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Metabolism addiction in pancreatic cancer

R Blum*,1 and Y Kloog2

Pancreatic ductal adenocarcinoma, an aggressively invasive, treatment-resistant malignancy and the fourth leading cause of
cancer deaths in the United States, is usually detectable only when already inevitably fatal. Despite advances in genetic
screening, mapping and molecular characterization, its pathology remains largely elusive. Renewed research interest in
longstanding doctrines of tumor metabolism has led to the emergence of aberrant signaling pathways as critical factors
modulating central metabolic networks that fuel pancreatic tumors. Such pathways, including those of Ras signaling, glutamine-
regulatory enzymes, lipid metabolism and autophagy, are directly affected by genetic mutations and extreme tumor
microenvironments that typify pancreatic tumor cells. Elucidation of these metabolic networks can be expected to yield more
potent therapies against this deadly disease.
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Facts

� Pancreatic cancer is the 10th most prevalent cancer in
men and the 9th in women, and each year leads for
approximately 3% of new cases of cancer in the United
States.

� Despite comprehensive endeavor and major progress
made toward improving its prognosis and increasing
survival rates (mostly via surgical intervention coupled with
chemotherapy and radiation), survival rate for pancreatic
cancer has not improved markedly and above 80% of
patients develop a local metastatic tumor at progressive
stage at prognosis time.

� Ample scientific evidence suggest that oncogenic consti-
tutively active K-Ras and its overactivated downstream
signaling factors, such as B-Raf, phosphatidylinositol-3-
kinase (PI3K) and Akt are strong promoters of pancreatic
cancer tumorigenicity.

� Oncogenic Ras-driven signals propel abnormal chain of
metabolic alterations – including enhanced glycolysis,
diverted glutamine consumption, anomalous pentose
phosphate pathway (PPP) and autophagy – leading to
phenomenon defined as ‘metabolic addiction’ of pancreatic
tumor cells, which ultimately contribute extensively to
development, survival and invasiveness of pancreatic
tumor cells.

Open Questions

� What are the main metabolic pathways, molecular compo-
nents and their relation to oncogenic Ras pathway, which
are taking part in metabolic addiction of pancreatic cancer
cells?

� Does Salirasib, a well-established anti-Ras inhibitor, holds
promise for the treatment of pancreatic tumor cells?

� Could a combinatorial drug–therapy that design to hit
critical addictive metabolic pathways be the clue for
eradicating pancreatic tumors, while protecting normal
cells?

Pancreatic cancer is the 9th most common cancer in women
and the 10th in men, and accounts for an estimated 3% of new
cancer cases in the United States each year. Despite its
relatively low epidemiological ranking, it is one of the most
lethal of all types of cancer, and with a 5-year survival rate of
only 4% it is rated as the fourth leading cause of cancer deaths
for both men and women in the United States. Thus, each year
nearly 37 000 patients in the United States and 4213 000
people worldwide die from this form of cancer.1,2 Despite
extensive efforts and the considerable progress made toward
improving its detection3–6 and survival rates over the past few
decades,7–9 the 5-year survival rate for pancreatic cancer has
not changed significantly, increasing – according to data from
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surveillance, epidemiology and end results2 – from 3% in
1975 to only 5.4% in 2005 (see other reviews Conroy et al.,10

Muller et al.11 and Poruk et al.12).
The most common type of pancreatic cancer (accounting

for 95% of cases) is adenocarcinoma, which arises in the
exocrine part of the pancreas and is classified as pancreatic
ductal adenocarcinoma (PDAC). A minority (B5%) of
pancreatic tumors originates from islet cells and is classified
as neuroendocrine tumors, and specifically as pancreatic
endocrine tumors. The symptoms that lead to diagnosis of the
disease depend on tumor location, size and tissue of origin,
and may include distressing symptoms of biliary drainage
obstruction, infection, abdominal pain, lower back pain, and –
where the tumor compresses the bile duct – jaundice.

