from pooled single-cell sequencing data are also presented. Conclusions: Our work
provides a systematic view of the intersectional genetics landscape in humans and demonstrates the potential of these
approaches for future gene delivery technologies.
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Introduction

The exact number of different cell types that makes up the body
of a human adult is yet to be defined, but is expected to be in the
order of several hundred, or perhaps thousands of different cell
types [1, 2]. Major efforts have recently been launched to attempt
to catalogue and molecularly describe every cell type in different
tissues of the human body [3–8]. The number and the complexity
of cell types increase further when one considers that cells exist
in different states, not only when a cell divides or undergoes suc-
cessive differentiation steps during normal developmental pro-
cesses, but also when a cell becomes infected or cancerous, or
specifically responds to physical or chemical stimuli [1, 2, 5].

A major challenge in biology and biomedicine has been to
genetically identify and deliver genetically encoded messages to

a specific cellular type and/or state within complex organisms.
Most gene delivery systems are limited by the technology avail-
able to distinguish the desired cellular types and/or states be-
tween themselves prior to gene delivery; most technologies rely
primarily on cell-surface markers for selectivity [9, 10]. These
markers are seldom cell-specific, and this lack of specificity in-
evitably leads to DNA delivery to unwanted cells. This can have
negative consequences, such as introducing undesired artifacts
in research studies or side effects in gene therapy–based inter-
ventions. Additionally, the usage of sporadically defined cell sur-
face markers for cellular targeting restricts both the ability to
systematize the generation of cell-specific gene delivery vectors
and to scale this system up for any cell type or state in any or-
ganism.
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2 Intersectional genetics landscape

An alternative to these “pre-DNA delivery” selectivity proce-
dures is to use cell type– and cell state–unspecific viral or non-
viral DNA delivery systems [11, 12], and work out the cell speci-
ficity post-delivery by exploring the unique genetic properties
of the target cell. The transcriptional program of any given cell
reflects, at the most basic level, a unique combination of bi-
nary on/off states of the regulatory elements (REs) present in
the genome. REs can be used multiple times by different cells
either at different anatomical sites, different time points of life
history, or during disease or environmental responses [3, 4, 13–
17]. Therefore, while the activity of a single, carefully chosen RE
could theoretically provide sufficient specificity to identify a par-
ticular cell type and/or state post–DNA delivery in some cases, it
is unlikely to provide the required specificity to distinguish most
cell types and/or states between themselves [13, 14].

Aware of this fact, developmental biologists studying model
organisms have devised intersectional genetic methods to in-
crease the target cell specificity of gene drivers by exploring the
anatomical overlap between expression patterns driven by 2 in-
dependent REs [14, 18–23]. Similarly, molecular and synthetic bi-
ologists have engineered systems that use Boolean logic to sense
different cell states in bacteria and yeast [24, 25]. In many of
these synthetic computational systems, the REs are the inputs
which will pass through a typical “AND” gate and give a single
genetically defined output (Fig. 1). Similar systems have been ap-
plied to mammalian cells, where they are able to distinguish be-
tween different cancer cell types or detect cancer cells arising
from normal cells in vitro [26–28]. Despite being successful, the
full potential of this type of intersectional approach has never
been evaluated or applied systematically to generate drivers for
every cell type in a body, and even less so for a complex organism
like a human, which lacks thoroughly developmentally charac-
terized gene drivers.

Here, we hypothesized that the majority of cell types and/or
cell states in human could be distinguished post–DNA delivery
using multiple input “AND” gates (intersectional methods of ac-
tive REs; Fig. 1), and that the intersecting inputs could be ob-
tained, quality-ranked, and cross-validated using currently pub-
licly available RE usage databases.

Materials and Methods
Data preparation and normalization

To quantify how cellular specificity scales with the number of
intersecting active REs (k), we developed algorithms and scripts
using the Python language to analyze genome-wide data on pro-
moter and enhancer usage for hundreds of primary human cell
types obtained by the FANTOM5 consortium [3, 4, 29]. Briefly,
the FANTOM5 data consists of curated subsets of transcriptional
start site “peaks” determined by capped analyses of gene ex-
pression sequencing (CAGE-seq). The height of each CAGE-seq
peak provides quantitative information in normalized tags per
million (TPM) values, which is interpreted as being directly pro-
portional to the activity of the promoter or enhancer that it rep-
resents.

Before analyzing the FANTOM5 data, we manually curated
the FANTOM5 human cell type database, consisting of 184 dis-
tinct cell types from multiple donors (giving a total of 562 data
sets), by selecting for healthy primary cells and removing cell
treatments/infections and cells obtained from cancer samples
(Supplementary Fig. S1). We also attempted to remove data sets
that were less likely to represent single cell types. Examples of
the samples removed during curation are: data sets from cells

infected with Salmonella or Candida albicans, data sets for cells
labeled “whole blood,” and data sets from mesenchymal precur-
sor cells obtained from cancer samples. Some data sets were
merged into a single cell type category; for example, “CD8+ T
Cells (pluriselect)” and “CD8+ T Cells” and “Melanocyte dark”
and “Melanocyte light” were treated as 2 single cell type cate-
gories. This curation resulted in a list of 154 distinct primary
cell types from multiple donors, giving a total of 537 samples
and averaging ∼3.5 samples (donors) per cell type (range, 2–6).
Supplementary Table S1 contains the list of curated cell types
used in this study, as well as all of the excluded and merged
categories.

The total number of possible RE combinations for a target cell
type is C(r, k) = (r!/(k! (r—k)! ), where r stands for the number of
REs of the database (e.g., 201,802 promoters in FANTOM5), and k
stands for the number of REs chosen to combine. For k = 4, this
gives 6.9 × 1019 possible combinations. To ask whether any com-
bination is specific for the target cell type, however, we need to
ask whether the k combined elements are all active in the given
cell type and at least 1 of the k elements is inactive in each of
the other cell types in the database. If the k elements could be
binarized into active (TRUE) and inactive (FALSE) categories, this
question can be asked using Boolean logic gate functions such
as (in conjunctive normal form): ((1k1AND 1k2AND. . . 1kn) AND
(NOT 2k1OR NOT2k2OR NOT. . . . 2kn) AND (NOT 3k1OR NOT3k2. . .
OR NOT3kn). . . AND (NOT nk1OR NOTnk2. . . OR NOTnkn)), where
c{1→n}k{1→n} represents the status of the RE element k in cell
type c (where the target cell type is 1). The truth table for
this function has 2(c∗k) rows, which for 154 cell types and k =
4 gives 2.7 × 10185 rows. Saturating the search for all possi-
ble combinations for any given cell type and testing them by
a brute-force algorithm requires polynomial time complexity
O( [c∗r]k).

To increase the tractability of this problem, the size of the
database for a given cell type can be reduced for each search us-
ing heuristic methods. For instance, REs that are inactive in the
target cell or active in the target cell and also active in most other
non-target tissues (e.g., REs of housekeeping genes) are not help-
ful for the purpose of making cell type–specific intersectional
gene drivers.