Although the main beneficial treatment for pancreatic
cancer is surgical resection followed by radiation and/or
chemotherapy, 480% of patients with pancreatic cancer
suffer from a progressive local metastatic tumor that is
unresectable by the time of diagnosis.13,14 The posterior
location of the pancreas, adjacent to the common bile duct,
duodenum, celiac plexus, superior mesenteric artery and
portal vein, makes diagnosis extremely difficult. As a result,
clinical symptoms of pancreatic cancer, often referred to as
the ‘silent killer’, are usually unremarkable until the neoplasm
has progressed to an advanced stage typified by metastatic
spread to regional lymph nodes, liver, peritoneal cavity, and –
rarely – to the lungs, bone or brain.1,2 Therefore, early-stage
detection and diagnosis are crucial for improving the death
rates of this disease.15 Importantly, familial pancreatic cancer
kindreds may become the major beneficiaries of newly
discovered diagnostic means and risk factors, as they are
known to be at high risk of developing the disease.16,17

The National Familial Pancreas Tumor Registry, first
established in 1994 at Johns Hopkins Hospital in Baltimore,
MD, USA, paved the way for the screening and gene
discovery studies that demonstrated the familial clustering of
pancreatic cancer.16,17 These seminal studies quantified the risk
of hereditary pancreatic cancer and promoted knowledge of
the etiology of the disease by identifying several germline
mutations that predispose their carriers to pancreatic cancer,
including those of BRCA2, PALB2, ATM, p16, PRSS1,
STK11, hMLH1 and FANCG genes.18–22 These mutated
genes can provide targets for personalized therapy, and
carriers can be counseled regarding their increased risk and
the available therapeutic choices among treatments such as
preventive surgery, screening and chemopreventive interven-
tions.16 Although a number of novel pancreatic tumor markers
have recently been discovered through the use of global
analyses of gene expression,23,24 given the rarity of pancreatic
cancer in the general population (approximately 9 cases per
100 000 people in the United States) it is questionable whether
the application of screening tests to selected groups at high risk
of developing this disease can be justified. Hence, the
prognosis of patients with pancreatic tumors remains dismal.
The malignancy is profoundly active and responds poorly to any
form of therapy.25 Therefore, a substantial research effort is
currently focused on identifying novel therapeutic targets for this
deadly disease. An intriguing concept that marks a promising
future in cancer therapy is the linkage between oncogene
addiction and metabolic pathways. Renewed scientific interest

in this association has yielded a variety of novel disease targets
that should be considered for the development of new
therapeutic combinations aimed at eradicating pancreatic
tumors and possibly other forms of cancer.

The concept of ‘oncogene addiction’, a term coined by
Bernard Weinstein,26 refers to the common phenomenon that
tumor cells, despite the striking number of their genetic
aberrations, develop marked dependency on a particular
oncogenic pathway for their sustained survival and prolifera-
tion. As a result, tumorigenic cells paradoxically often lose the
function of activating alternative cascades that normally act in
parallel. Thus, although inactivation of the normal counterpart
cascade in wild-type cells can typically be tolerated without
conspicuous ramifications, cancer cells (which are inherently
less adaptable) often respond markedly to inactivation of their
addictive pathway. The potent implication of this abnormal
characteristic of cancer cells is that blocking of the crucial
cascade upon which they rely should have deleterious effects
on the mutated cells while sparing the normal, nonaddicted
cells. This type of effective discriminative activity is the desired
attribute of any efficient anticancer agent. A growing body of
data on aberrant metabolic pathways implicated in cancer
etiology now suggests that progressively accumulating muta-
tions and epigenetic aberrations in genes encoding the main
enzymes of specific metabolic pathways are prime contribu-
tors to oncogenic addiction in many cancers.27,28 In this
review, we discuss aberrations in signal transduction path-
ways found to be associated with metabolic reprogramming of
transformed pancreatic neoplasms (Figures 1 and 2). Under-
standing of these critical circuits, which may be the Achilles’
heel of pancreatic tumors, could bring us closer to the
discovery of novel targets that will promote the development
of effective therapies against pancreatic cancer.

The Warburg Phenomenon

One of the earliest enigmas raised in cancer etiology was the
observation that most cancer cells, even under nonhypoxic
conditions, predominantly utilize cytosolic aerobic glycolysis
and lactate fermentation rather than mitochondrial oxidative
phosphorylation of pyruvate for their energy production. This
metabolic anomaly, known as the ‘Warburg effect’,29,30 was
first described in the 1920s by Otto Warburg as a shift in
cancer cells to the primitive metabolism exhibited by yeast.31

Recent studies have implicated a multitude of oncogenic
aberrations that mechanistically stimulate activation of
glucose uptake in triggering this metabolic shift.32 Constitutively
active components of the Ras pathway stimulate cellular
glucose uptake and metabolic rate, thereby overcoming the
capacity of the cell to utilize mainly glucose for its bioenergetic
requirements. As a result, tumorigenic cells secrete excess
metabolites of the glycolytic pathway in the form of lactic acid.
Recent studies have strongly implicated aerobic glycolysis in
the malignant etiology of pancreatic tumor cells. Thus, for
example, the expression of key enzymes that participate in
glycolytic metabolism was strongly increased in pancreatic
tumor cells compared with normal pancreatic cells, leading to
a significant induction of aerobic glycolytic metabolism. These
overexpressed enzymes included hexokinase 2 (HK2),
phosphoglycerokinase 1, pyruvate dehydrogenase kinase
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isozyme 1 (PDK1), lactate dehydrogenase A and B (LDHA,
LDHB), enolase 2 (ENO2) and pyruvate kinase muscle
(PKM1 and PKM2), in addition to the glucose and lactate
transporters, PDK1 and LDHA, LDHB, glucose transporter 1
(GLUT1) and monocarboxylate transporters 1 and 4 (MCT1
and MCT4).33–39 The shift to enhanced glucose metabolism in
hypoxic pancreatic cancer cells is clearly manifested by the
substantial accumulation of the glycolysis end-product lactic
acid in the tumor microenvironment.33 Interestingly, pancreatic
cancer patients frequently also suffer from diabetes and

hyperglycemia, conditions typified by high blood sugar.40

A recent investigation of the link between hyperglycemia and
stimulation of pancreatic cancer cell growth showed that
incubation of hypoxic MiaPaCa-2 pancreatic cancer cells with
excess glucose results in increased expression of hypoxia-
inducible factor (HIF)-1a, accompanied by an increase in
cellular ATP and a decrease in mitochondrial activity. Glucose
metabolism could also be stimulated by extracellular glucose
and hypoxia independently of HIF-1a, as shown by the
metabolic response of a MiaPaCa-2 subline devoid of
HIF-1a. Nevertheless, hypoxic pancreatic cells harboring
HIF-1a showed an increased capacity for migration relative
to their HIF-1a-null cellular counterparts, indicating that
glucose stimulates pancreatic cancer cell migration by both
HIF-1a-dependent and HIF-1a-independent mechanisms.41

Although glycolysis is much less efficient than mitochondrial
respiration (producing only two molecules of ATP per glucose
molecule compared with the 38 ATP molecules produced by
aerobic respiration), there are several reasons why the
increased glucose uptake for glycolytic ATP production is
advantageous for the tumorigenic properties of pancreatic
cancer cells. First, by using aerobic glycolysis under aerobic
conditions, pancreatic tumor cells can still thrive indepen-
dently of an inconstant oxygen diffusion that would otherwise
be deleterious for normal cells that are largely dependent on
oxidative phosphorylation for their ATP production.42

Second, lactic and bicarbonic acids, as metabolic end-
products of aerobic glycolysis, are generated robustly by
pancreatic cancer cells and form a major acidity buffer43 that

Figure 1 Schematic overview of key Ras-regulated metabolic pathways that become aberrantly active in pancreatic tumor cells

Figure 2 Illustrative of RAGE/HMGB1 interaction and regulation of autophagic
metabolism and promotion of cell survival in pancreatic tumor cells
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preferentially promotes the invasiveness of these cells.33,37,44

Intriguingly, in the course of exploration of the positive
correlation between tumor burden and high lactate levels, a
close linkage was discovered between the intracellular
accumulation of lactic acid and the antitumorigenic immune
response. As activated cytotoxic tumor-infiltrating T lympho-
cytes rely on glycolysis (which is tightly dependent on efficient
secretion of lactic acid), increased concentrations of lactate in
the tumor environment lead to a decline in the intracellular/
extracellular lactate gradient, thereby blocking lactate secre-
tion. Thus, the glycolysis rate (and consequently the entire
metabolism) in T cells is markedly reduced. As a result, the
degree of immunosuppression in the pancreatic tumor niche is
strongly increased, as manifested by inhibition of T-cell
proliferation and suppression of their cytokine production.45

In this regard, it is interesting that an increase in ENO1-
specific regulatory T cells (Tregs) was detected in pancreatic
cancer tumor cells exhibiting high levels of the key glycolytic
enzyme ENO1. These Tregs were found to efficiently impose
immunosuppression in vitro by suppressing the proliferative
response of ENO1-specific effector T cells, implying a
possible role for Tregs in stimulating pancreatic cancer
progression.46