Hence, to increase the likelihood of finding fruitful inter-
sections and to reduce the database complexity and comput-
ing time, we applied several filters on the database to select for
sparsely active REs. The first step is to define RE activity thresh-
olds. We decided to be conservative and apply different activ-
ity thresholds for the target cell type and for the non-target cell
types. This would increase the chances that the selected REs are
truly active in the target cell type and inactive in the non-target
cell type. To reduce the database size and concentrate on po-
tentially active REs in the target cell type, we created subsets of
data for each target cell type where we retained only the REs
that were consistently potentially “ON” (>0 TPM) in all donors
for that cell type (Fig. 2a). We next collapsed the data from mul-
tiple donors of the non-target cell types to a single non-target
cell type data point by averaging the expression of the multiple
donors (Fig. 2b). This reduces the database complexity by a fac-
tor of ∼3.5.

To select for sparsely active REs, we studied the RE activity
landscape by testing the following thresholds for RE activity in
the target cell type: 0.5, 1, and 2 TPM. The higher the RE activity
threshold, the more stringent the RE selection is. For inactivity,
we tested 0, 0.01, and 0.1 TPM in non-target cells. By applying
these thresholds, we transform the continuous CAGE-seq peak
data into binary data sets.
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Figure 1: Intersectional genetics. Scheme of the intersectional genetics approach to obtain cell type–specific drivers by restricting expression to the cells where 2 or
more REs with broader activity overlap (intersect). REs are the inputs that will pass through a typical “AND” logic gate and give a single, genetically defined output in
the cells where the RE activities intersect.

Figure 2: Conservative criteria for RE activity. Different conservative criteria for

RE activity were applied to (a) target and (b) non-target cells (“other cell types”).
Each row represents a possible RE activity scenario. Each box represents the ac-
tivity of the RE per donor (D) or the collapsed intersection or average (M), accord-

ing to the color key. REs from target cells were considered active if the intersec-
tion of all cell donors was above a TPM threshold (blue squares). REs from other
cell types were considered active if the average raw TPM (M) of all donors was
above the threshold.

We then wrote a program that randomly samples the filtered
RE landscape by choosing a combination of k “active” REs for a
target cell type and asking whether this combination is exclusive
to the target cell type, as compared to the other cell types of the
database. We call this the sampling method (Fig. 3a).

To further reduce computing time, the algorithm first selects
for sparsely active REs by removing all REs that are active in more
than X% of the cell types. This removes broadly expressed REs.
We start with X = 90%, but decrement 5 units (i.e., 85%) each
time there are not enough REs left in the data set after the filter
(e.g., n of REs < k). We ran this sampling program up to n = 1,000
times for a k range of 1 to 10, and calculated the percentage of
cells for which at least 1 exclusive combination for the target
cell type was found. This percentage served as an indicator of
the cellular specificity of combinations of k active REs.

Results
Random sampling of intersecting active REs

Using promoter data from the sub-panel of 154 primary hu-
man cell types, we find that cellular specificity of k intersect-

ing REs increases logarithmically from 10–20% for k = 1 up to
a plateau of 40–80% starting at k = 5, depending on the activ-
ity threshold (0.5–2 TPM, with a fixed inactivity threshold at 0
TPM; Fig. 3b). The 0.5 TPM activity threshold gave the highest
selectivity. Relaxing the inactivity thresholds from 0 to 0.1 TPM
(with a fixed activity threshold at 1 TPM) increased the percent-
age of cells that could be detected by 10–15%, depending on the
k used, again reaching a plateau at around k = 5 (Fig. 3c). A sim-
ilar scenario was observed using enhancer data, albeit the ac-
tivity threshold that gave the highest selectivity was lower (0.1
TPM) than for promoters, likely reflecting the generally lower
TPM values of the enhancer subset (Fig. 3d). Relaxing the in-
activity thresholds up to 0.1 (with a fixed activity threshold of
0.5 TPM) did not improve the cell selectivity (Fig. 3e). These re-
sults suggest that combinations of just a handful of active REs
could provide substantial cellular resolution in humans. As pre-
dicted, the usage of a single input (k = 1) has a very limited po-
tential to detect cell types or cell states. Moreover, even though
a 2-input “AND” gate greatly increases the number of detectable
cell types, it is unlikely to provide the breadth required to be
applicable for a technique aimed at detecting most cell types
and/or states in the human body. Finally, at least for this data
set and methodology used, our results suggest that our ability to
sort cell types based on active RE intersections plateaus between
4–6 REs.

Safety is also a concern when considering possible human
applications of RE activity-based methods, such as unwanted
leakage (noisy or unpredicted RE activity) in cell-targeted ther-
apies. Using high k values would be beneficial in this sense, be-
cause for each extra k there is an extra safety layer to account
for false negatives when compared to k = 1. Namely, the prob-
ability p of leakage decreases exponentially by pk. By applying
the simple RE selection criteria described above (with activity
thresholds of 0.5 and 0.1 TPM for promoters and enhancers and
a strict inactivity threshold of 0 TPM for both), the usage of a
4-input “AND” gate (k = 4 combination of promoters and/or en-
hancers), which can theoretically add as many as 3 safety lay-
ers against false negatives when compared to k = 1, is able to
discern ∼77% and ∼73% of human cell types using promoters
and enhancers, respectively (Fig. 3b and d), suggesting that it is
a good compromise between technical feasibility (i.e., generat-
ing biological systems that use 4 REs and translating the activ-
ity of the gene products regulated by these REs into a single ge-
netic readout) and the breadth of cell types that can be detected.
These multiple-input “AND” gates can also be seen as the mini-
mal intersection of co-activated REs that is diagnostic of a given
cell type or state within a given complex mixture of cells in a
culture dish, in a tissue biopsy sample, or in the human body.
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Figure 3: Random sampling method to find intersecting active REs (versatile entry codes [VEnCode]). (a) Rationale for the sampling method. First, k REs are randomly
selected from the set of REs that are active (“1”) in the target cell type. Inactive REs are depicted as “0.” Then, we ask whether, if at least 1 sampled RE is inactive in

each other cell type in the data set. If yes, these k REs satisfy VEnCode criteria or the target cell type (e.g., the k REs must intersect exclusively in the target cell). If not,
we repeat steps 1 and 2. If the k REs satisfy VEnCode criteria in the first or second iteration (i+1), then the k RE selection is counted as a VEnCode and is stored. Probing
the intersection genetics landscape for (b, c) promoter and (d, e) enhancer data sets using the sampling method. Plotted are the percentages of cell types found to
have at least 1 VEnCode per k and different (b, d) activity and (c, e) inactivity TPM thresholds. For the activity panels, the inactivity threshold was fixed at 0 for both

promoters and enhancers. For the inactivity panels, the activity thresholds were fixed at 0.5 and 0.1 for promoters and enhancers, respectively. (f) Visual representation
of a VEnCode for hepatocytes. Binary heat map where each column represents 1 of the 154 primary human cell types and each row 1 RE from the promoter data set.
Blue signifies an active RE and white an inactive RE.

We call these intersecting active REs “versatile entry codes”
(VEnCodes; Fig. 3f).

Heuristic selection of intersecting active REs

The random sampling method still falls short of probing the
enormous landscape of possible VEnCodes. We thus attempted
a heuristic approach to probe the VEnCode landscape. We used
the same binarization criteria as in the sampling method but re-
moved the filter for sparsely active REs that would retain REs that
were active in a percentage of the cell types assayed. This was
done since the effectiveness of this approach is not affected by
a large data set of less sparsely active REs. REs occupy the rows
of the database and can be represented as a{1→k}REb, where “a”
represents the position of the RE in the VEnCode (e.g., for a VEn-
Code with k intersections, a will go from 1 to k) and b represents
the row number in the RE list. We then applied a greedy algo-
rithm that considers the sparseness of expression (Fig. 4a). In
brief, the REs are first sorted by expression sparseness, and the
sparsest RE (RE1) is chosen as a first-order position (hereafter,
“node”) 1RE1. All cell type columns in which the1RE1 activity is 0
are then culled from the database, and all remaining >1RE>1 are
resorted in ascending fashion according to the number of cell
types they have that share co-activity with 1RE1. Then, 1RE1 is
tested in combination with the next RE (2RE2) to verify whether
it satisfies criteria as a VEnCode (i.e., whether the intersection

between the active REs 1RE1 ∩ 2RE2 occurs exclusively in the tar-
get cell samples). It follows that for each k = 2 combination that
satisfies the VEnCode criteria, all further k > 2 combinations that
use these 2 REs will satisfy the criteria for the VEnCode. If no k
= 2 combination satisfies the VEnCode criteria, the algorithm
creates secondary nodes and reiterates the pattern described
above. To increase the coverage of the landscape, each multi-
ple node test is performed with the 3 nearest neighbors by order
of sparseness. If no k = 3 combination satisfies VEnCode crite-
ria, the algorithm creates tertiary nodes, and so on. We call this
approach the heuristic approach.

Applying the heuristic approach to search for VEnCodes
using similar threshold conditions as used for the sampling
method above, we obtained cell-specific combinations of k pro-
moters and enhancers for ∼90% and ∼80% of the cell types, re-
spectively (Fig. 4b–e). More importantly, this method shifts left-
wards the plateau for the maximum number of cell types de-
tected, so that we are now able to retrieve specific combinations
for a larger percentage of cell types even at lower k numbers. For
instance, at k = 4 we retrieve ∼88% and ∼77% of cell types when
using promoters and enhancers, respectively. To test whether
the cells that could not be retrieved shared a common develop-
mental origin or similar expression profile, we performed single-
linkage clustering using the CAGE-seq TPM expression data for
the 154 primary cell types and highlighted the cell types with 0
VEnCodes retrieved using the heuristic method and k = 4 (Sup-
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Figure 4: Heuristic method to find intersecting, active REs (VEnCodes). (a) Rationale for the heuristic method. An example is given for a VEnCode with k = 3. This
algorithm follows a greedy strategy where at each node of the decision tree it makes the locally optimal choice. First, it sorts the REs in the data set by sparseness,

then it takes the sparsest RE (first-level node) and asks whether it is inactive in all non-target cell types. If yes, this RE is cell-type specific, and the next k-1 sparsest
REs can be added to increase safety. If not, it finds out in which cell types this RE is active and searches the data set for a new RE that is inactive in those problematic
cell types. If successful, the intersection between these 2 REs will be specific for the target cell type. In case no RE matches the query, it reorders the REs by sparseness,
this time calculating sparseness only at the “problematic” cell types. It then chooses the sparsest RE as the second-level node and repeats the procedure as described

for the first node, increasing node depth until a VEnCode is found. Node depth is always ≤k and the algorithm tests several nodes at each level before it gives up. In
the example given, there was no need to reorder by sparseness, as there was a satisfactory VEnCode. Probing the intersection genetics landscape for (b, c) promoter
and (d, e) enhancer data sets using the heuristic method. Plotted are the percentages of cell types found to have at least 1 VEnCode per k and different (b, d) activity
and (c, e) inactivity TPM thresholds. For the activity panels, the inactivity threshold was fixed at 0 for both promoters and enhancers. For the inactivity panels, the

activity thresholds were fixed at 0.5 and 0.1 for promoters and enhancers, respectively.

plementary Figures S2 and S3). We found that cells without VEn-
Codes frequently clustered together in groups of 2 or more cell
types (such as the cluster of 5 CD4+ cell types). Moreover, some
of the distances between nodes are very small, especially for en-
hancer expression profiles, explaining why some “isolated” cell
types could not be distinguished.

To try to find VEnCodes for the cell types where they could
not be retrieved using either the sampling or the heuristic
method, we combined enhancer (k1) and promoter (k2) data in
a method we called the “heuristic2” approach (Fig. 5a). This
method increases cellular resolution to ∼85% of cell types for
k = 2 (combinations of 2 k1 enhancers and 2 k2 promoters) and
> 90% of cell types for k = 4 (combinations of 4 k1 enhancers and
4 k2 promoters; Fig. 5b), allowing the generation of VEnCodes for
difficult cell types that could not be resolved using promoter or
enhancer data alone (Fig. 5c). Even though none of our meth-
ods saturate the RE activity intersection landscape, these results
consistently indicate that combinations of just a few active REs
could provide substantial cell type resolution in human.

Measuring VEnCode robustness

Next, we asked whether we could devise algorithms to rank a
VEnCode according to its quality and robustness. A k = 4 VEn-
Code assumes, based on the available RE usage data, that the
4 chosen REs are never active together in any cell type and/or
state except in the desired target cell type and/or state. Clearly,
there could be many instances when this premise is false, so
that the VEnCode falls apart. For instance, the VEnCode is com-

promised if the VEnCode is also able to detect a cell type which
is not included in the database used or if false negatives are a
prevalent artifact of the databases used to devise VEnCodes (e.g.,
a given RE is labeled as inactive in our database but in reality
is active or, for any reason, unstably fluctuates between active
and inactive states). To attempt to quantify these problems, we
carried out Monte Carlo simulations of false negative results by
randomly activating REs and recalculating whether or not the
VEnCode continued being selective for our target cell type after
each simulation (Fig. 6a). We scored how many false negatives,
on average (for n simulations), are required until the VEnCode
falls apart. This gives the quality value Eraw for each VEnCode.
Eraw varies as a function of k comprising the VEnCode and the
number of cell types c in the database. The higher the k, the
higher the Eraw, attesting to the fact that intersections are more
robust to technical errors and biological noise. To make E compa-
rable between different conditions, we normalize Eraw according
to a reference best-case scenario Ebest(c, k) value, which was ob-
tained by the Monte Carlo simulations performed as described
above, yet for the best-case scenario for a VEnCode: where all k
REs are inactive in the non-target cell types. Hence, normalized
E = 100∗Eraw/Ebest(c, k) (Supplementary Fig. S4 and Supplementary
Table S2). The idea is that E is directly proportional to the in-
traindividual robustness of a given VEnCode towards a cell type
(Fig. 6b).