Third, tumor cells utilize glycolytic intermediates to fuel
anabolic processes necessary for cell growth. Thus, for
example, alanine aminotransferase synthesizes alanine and
malate from pyruvate, glucose 6-phosphate is converted by
phosphoglucomutase and glycogen phosphorylase to glyco-
gen, and dihydroxyacetone phosphate is converted to
triacylglyceride and phospholipid.47 Several studies have
shown that in proliferating cancer cells pyruvate can enter the
tricarboxylic acid (TCA) cycle, leading to the export of acetyl
coenzyme A (acetylCoA) from the mitochondrial matrix to the
cytosol and thus making acetylCoA available for synthesis of
fatty acids, cholesterol and isoprenoids.32 Expression of fatty
acid synthase, known to catalyze the synthesis of long-chain
fatty acids from nicotinamide adenine dinucleotide phosphate
(NADPH), acetylCoA and malonyl coenzyme A, was found to
correlate with an advanced stage of pancreatic cancer.48,49

Numerous studies have pointed to the pragmatic advantage
of developing therapies against the addictive glycolytic path-
way with the aim of eradicating pancreatic cancer cells. As
glycolysis can be separated into two phases: (i) the
preparatory phase (or ‘energy investment’ phase), in which
two ATP molecules are consumed and one glucose molecule
is split, and (ii) the harvesting phase (or ‘payoff’ phase), in
which energy is extracted in the form of four ATP molecules –
inhibitors of specific glycolytic enzymes can be divided
accordingly. Thus, for example, inhibitors of HK, the first
glycolytic enzyme that phosphorylates glucose to produce
glucose-6-phosphate, interfere with the preparatory phase,
while inhibitors of the last glycolytic enzyme LDHA, which
catalyzes the reversible conversion reaction of pyruvate to
lactate coupled with the recycling of NADþ , abolish the
glycolytic harvesting step. Studies related to the preparatory
glycolytic phase demonstrated the potent anti-glycolytic effect
of everolimus, a rapamycin analog, on pancreatic Panc-1
human cancer cells. The suggested mechanism by which the
drug acts is through a gradual increase in expression of miR-
143, which consequently targets and reduces expression of

the preparatory enzyme HK2.50 Other studies of the harvest-
ing glycolytic stage have demonstrated the effect of enzymatic
inhibition of LDHA. As LDHA utilizes NADH as a co-factor for
catalyzing its reaction, the ratio of NADH to NADþ is
increased as result of LDHA inhibition. NADþ is a vital
electron acceptor that sustains the glycolytic pathway through
its reaction with GAPDH;51 therefore, inhibition of LDHA has a
critical effect on glycolysis. Recent studies have shown that
LDHA performs a critical function as a generator of glycolysis
in cancer cells. Inhibition of its activity in a mouse pancreatic
cancer model either by FX11, a small-molecule inhibitor of
LDHA or by siRNA knockdown, imposes glycolysis shutdown,
ATP reduction and significant induction of oxidative stress.52

Importantly, glycolytic blockade culminates in tumor growth
inhibition of pancreatic cells.52

In our own studies, in which the potent Ras inhibitor
Salirasib was implemented on a range of glioblastoma cell
lines, we discovered that inhibition of oncogenic Ras has
robust anti-glycolytic effects53–55 (see below).

The Pentose Phosphate Pathway

In addition to the above-mentioned glycolysis-related bio-
chemical mechanisms, another vital biogenesis channel,
namely the PPP, is attracting renewed research attention in
relation to pancreatic cancer. The PPP (also called the
phosphogluconate pathway) is a biphasic cytosolic process,
which, like glycolysis, utilizes glucose-6-phosphate as its
initial metabolite, and therefore represents a biochemical
alternative to glycolysis.56 Unlike the glycolysis pathway, in
which the main end-product is ATP, the PPP is primarily an
anabolic process that in the first (‘oxidative’) phase produces
NADPH, which is utilized by cells as a reducing agent in
biosynthetic reactions, and in the second (‘nonoxidative’)
phase produces 5-carbon sugars. Tumor cells, by using the
oxidative phase, are capable of utilizing glucose for generat-
ing NADPH.56 Besides fueling the biogenesis reactions that
rebuild macromolecules, NADPH also serves as an anti-
oxidative metabolite in the detoxification of reactive oxygen
species (ROS) through the regeneration of reduced
glutathione that scavenges ROS and maintains the normal
reduced state of the cell, thereby providing protection against
hostile microenvironments during accelerated cell prolifera-
tion or in the course of chemotherapy.57 Notably, glutathione
reductase, which together with NADPH-generating pathways
and glutathione provides this cellular defense system against
oxidants, was reported to be highly expressed in pancreatic
islet cells.58