To understand how E scales with cell type identity, we used
the sampling method to obtain an unbiased set of VEnCodes us-
ing k = 4 promoters. From the 114/154 cell types for which we
retrieved 5–20 VEnCodes in n = 10,000 samplings, we obtained E
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Figure 5: Heuristic2 method to find intersecting, active REs (VEnCodes). (a) Rationale for the Heuristic2 method. This algorithm combines the efficiency of the heuristic
method with the extra flexibility of using both enhancers and promoters to target a cell type. First, it finds the k sparsest enhancers (k1) that are active for the target
cell type and asks whether they are a VEnCode. If they are not, it focuses on the “problematic” cell types in which the enhancers are active and, using the approach

described in Fig. 4, asks whether there is any combination of promoters (k2) that are not active in those cell types. If so, then the intersection of the enhancer and
promoter activities is specific to the target cell type. (b) Probing the intersection genetics landscape using the heuristic2 method. Plotted are the percentages of cell
types found to have at least 1 VEnCode per k using promoter (orange circles), enhancer (gray circles), or promoter + enhancer (blue circles) data. (c) Visual representation
of a VEnCode obtained using the Heuristic2 method for trabecular meshwork cells. Binary heat map where each column represents 1 of the 154 primary human cell

types and each row 1 RE from the enhancer (blue boxes) and promoter (orange boxes) data sets. Red boxes and arrows depict the cell-type data that are preventing the
interception of enhancers from being a VEnCode for the trabecular meshwork cells. Green boxes highlight the promoter expression data in those problematic cell types.

values varying between 6 and 99 (Fig. 6c and Supplementary Fig.
S5A). The E quality index varied substantially between cell types.
For instance, “Fibroblast—Mammary” cells only allow the gener-
ation of VEnCodes with small E values (between 5 and 17), while
hepatocytes allow the generation of high-quality VEnCodes with
large E values (between 62 and 91). To test whether the heuristic
method improved the VEnCode quality, we calculated E from a
subset of 5–20 promoter VEnCodes obtained from 131 and 114
cell types using the heuristic and sampling methods, respec-
tively (Fig. 6c and Supplementary Fig. S5B). As expected, the
heuristic method statistically significantly improved the VEn-
Code quality by an average of 21.1 units (range, 6–57) above
random sampling for 88.5% of cell types (100/113; P < 0.0005;
Bonferroni-corrected, unpaired Student’s t-tests; Fig. 6c). Simi-
lar results were obtained for enhancer VEnCodes: there was an
average improvement of 14.1 units (range, 4–40) over random
sampling for 83% of cell types (93/112; P < 0.00005; Bonferroni-
corrected, unpaired Student’s t-tests; Fig. 6d and Supplemen-
tary Fig. S5C-D). We conclude that the heuristic method not only

finds VEnCodes for a larger amount of cell types, but also gener-
ates higher-quality VEnCodes.

VEnCode interindividual robustness

An ideal VEnCode retains its specificity towards the target cell
type across multiple individuals of a population. For this, the
VEnCode must be robust to interindividual variation on cell-
specific RE usage patterns. Interindividual variation could arise
either due to technical variation introduced during the determi-
nation of active and inactive REs for a given cell type in a given
individual or as a true biological variation in RE usage for that
cell type between individuals. The likelihood of relying on false
positive calls to generate VEnCodes should be inversely propor-
tional to the number of individuals surveyed for RE usage in
the target cell type. To verify this, we estimated interindivid-
ual robustness z of VEnCodes by calculating the percentage of
VEnCodes generated from a subset of cell type donors that re-
tained the VEnCode ability to satisfy all other donors of that cell
type whose data were not used to generate the initial VEnCodes
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Figure 6: Method for ranking VEnCode intraindividual robustness. (a) Outline of the method to calculate the E value of a VEnCode. Eraw is calculated by taking a VEnCode
(1) and accounting for possible false negatives in the data by turning inactive REs into active ones (2). To this end, the algorithm performs random 0-to-1 changes in the
data set, 1 at a time, and then checks whether the VEnCode condition is still satisfied. It reiterates e1 times until the VEnCode condition is no longer satisfied. It then
repeats the simulation n times (3) and returns Eraw by calculating the average of all e values obtained (4). Eraw is then normalized according to the formula described in

Supplementary Figure S2 and Supplementary Table S2 to obtain E. (b) Visual representation of 4 (1–4) hepatocyte VEnCodes obtained using different algorithms and
promoter data. Binary heat map where each column represents 1 of the 154 primary human cell types and each row 1 RE from the promoter data (blue boxes). The E

value of each VEnCode is depicted on the right. (c, d) The effect on E values of using sampling (blue) or heuristic (orange) methods to obtain VEnCodes. The heuristic

method increases the average E for most cell types for (c) promoter and (d) enhancer data. The y axis represents different cell types ordered by increasing E obtained
by the sampling method. Each dot is a VEnCode (n = 5–20 per primary cell type). Darker diamonds represent the mean.

(Fig. 7a). Our results show that despite some variability between
interindividual robustness across different cell types, on aver-
age, their VEnCodes (k = 4) are robust (Fig. 7b). Namely, when
promoter usage data from 1 and 2 donors are used, the z values
increase, on average, by ∼9.4%, from 90.6 to 100% (P < 0.00001;
Wilcoxon test for a subset of 66 cell types with 3 donors with 0 <

n < 71 VEnCodes generated by the sampling method in all condi-
tions; Fig. 7b). Similar results were found for a subset of cell types
(n = 9) with 4 donors, where 2 donors were sufficient to saturate z
(Fig. 7b). Enhancer data from a single donor seems to carry even
more predictability for other donors than promoter data, as z is
only 1.4% lower than 100% on average when data from 1 donor
is used instead of 2 (P = 0.00096; Wilcoxon test for a subset of 67
cell types with 3 donors; Fig. 7b). When the subset of 6 cell types
with enhancer data from 4 donors was analyzed, data from a
single donor was sufficient to saturate z (Fig. 7b). These results
suggest that using data from more than 1 donor is most helpful
for promoter data, where it can help significantly increase VEn-
Code interindividual robustness and, hence, increase the likeli-
hood that a VEnCode will be specific for the target cell in differ-
ent individuals.

Even though there is no correlation between the average VEn-
Code quality E for a cell type and the cell type’s interindividual
robustness z (Supplementary Fig. S6), consistent with the facts
that an interindividually robust VEnCode need not be of high E
quality and that a VEnCode with a high E score is not necessar-
ily the best VEnCode for multiple individuals, the optimal sce-
nario would be to determine VEnCodes from a large cohort of
donors of a cell type and then choose the VEnCodes with high-
est E scores from this subset. With this in mind, we calculated
the 5 best VEnCodes using the heuristic2 method, with k ranging

from 1 to 4 for a list of primary cell types with at least 3 donors
(Supplementary Data S1). This list can serve as a starting point
to explore other properties of VEnCodes and to perform cross-
validation experiments using independent techniques, similar
to what we report further below.

VEnCodes for alternative cell states: cancer

The FANTOM5 database contains RE usage data for 274 can-
cer cell line samples [3, 4, 29], which can be merged into 158
cancer cell types (Supplementary Table S3). If VEnCodes could
be determined for cancer cell types, they could be used in dif-
ferent cell targeting methods, such as to improve cell selec-
tivity in gene therapy directed towards cancer cells. To verify
whether VEnCodes could be determined for cancer cell types, we
created in silico models for diseased patients carrying 1 can-
cer cell type each by adding the cancer cell type data to
the 154 primary cell type database (Fig. 8a). While there are
many caveats and sources of additional noise with this strat-
egy, such as cell line heterogeneity, long-term cell culture ar-
tifacts, cell donor gender, and the incompleteness of the cell
type and state database used, to cite just a few, it already
serves the purpose of submitting the cancer cell types to the
same stringent criteria as if they were a new primary cell
type. Furthermore, the availability of data from cancer cell
types obtained from multiple donors provides the possibil-
ity to test for interindividual robustness of the cancer cell
VEnCodes.

Exploring the RE landscape of cancer cell types, we again no-
ticed that VEnCodes are readily obtained even for smaller k val-
ues (Fig. 8b), except for enhancers, where only ∼14% of cancer
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Figure 7: VEnCode inter-individual robustness. (a) Rationale for the estimation
of VEnCode interindividual robustness. VEnCodes that are generated based on
data from 1 or more donors are tested as VEnCodes on data from other donors.

The percentage of VEnCodes that satisfy VEnCode criteria for the other donors
is z. (b) Box plots representing z are obtained from various primary cell types
based on promoter and enhancer data. Subsets of primary cells for which 3 (top

panels, orange) and 4 (bottom panels, blue) donors were tested. z is saturated at
100% for all cell types tested when VEnCodes are determined using data from 2
cell donors.

cell types had a specific enhancer (k = 1; Fig. 8b). At k = 4, ∼99%
of cancer cell types surveyed could be distinguished using the
heuristic method for promoters or enhancers (Fig. 8b). This goes
up to 100% using the heuristic2 method with a k = 3 (Fig. 8b).
Cancer cell type VEnCodes are generally of very high quality, as
shown by their large E values (Fig. 8c and d). Using the heuristic
method increases the E values, similar to what we observed in
primary cell lines (Fig. 8c and d).

A caveat of the in silico cancer patient model is that not all
cells of origin of some cancer cell types are present in the pri-
mary cell database. This is the case for small cell lung carci-
noma (SCLC), which is thought to originate from neuroendocrine
cells of the lung [30]. Certainly, an expansion of the primary
cell database is warranted, and it would help generate safer and
more robust VEnCodes.

To study this issue more carefully, we looked at mesothe-
lioma, for which the assumed primary cell of origin, the
mesothelial cell, is available in the current database. We first
stratified the mesothelioma cell types into 3 cytological classes

according to Cellosaurus [31]: epithelioid (n = 7: ACC-MESO-1,
ACC-MESO-4, Mero-14, Mero-41, Mero-82, Mero-95, NCI-H226,
and No36; epithelial-like stellate cells), sarcomatoid (n = 3: NCI-
H2052, NCI-H28, and ONE58), and biphasic (n = 5: Mero-25, Mero-
48a, Mero-83, Mero-84, NCI-H2452). We then asked how diffi-
cult it was to generate robust VEnCodes for these mesothelioma
types (Fig. 8e and f). We find that while VEnCodes can be readily
generated for primary mesothelial cells with k = 2, larger k val-
ues are required to generate VEnCodes for mesothelioma cells.
VEnCodes were found for all mesothelioma subtypes, except for
epithelioid mesothelioma cells, which could only be identified
when promoter data were used, and even then they were of poor
quality (E = ∼7). In general, the VEnCode intraindividual robust-
ness E increased with a higher k, again attesting to the potential
safety value of using more intersections (Fig. 8e and f).

As many cancer cell types are characterized by a level of het-
erogeneity, we were expecting less interindividual robustness in
cancer cells relative to primary cell types. We thus applied the
sampling method to calculate the interindividual robustness z
of cancer cell types. We found that cancer cell type VEnCodes (k
= 4) determined either from promoter or enhancer usage data
have very high interindividual robustness z, which is already
saturated when data from 2 donors are used (Fig. 8g–i). These
results show that small RE usage signatures can reproducibly
define dozens of cancer cell types. The level of interindivid-
ual robustness is similar to that of technical replicates (Fig. 8g,
compare top and bottom panels). Even genetically hypervariable
cancer cell types, such as SCLC cells [32], for which data from
4 cell lines were available, also gave 100% z values when data
from 2 donors were used (Fig. 8i). We conclude that highly robust
and safe cancer cell VEnCodes can be obtained using CAGE-seq
data.

VEnCode cross-validation

Having shown that a publicly available RE usage database based
on CAGE-seq data can be used to generate and quality-rank VEn-
Codes for hundreds of primary and cancer cell types, we next
asked whether these CAGE-seq–based VEnCodes could be cross-
validated using other publicly available comprehensive RE usage
data sets. There are 2 types of cross-validation that would be de-
sirable: first, to show that all the REs used in the VEnCodes for a
given cell type are indeed active in that cell type; and second, to
show that the combination of enhancers is exclusively active in
that cell type.

To cross-validate CAGE-seq VEnCodes for a specific cell type
using RE activity estimated by other methods in the same cell
type, we searched the literature for suitable studies and found
18 candidate cell types that could be used for cross-validation
(Table S4): 3 “healthy” cell types (human-induced pluripotent
stem cells [hiPSCs] and 2 primary cell types), and 15 cancer
cell types/lines. Whereas FANTOM5 data on hiPSCs were not in-
cluded in our curated primary cell database, the fact that hiPSCs
and human embryonic stem cells share nearly identical molec-
ular profiles and pluripotency properties [33–35] allows the us-
age of a high-quality functional enhancer data set generated for
human embryonic stem cells [36] for VEnCode cross-validation.
The methods for RE activity estimation in the retrieved studies
varied between chromatin immunoprecipitation–based meth-
ods, DNA accessibility–based methods (Formaldehyde-Assisted
Isolation of Regulatory Elements, FAIRE; DNase I hypersensitive
site mapping, DHS; Assay for Transposase-Accessible Chromatin
using sequencing, ATAC-seq), enhancer function methods (en-
hancer RNA detection methods, eRNA; self-transcribing active
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Figure 8: VEnCodes for cancer cell types. (a) Strategy for simulating a cancer patient in silico. (b) Probing the intersection genetics landscape for cancer cell types using
the Heuristic2 method. Plotted are the percentages of cell types found to have at least 1 VEnCode per k using promoter (orange circles), enhancer (gray circles), or
promoter + enhancer (blue circles) data. (c, d) The effect on E values of using sampling (blue) or heuristic (orange) methods to obtain VEnCodes for cancer cell types.
The heuristic method increases the average E for most cell types for (c) promoter and (d) enhancer data. The y axis represents different cancer cell types ordered by

increasing the E obtained by the sampling method. Each dot is a VEnCode (n = 5–20 per primary cell type). Darker diamonds represent the mean. (e, f) Case study of
mesothelioma cancer cells stratified into epithelioid, sarcomatoid, and biphasic subtypes. Primary mesothelial cells are shown in the left column for reference. Rows
depict increasing k. Boxes are filled if at least 1 VEnCode is found using k REs. If a VEnCode is found, the box is colored according to the binned average E value of the
VEnCodes found (n = 1–20). (g–i) Box plots representing interindividual robustness z values obtained from all cancer cell types with (g, h) 3 or (i) 4 donors based on

promoter (left panels) and enhancer (right panels) data. (g) Subsets of cancer cells for which biological replicates were available (i.e., repeated assays with the same
cancer cell line). (h, i) Subsets of cancer cell types for which independent cell lines were analyzed. z is saturated at 100% for all cell types tested when VEnCodes are
determined using data from 2 cell donors.

regulatory region sequencing, STARR-seq), and combinations of
these methods (Supplementary Table S4). We downloaded raw
data (Browser Extensible Data, BED; FASTA; Comma-Separated
Values, CSV; BroadPeak; or Tab-Separated Values, TSV, files) from
the studies and parsed the data to retrieve compatible genomic
locations of “active” or potentially active enhancers (for DNAse
accessibility-dependent techniques).