The pentose sugars generated in the nonoxidative PPP
phase serve as primary intermediates in the synthesis of
nucleotides and nucleic acids. At times of increased cellular
demand for the pentose monosaccharide, such as during cell
growth and repair, these metabolic reactions enable excess
pentoses to be recycled as intermediates of the glycolytic
pathway and essential precursors for nucleic acid biosynth-
esis.59 Recent work by Ying et al.60 highlighted the importance
of the reversible nonoxidative PPP phase in pancreatic tumor
cells. Maintenance of pancreatic tumors was found to be
strongly driven by mutated K-Ras, which stimulates glucose
uptake and conveyance of its biosynthetic intermediates into
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the nonoxidative branch of the PPP, generating ribose-
5-phosphate, which is then utilized for the synthesis of nucleic
acids. Nevertheless, that study revealed, remarkably, that in
contrast to the canonical paradigm in which generation of
nonoxidative mediators is coupled with the synthesis of
oxidative ones, the K-Ras-driven accelerated glycolytic flux
in pancreatic tumor cells is reprogrammed to bypass the
oxidative NADPH biosynthesis phase of the PPP and instead
robustly enhances the nonoxidative branch60 (Figure 1).
Thus, this study disclosed a novel connection between
oncogenic K-Ras and the nonoxidative PPP phase, linking
K-Ras directly to DNA biosynthesis. The finding that the
generation of pentoses was decoupled from NADPH genera-
tion led to the suggestion that a substitute metabolic pathway
may be responsible for maintaining cellular redox home-
ostasis PDAC. An alternative glutamine-consuming pathway
generating NADPH was indeed discovered recently, as
discussed below in the chapter on glutamine addiction.

Ras Signaling, Glycolysis Addiction and Pancreatic
Cancer

In mammals, three genes (H-Ras, K-Ras and N-Ras) are
responsible for encoding four highly homologous small
GTPase Ras proteins (H-Ras, K-Ras4A, K-Ras4B and
N-Ras).61,62 These proteins belong to a larger Ras-related
GTPase protein superfamily whose members function as
molecular switches that alternate between inactive (GDP-
bound) and active (GTP-bound) conformations. Extracellular
signals that activate plasma membrane-bound receptor
tyrosine kinases induce activation of Ras guanine nucleotide
exchange factors (GEFs), which prompt Ras-mediated
exchange of GDP for GTP. In its GTP-bound state the affinity
of Ras for a multitude of intracellular factors is increased, with
consequent triggering of a diversity of signal transduction
cascades including PI3K-Akt, Raf-Mek1/2-Erk1/2, RalGEF
and Rho/Rac.62,63 Activated Ras signals coming from the
plasma membrane are carried over the intracellular compart-
ments by a variety of molecular mediators before reaching
their target in the nucleus, where they ultimately control the
activity of transcription factors that effectively govern an
extensive array of cellular responses. Among the chief
transcription factors regulated by Ras are Myc, NF-kB, E2F,
HIF-1a, AP-1 and c-Jun.63 Thus, by virtue of its many arms,
and depending on cellular context and both extracellular and
intracellular conditions, Ras is capable of orchestrating
numerous cellular processes such as cell survival, migration,
cell cycle, metabolism and differentiation.