To cross-validate the CAGE-seq–determined VEnCodes, we
generated up to 200 VEnCodes (with k = 4) for each of the 18
cell types and determined the fraction of k per VEnCodes that
were considered active in the external database (Fig. 9a). Any
degree of overlap (>0 nucleotides) between the CAGE-seq RE co-
ordinates and the external database active RE coordinates was
considered positive for validation. Cross-validation results var-
ied between cell types and studies. Fully validated k = 4 VEn-
Codes, for instance, were found for 11/18 (61.1%) cells, while par-
tially validated (≥2/4) VEnCodes were found in 17/18 (94.4%) cell
types (Fig. 9b). The low validation for some cell types could be
due to many factors, such as cell identity and the nature of the
method used to determine RE activity. Indeed, the likelihood of
VEnCode cross-validation correlated significantly with the per-
centage overlap of active RE calls between CAGE-seq and the
external method (r = 0.90; P < 0.00001; Supplementary Fig. S7).
This is not unexpected, as the readouts used to determine en-
hancer activity in the different studies vary in specificity and
sensitivity. Regardless of these limitations, our results indicate
that for a majority of cell types, CAGE-seq VEnCodes can be
cross-validated using RE usage data sets independently deter-

mined by other methods. To bypass the limitation of low over-
lap between enhancer activity calls in different databases, we
first cross-validated enhancers and then determined VEnCodes
using the curated primary cell CAGE-seq data (Fig. 9c). With this
approach, cross-validated VEnCodes were obtained for all 18 cell
types (Fig. 9d), and these VEnCodes could be further quality-
ranked according to their E value (Supplementary Fig. S8 and
Supplementary Data S2). Hence, high-quality VEnCodes can be
found using exclusively the subset of CAGE-seq REs that are
cross-validated against publicly available RE usage data sets.

To perform the second type of cross-validation—to address
whether combinations of enhancers are exclusively active in a
given cell type—we used the ENCODE DNAse-seq database [15].
While there is a correlation between CAGE- and DNAse-seq calls,
the readouts of the techniques are not the same. CAGE-seq mea-
sures the transcriptional activity of promoters and enhancers,
whereas DNAse-seq measures the DNA accessibility of any locus
to a DNAse enzyme. DNAse-seq can be positive in active or inac-
tive REs and even in other functional DNA elements, such as ori-
gins of replication. Despite these potential caveats, we expected
to detect nonrandom associations while scanning the DNAse-
seq database using our CAGE-seq VEnCodes. To test this, we cu-
rated the ENCODE DNAse-seq database and found 27 cells that
matched the CAGE-seq human primary cell types and for which
we could generate VEnCodes for promoters and enhancers (Sup-
plementary Fig. S9). We then generated up to 500 k = 4 CAGE-
seq–based VEnCodes per cell type and quantified cell type speci-
ficity by asking how many of these CAGE-seq VEnCodes matched
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Figure 9: Cross-validation of CAGE-seq–determined VEnCodes. (a) Strategy for cross-validation of CAGE-seq–determined VEnCodes using external databases. (b) Heat
maps depicting the distribution of cross-validated VEnCodes, for k = 4 enhancers, according to the number of validated k/VEnCode for each cell type. The databases
used for cross-validation of each cell type and the full description of the cell types are provided in Supplementary Table S4. (c) Venn diagrams depicting the percentage

of active enhancer calls determined in this study using the FANTOM5 database CAGE-seq data (gray circles; notice that they are sometimes too small to see in the figure)
that overlap with the external cross-validation databases (peach and yellow). (d) Heat maps depicting the distribution of cross-validated VEnCodes, for k = 4 enhancers,
according to the number of validated k/VEnCode for each cell type using exclusively CAGE-seq enhancers that are present in the external databases. ∗HEK293 cells
originate from fetal kidney tissue, but they were placed in this group as they are derived from adenovirus-transformation and have a complex karyotype. (e) Box plots

depict the percent matches between CAGE-seq–based VEnCodes and DNase-seq regions. Both VEnCodes and random combinations of k = 4 REs were retrieved from the
CAGE-seq data set and their activity was assessed in the DNase-seq data set for both similar (target) and unrelated (non-target) cell types. Different letters represent
conditions that are statistically significantly different (ANOVA followed by Tukey HSD; P < 0.01). (f) Specificity of CAGE-seq–derived combinations of REs (VEnCodes or
random k = 4 combinations). Specificity was calculated as the percentage of target cell hits/average percentage of non-target cell hits. ∗∗∗ represents P < 0.001.

each of the cell types of the DNAse-seq database. These re-
sults were statistically compared to those obtained using ran-
domly chosen k = 4 CAGE-seq–determined RE combinations. Re-
sults showed that CAGE-seq VEnCodes matched their target cell
more frequently than random combinations when either pro-
moters or enhancers were used (P < 0.05; paired Student’s t-test;
Fig. 9e) and matched non-target cells less frequently than ran-
domly chosen k = 4 RE combinations for promoters, but not en-
hancers (P < 0.05; Fig. 9e). A specificity index (percentage tar-
get cell hits/average percentage non-target cell hits) showed that

VEnCodes from CAGE-seq REs were more specific than randomly
chosen k = 4 combinations or CAGE-seq REs (Fig. 9f). These re-
sults further support the cross-validation of VEnCodes described
above. As regards the presence of non-target cell type hits, it
is also important to consider that some cell types, in particu-
lar endothelial cells and fibroblasts, generated matches to other
endothelial and fibroblast cells collected from other anatomical
sites (Supplementary Fig. S9). Considering the limitations of the
CAGE-seq and DNAse-seq comparisons, we conclude that VEn-
Codes are expected to be highly specific.
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VEnCodes using single-cell sequencing data

Genome-wide RE activity profiles have traditionally been ob-
tained using large cell populations, as in the case of the FAN-
TOM5 CAGE-seq data studied herein. While the advantage of
these bulk preparations is the increased depth and resolution of
the RE activity predictions obtained, a clear disadvantage is the
loss of single-cell resolution. This is most evident in situations
where RNA is prepared from complex mixtures of cells, such as
healthy tissues samples and cancer biopsies. Single-cell strate-
gies that can both resolve cell heterogeneity and infer RE activ-
ity have been developed, but they still provide a relatively shal-
low (discontinuous) and noisy view of RE activity per cell [37–43].
These properties limit the usefulness of single-cell strategies for
VEnCode determination, which requires very stringent RE activ-
ity criteria, especially for negative RE activity calls. Single-cell
CAGE-seq (C1 CAGE), for instance, recovers, per cell, on average,
∼15, ∼10, ∼5, and <5% of bulk CAGE-seq–determined enhancers
expressed at 10–100, 5–10, 1–5 and < 1 TPM, respectively [43].
Considering that the thresholds for enhancer inactivity and ac-
tivity in our study are 0 and > 0.5 TPM, this suggests that the
rate of false positives in C1 CAGE–determined VEnCodes would
be high.