The Ras signaling pathway is arguably the most intensively
studied pathway participating in the metabolic reprogramming
that actively contributes to tumorigenicity. The finding that the
great majority (490%) of patients with pancreatic cancer
harbor a gain-of-function K-Ras mutation on chromosome 12p
(at codons 12, 13 and 61)62,63 strongly supports the concept
that constitutively active Ras pathways have an active role in
maintaining the carcinogenic phenotype and in altering the
metabolic pathways that promote rapid progression of
pancreatic tumors. Mutation in K-Ras genes are detectable
not only in tumor tissues but also in the plasma DNA of
patients with pancreatic cancer, although this diagnostic

finding is often correlated with more advanced stage disease,
limiting its beneficial use as a prognostic marker.64,65 K-Ras
mutations are often detected in pancreatic intraepithelial
neoplasia (PanIN) and PDAC, indicative of the essential role
of Ras in pancreatic carcinogenesis. Nevertheless, mutations
in K-Ras alone seem to be insufficient for transformation
of the pancreatic tissue to PDAC. Endogenous expression of
active K-Ras(G12D) directed to progenitor cells that reside in
the mouse pancreas was found to result in frequent develop-
ment of highly proliferative PanIN, but with only infrequent
progression of these precursor lesions to more invasive
metastatic adenocarcinomas.66 In addition, transfection of
K-Ras(G12V) into human pancreatic duct epithelial cells
derived from normal human pancreas resulted in only
moderately aberrant phenotypes,67 suggesting that in addition
to the constitutive activation of K-Ras genetic and/or epigenetic
events are required for promoting development of PDAC.

Although activating mutations in Akt and PTEN were not
detected in pancreatic tumors,68–70 other Ras-signaling
factors – B-Raf and PI3K – have been reported to harbor
activated mutations in pancreatic cancer cells. B-Raf, a
serine/threonine protein kinase located second to Ras in the
signaling cascade, manifests a common mutational pattern in
a few primary cancers, including 10% of colorectal carcino-
mas and 66% of melanomas.71–73 Mutations in K-Ras and in
B-Raf are nearly always mutually exclusive, and mutations in
B-Raf appear in pancreatic cancers with wild-type Ras at a
rate of one in every three cases.74 Another prominent
molecular mediator of Ras signaling that becomes mutated
in pancreatic cancer is PI3K. Genomic evaluation of the role of
PIK3Ca, the gene encoding PI3K during tumorigenesis of
pancreatic cells, indicates that approximately 10% of pan-
creatic cancer precursors harbor activating mutations in this
gene.75 Nevertheless, even when mutations in PI3K and Akt
genes are undetectable, this signaling pathway is found to be
constitutively active in most pancreatic cancers, apparently
owing to the deregulated expression of the antagonist
signaling factor PTEN, which in pancreatic cancers is lost or
significantly reduced.76 In addition, 60% of pancreatic cancers
exhibit amplification or overactivation of Akt2 kinase, the
direct signaling target of PI3K.77–81

Activated Ras becomes engaged with metabolic pathways
through multiple effector pathways, including those of PI3K/
Akt and MAPK.82,83 The PI3K/Akt signaling pathway is
strongly associated with regulatory alterations of several
prominent metabolic factors. These include elevated expres-
sion levels and translocation to the cellular membrane of the
GLUT1,82 stimulation of phosphofructokinase enzymatic
activity,83 mitochondrial localization of the glycolytic enzymes
HK1 and HK284,85 and stabilization of HIF-1a protein, whereas
MAPK/ERK signaling was shown to enhance HIF-1a tran-
scriptional activity.86 Furthermore, constitutively active
K-Ras(G12V) in human embryonic kidney cells (HEK293)
was found to lead to mitochondrial dysfunction, respiration
suppression and increased glycolytic activity.87 Several
studies have documented the strong suppressive effects that
can be imposed by downregulation of Ras signals on the
glycolytic pathway in various tumor cells. For example, a PI3K
inhibitor abolished the expression of HIF-1a in Ras-trans-
formed NIH3T3 cells88 and in prostate cancer cells.89
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In addition, suppression of ERK in colon cancer cells90 and in
hepatic cancer cells91 resulted in suppression of HIF-1a
expression and activation.

Over the last two decades, our group has developed
conceptually new Ras inhibitors that specifically target the
active form of Ras (Ras-GTP). We demonstrated the potent
antiproliferative effects of treatment with the Ras inhibitor
trans-farnesylthiosalicylic acid (also known as Salirasib) on a
variety of cancer cells, including those of melanoma,92 Merkel
cell carcinoma,93 LNCaP, CWR-R1,94 and Panc-1 and MIA
PaCa-2 pancreatic cancers.95–97 Our first genome-wide
studies of the effects of Ras inhibition on metabolic pathways
in tumorigenic cells indicated that Ras inhibition leads to
profound anti-oncogenic effects in glioblastoma multiforme
cells.52–54,98,99 These strong effects were caused by degra-
dation of HIF-1a, which blocked glycolysis and triggered
severe energetic crises.53,100 Those promising findings
encouraged us to adopt a novel strategy in which Salirasib
could be combined with other drugs that can shut down
glycolysis through mechanisms that do not involve HIF-1a
blockage, thereby repressing metabolic pathways indepen-
dently of the inhibitory activity of Salirasib. We therefore
examined the effects of a combination of Salirasib and
the synthetic glucose analog, 2-deoxy-D-glucose (2-DG).
The latter had been reported to act as a potent metabolic
inhibitor that is selectively directed to tumor cells that
consume glucose at high rates under hypoxic conditions.98,101

When introduced into tumorigenic cells, 2-DG competes with
endogenous glucose for key glycolytic enzymes, thereby
reducing metabolism rate.98,101 Recent investigations of the
antitumorigenic effects of 2-DG administered in combination
with the anti-glycolytic agent 3-bromopyruvate (3-BrPA) in
MiaPaCa2 and Panc-1 pancreatic cancer cells indeed
demonstrated anticancer effects, manifested by energy
depletion and increased cell necrosis.99 Additional studies
showed that combinatorial treatment of 2-DG and the
antidiabetic drug metformin in LNCaP, P69, PC-3 and
DU145 prostate cancer cells leads to almost complete cell-
cycle blockage and apoptotic cell death, caused by inhibition
of mitochondrial respiration and glycolysis.102 Our recent
studies demonstrated that combined treatment with Salirasib
and 2-DG in Panc-1 pancreatic carcinoma cells leads to
inhibition of additive cell growth, as well as to synergistic
apoptosis and a complete contraction of Panc-1 tumor in nude
mice.103 Taken together, our results and those of others
establish proof-of-principle evidence for the therapeutic
effects that Ras inhibition, through glycolysis shutdown, can
impose in pancreatic tumors. Thus, glycolysis emerges as
one of the central metabolic modules to which pancreatic
tumor cells become addicted (see below), and targeting of this
pathway using combinatorial drug administration to exploit
more than one mechanistic approach has proved to be a
highly promising strategy.

Glutamine Addiction

In normal mammalian cells, signaling by growth factors directs
nutrient uptake from the extracellular environment to support
cell survival, ATP production, cellular biosynthesis (of
proteins, RNA, DNA and lipids), cell growth and proliferation.

In contrast, a well-established feature of cancerous cells is
their strong reliance on cell-autonomous nutrient uptake and
metabolism. Glutamine – the most abundant amino acid in the
cytoplasm – and glucose both serve as primary sources of
carbon for ATP production and biosynthesis in tumorigenic
cells.104–106 Oxidation of acetylCoA to CO2 by the TCA cycle
is the main process maximizing ATP production in nonproli-
ferative cells.107 In proliferating cells, however, in addition to
providing ATP the TCA cycle functions in biosynthetic
pathways in which intermediate metabolites exit the cycle
and become converted primarily to fatty acids and nones-
sential amino acids (NEAAs).104 Glutamine is one of the major
anaplerotic precursors that fuel the TCA cycle with a carbon
source. In addition, it is an important provider of nitrogen for
the vital set of biosynthetic reactions underlying the genera-
tion of nucleotide, NEAAs and hexosamine. For reloading the
TCA cycle, glutamine needs to be converted to a-ketogluta-
rate, a central metabolite of glutamine metabolism.106 The
enzymatic conversion of glutamine can be mediated through
one of two alternative enzymatic reactions – either through a
canonical anabolic glutamine metabolism mediated by an
oxidative deamination reaction catalyzed by the mitochondrial
matrix enzyme glutamate dehydrogenase (GLUD1),105 or via
a noncanonical metabolic pathway conducted by transami-
nases,106 which catalyze transamination (transfer of an amino
group from glutamate to the corresponding a-ketoglutarate).
Accordingly, many cancer cell types exhibit increased
glutamine consumption, a phenomenon dubbed ‘glutamine
addiction’ because the survival of these cancerous cells
is evidently dependent on their glutamine content106