Some of the limitations described above can be partially cir-
cumvented using strategies that consolidate single-cell RE ac-
tivity profiles by pooling a sufficiently large number of single
cells after taxonomic cell clustering [44–52]. We thus hypothe-
sized that pooled C1 CAGE seqeuence data could retrieve enough
enhancers to enter the VEnCode determination pipeline.

To test this, we obtained pooled enhancer activity predic-
tion data from a subset of untreated adenocarcinomic human
alveolar basal epithelial cell lines (“T0” [untreated] A549 cells; n
= 35 cells; Supplementary Table S5) [43]. From this set of cells,
we retrieved 540 unique enhancers that were considered “ON”
(Supplementary Table S6). All other non-retrieved enhancers
were considered “OFF.” This data was then processed as de-
scribed above for bulk CAGE-sequenced cancer cells (Fig. 10a).
Results showed that VEnCodes could be successfully retrieved
from enhancer activity profiles obtained from pooled C1 CAGE
data (Fig. 10b). In general, C1 CAGE–based VEnCodes obtained
by the sampling method were 34.1 and 38.3% worse in quality
than bulk and bulk-validated CAGE-seq–determined VEnCodes,
respectively (average ± SD E values of 35.0 ± 6.7, 53.1 ± 7.5,
and 56.7 ± 6.90 for C1 CAGE, bulk, and bulk-validated CAGE-seq
enhancers, respectively; P < 0.01 for each respective compari-
son; Tukey HSD (honestly significant difference) post hoc test;
Fig. 10b and c). A similar pattern was observed for VEnCodes ob-
tained using the heuristic method, albeit the VEnCode quality
was significantly increased for all estimates, as compared to the
sampling method, as expected (P < 0.01; Tukey HSD post hoc
test; Fig. 10b and c). We conclude that RE activity profiles ob-
tained from single-cell sequencing data can be successfully in-
tegrated into the VEnCode pipeline when pooled estimates are
used. At least for C1 CAGE sequencing of a small number of A549
cells, these estimates are not as optimal as those from bulk-
sequencing data, due to their proneness to false negative RE calls
and the generally reduced quality of the VEnCodes generated.

Discussion

A major challenge in biomedicine is to access and gain control of
a specific cellular type, be it in a healthy or disease state, within
a complex and highly adaptable body. A methodology that al-
lows genetic access to all cellular types and states in the hu-

Figure 10: VEnCodes from single cell–derived RE usage data. (a) Strategy for inte-

grating single cell–derived RE usage data into the VEnCode-generation pipeline.
Single-cell data, such as enhancer usage patterns obtained from C1 CAGE-seq,
are pooled and then integrated into the curated database of the bulk CAGE-seq
enhancer panel. (b) Heat maps depicting the E quality of 200 k = 4 enhancer VEn-

Codes obtained by the sampling or heuristic method from single-cell (35 pooled
“T0” cells from C1 CAGE-seq [43]), bulk CAGE-seq (FANTOM5), or bulk-validated
CAGE-seq data (as described in Fig. 9) for A549 cells. Columns represent 200 VEn-
Codes ranked according to E value; rows represent cell types, ranked according

to average ( [active k)]/VEnCode). (c) Box plots representing the quantification of
the E value data reported in section b. Different letters represent conditions that
are statistically significantly different (ANOVA performed with all 6 conditions,
followed by Tukey HSD; P < 0.01).

man body would have a major impact in multiple domains of
life science, including the possibility of studying and designing
novel research tools and therapies, as well as better bioinspired
technology and cosmetics. Such methodology addresses a ma-
jor problem in the fields of life sciences research, biological engi-
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neering, and gene therapy: cellular-targeting, or how to restrict
the desired genetic intervention to a unique set of cells within an
organism or different cell states within unicellular populations.

Even when specific solutions exist (e.g., antibodies against
target cell surface proteins or viruses with tropism towards cer-
tain cell types) that give access to a single cell type or state in
an organism, no approach is known that allows for the system-
atic generation of similar specific solutions for other cell types or
states in any given organism. Therefore, there is a profound lim-
itation in the technologies available to genetically access partic-
ular cellular types and states in a very limited set of organisms.

An alternative to these procedures is to use methods that do
not rely on cell-specific strategies to deliver genetic materials
to cells: for instance, to use a system that delivers the desired
genetic material to as many cells as possible in a complex or-
ganism, unrestrictedly. Considering that such systems are be-
coming available (e.g., unbiased non-integrating viral delivery
or chemical-based delivery), the challenge becomes to have a
highly versatile approach to activate any particular genetic mes-
sage exclusively within a target cell type.

Intersectional genetics provides a solution for cellular target-
ing in complex organisms. However, there are several challenges
that have to be overcome in order to apply intersectional ge-
netics in human. The first challenge is the understandable lack
of a library of gene drivers with known expression patterns to
choose intersections from. To overcome this, we attempted to
explore alternative resources, such as large RE usage databases
determined using next-generation sequencing methods. We ex-
plored a curated panel of 154 primary human cell types and 158
cancer cell types for which a uniform RE usage atlas consist-
ing of CAGE-seq data is currently available [3, 4, 29]. FANTOM5
data and other data sets have been previously explored as po-
tential sources of cell-specific features, including enhancers [53,
54]. One of these tools is SlideBase, which uses interacting slid-
ers for the selection of expressed features from a given data set
by user-customized expression thresholds [53]. However, while
such user-friendly tools can serve this and many other purposes,
they are neither conceived nor optimized for a systematic anal-
ysis of intersectional genetics. An additional limitation is that
the data sets have not been curated with the conservative crite-
ria for unique cell types that we used.

The second challenge is to understand the landscape of in-
tersectional genetics in human, including its safety and reliabil-
ity. To the best of our knowledge, a systematic assessment of the
potential and robustness of the intersectional genetics approach
had never been performed for any organism, much less for hu-
mans. How far could intersectional genetics take us as an ap-
proach to gain accessibility to any given human cell? If each cell
type does not have a uniquely active RE, or if the usage of a single
unique RE carries high risks for therapeutic and diagnostic pur-
poses due to technical artifacts and biological noise, would the
unique intersection of 2 or more REs be enough to generate cell
type–specific gene drivers for every human cell type? This is a
relevant question, as there are several technical solutions avail-
able to explore genetically the intersections of active REs, such
as split-transcription factors and recombinase-based strategies
[14, 18–28].

We found herein that >90% of the primary human cell types
surveyed can be safely and robustly distinguished from each
other with as little as 3 to 4 REs. We called these combinations
VEnCodes. VEnCodes can be defined as the smallest gene ex-
pression ON/OFF signature that carries enough diagnostic value
to distinguish between the target cell and other non-target cell
types within a complex mixture of cells. Clearly, VEnCodes with

1 and 2 REs exist and their technical exploitation is already feasi-
ble with current techniques. However, for many cells, more REs
are required, either to obtain a VEnCode or to obtain a safer and
more robust VEnCode. Hence, new intersectional methods are
desirable to capitalize on the intersection of 3 or more active
REs.

While we obtained VEnCodes for most cells using heuris-
tic methods, we failed to obtain VEnCodes for ∼10% of the pri-
mary cells surveyed, even when 10 RE intersections were al-
lowed. It is important to notice that we have by no means satu-
rated the VEnCode search space. Hence, more thorough, brute-
force methods (e.g., an exhaustive sampling method) might
find VEnCodes for these difficult cell types. However, some of
these cell types might indeed have poorly distinguishable or
indistinguishable RE activity profiles. These cell types might
require other techniques for detection. A possibility that was
not explored here is to use other intersectional methods based
on other Boolean logical operations, such as “OR,” “NOT,” and
“NOR.”

To create a quality index for VEnCodes, we determined its
susceptibility to technical artifacts and biological noise using
Monte Carlo simulations. We show that the average VEnCode
quality varies significantly between different primary cell types,
so that certain cells, such as mast cells and hepatocytes, are
more safely distinguishable from others than most fibroblasts
subtypes. VEnCode quality ranking could be further optimized
by considering the original non-binarized RE activity profiles
(TPMs). In this case, VEnCode quality would also depend on the
RE with the lowest TPM, as this would be the limiting factor for
each intersection.

By exploring RE usage data from the same primary cell type
obtained from multiple donors, we find that VEnCodes are very
(∼100%) robust, especially when determined using enhancer
data. Promoter data-based VEnCodes for primary cell types in-
crease when data from at least 2 cell type donors are used. It is
not clear if this reduced robustness using single donor promoter
data is due a technical or biological source of noise.

To probe the RE space in a cell state paradigm, we explored
data from different cancer cell lines isolated from patients di-
agnosed with tumors of the same cellular origin. Several can-
cer cell types are hypervariable in nature, posing a challenge for
finding a specific VEnCode that detects the same cancer cell type
across multiple individuals. However, VEnCodes could be deter-
mined for all cancer types surveyed where multiple cell lines
were available, even for notoriously hypervariable cancer cell
types such as SCLC cells. Furthermore, as VEnCode retrieval can
be systematized, in the absence of a single VEnCode that satis-
fies detection criteria for multiple cancer cell subtypes, multi-
ple VEnCodes can be designed to account for cancer cell hetero-
geneity.

Finally, we showed that VEnCodes obtained from CAGE-seq
data can be cross-validated using promoter and enhancer us-
age data obtained by other methods. In general, the extent
of cross-validation varied greatly between cell types, a fact
that can be partially explained by the imperfect correlation be-
tween CAGE-seq and the RE activity endpoints measured in the
other databases. Intuitively, the methods of choice to cross-
validate VEnCodes in target cells are methods that infer an en-
hancer function, such as simple luciferase assays or STARR-seq,
where functional enhancers transcribe themselves [55]. Cross-
validation of a second key assumption of VEnCodes—that they
only function in the desired cell type and not in other cell types—
is much more challenging. We partially addressed this chal-
lenge using a curated ENCODE DNAse-seq primary cell database,
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achieving significant cross-validation for CAGE-seq VEnCode
specificity. Ultimately, the method of choice for CAGE-seq VEn-
Code cross-validation would be functional enhancer assays us-
ing a panel of complex human organoids.

VEnCodes can now be explored as minimal RE program-
sensing parts that can be encoded genetically into plasmid-
based biosensors, packaged into viral or non-viral systems, and
delivered to cells in the body to diagnose whether or not the RE
program of a given cell matches that of the VEnCode. Engineer-
ing biosensors that sense the activity of 3 to 4 REs and then per-
form a multiple “AND” gate computation to generate a single
output is technically feasible with synthetic biology. Such ge-
netic biosensors could revolutionize medicine by allowing safe
and specific gene delivery to any cell type or cell state in the hu-
man body.

Enhancer-based VEnCodes are clearly the most promising
combinations for generating intersectional genetics tools. Each
enhancer can, for instance, be placed directly upstream of a gen-
eral or synthetic basal promoter. In contrast, one needs to con-
sider that promoter-based VEnCodes, such as those obtained
in the heuristic2 method, might not necessarily autonomously
convey the desired cell type–specific transcription when placed
in a synthetic construct context. Nevertheless, there are many
efforts to map enhancer-promoter interactions [3, 56, 57], which
could be used to optimize the heuristic2 method.

Finally, we have shown that single cell–based strategies for RE
estimation, such as C1 CAGE, are compatible with the VEnCode
pipeline. The VEnCodes obtained were understandably of lower
quality than those derived from bulk CAGE-seq data alone. Pool-
ing data from larger numbers of cells can theoretically improve
the VEnCode quality, considering larger numbers of REs are ob-
tained. The low-confidence negative RE activity calls generated
by pooled single cell–sequencing data are another point of con-
cern, which might also be mitigated by pooling larger numbers
of cells. Nevertheless, a major benefit of single-cell strategies for
VEnCode applications is their potential to significantly increase
the number of cell types with RE activity profiles. This poten-
tial to molecularly profile cell types and even to discover new
cell types has become evident with single-cell RNA-seq [5–8]. Ex-
panding the number of cell types in the curated single-cell RE
activity database is critical, because it helps reduce the amount
of false VEnCodes for all cell types (e.g., the larger the amount
of cell types with robust known active RE calls, the less likely it
is to obtain a VEnCodes that will fail in practice). Hence, the in-
clusion of a new cell type with a single cell–derived, partial RE
profile based exclusively on sparse active RE calls is better than
not having the profile at all. Finally, it would be interesting to
verify in future studies whether, apart from integrating single-
cell and bulk RE activity profiles, the algorithms and strategies
described herein could also be applied to RE activity data gener-
ated exclusively from single-cell data.

Conclusion

In summary, our results suggest that VEnCodes for a wide va-
riety of human primary cell types and cancer cells can be
discovered, quality-controlled, and cross-validated in silico us-
ing heuristic algorithms and publicly available genome-wide
RE-usage databases, such as the FANTOM5 promoter and en-
hancer atlases. VEnCodes could be used to engineer intracellu-
lar biosensors or devices that use intersectional genetics tools to
“read” the VEnCodes and translate them into a custom genetic
output. This would allow systematic genetic access to any of

these cell types or states. Genetic access carries enormous ther-
apeutic potential by allowing the selective delivery of genetic
messages and cures to cells, such as various forms of gene ther-
apy or the specific genetic ablation of abnormal cancerous cells.
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Supplementary Tables S1-S7, and Supplementary Data S1–2. The
latter are available online [60].

Availability of source code and requirements
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Availability of supporting data and materials

Materials (code and data) are available at a github repository [58]
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[58] was used to implement all the algorithms and methods
in this study (Python Software Foundation). Python Language
Reference, version 3.6.5., is available online [60]. The R language
with the ggplot2 package was used to generate the plots for the
Figures [61, 62]. A computational capsule to provide examples
of basic usage of the VEnCode package and to run the package’s
tests in a reproducible way is available via CodeOcean [63].
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