(reviewed in Lunt et al.,47 Wise et al.,106 Young et al.108 and
Erickson et al.109). Indeed, various cancer cells utilize
glutamine deamination mediated by the canonical pathway
in which GLUD1 drives glutamine into the TCA cycle, which
consequently promotes tumorigenic cell anabolism.110 Apart
from its central role as a feeder of the TCA cycle, glutamine
serves as a nitrogen donor that is crucial for the production of
nucleotides, certain amino acids and nicotinamide. The
synthesis of nitrogen-based nucleotides and NEAAs is a
fundamental metabolic step in cancer cell growth. Through
donation of its amide group and its conversion to glutamic
acid, glutamine serves as an essential nitrogen donor in
three autonomous enzymatic reactions responsible for
purine synthesis and in two responsible for pyrimidine
synthesis.109,111 Thus, the switch of glutamine from serving
as a NEAA in normal cells to an essential amino acid in
cancerous cells accounts for its role as a major substrate
feeding the anabolic growth processes of tumorigenic cells.

A new study by Son et al.111 has recently shown that
distinctly from the general biochemical scenario, which is
adopted by many cancer cell types, in PDAC cells glutamine
seems to support tumorigenic growth by utilizing the
noncanonical metabolic pathway. Silencing of glutaminase,
the metabolic enzyme that generates glutamate from gluta-
mine, was shown to significantly reduce PDAC cell growth,
while addition of glutamate to the media restored cell growth in
glutamine-deprived conditions. On the other hand, a-ketoglu-
tarate, the product of canonical oxidative deamination of
glutamate, failed to restore pancreatic cancer cell growth.
Nevertheless, supplementation of the end-products of the
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noncanonical transaminase-mediated glutamine pathway – a
combination of a-ketoglutarate and NEAA mixture – significantly
restored proliferation in multiple PDAC lines, suggesting that
PDAC cells can metabolize glutamine in a noncanonical
pathway and that transaminases have an important role in
metabolizing glutamine in PDAC111. Furthermore, PDAC cells
that were incubated with the GLUD1 inhibitor epigallocatechin
gallate or with GLUD1 shRNA were not affected by the
treatment, while on the contrary growth inhibition was marked
when PDAC cells were treated with the transaminase pan-
inhibitor aminooxyacetate or when aspartate transaminase –
glutamic-oxaloacetic transaminase 1 (GOT1) – was depleted
(Figure 1).111 Silencing of K-Ras in these pancreatic
tumorigenic cells significantly increased GLUD1 expression,
concomitantly with a marked reduction in GOT1. In accord
with those findings, five independent tumors derived from
inducible K-Ras PDAC model mice exhibited elevated GOT1
expression and diminished levels of GLUD1.60 Taken
together, the above findings point to a novel noncanonical
metabolic model in which pancreatic tumor cells convey
glutamine-derived aspartate into the cytoplasm, where it is
further converted by GOT1 into oxaloacetate, then into malate
and finally into pyruvate. As NADPH is generated via the final
reaction mediated by malic enzyme, the net outcome of this
tumorigenic pathway is a reduction in the NADPþ /NADPH
ratio, which therefore enables PDAC cells to maintain their
redox homeostasis and to support cell proliferation.111 Along
these lines, these innovative observations are now being
considered as a potential ground for testing new candidate
drugs for prophylactic studies in humans. Future studies are
underway to advance our understanding of the interplay
between this tumorigenic metabolic pathway and other
cascades, as well as to determine whether these discoveries
may apply in other cancer types as well. Extensive effort is
also being devoted to developing small-molecule inhibitors
against key enzymes that mediate this signaling pathway and
testing their potency in models of pancreatic cancer.112

Fatty Acid and Lipid Regulation

Although the metabolism of fatty acids and lipids is not yet well
understood, its prominent role in regulating the progression of
various types of cancers in well known. An early study showed
that lipids can stimulate cell growth of human pancreatic
cancer cell lines, but did not enhance the growth of
nonpancreatic cell lines.113 The proliferative effect of lipids
on pancreatic cancer cells may act on several levels. First,
normal pancreatic cells have been shown to utilize lipids as an
energy source (as determined by oxidation of palmitic acid) at
higher rates than other cell types (e.g., cells of adipose or liver
tissue).114 Thus, the proliferative effect of lipids added as a
supplement to the growth medium of pancreatic cancer cells
may imply that lipids provide an energy source for pancreatic
cell lines. Second, enhancement of cell proliferation by
hormones and growth factors is known to be coupled with
generation of lipids and lipid-derived messengers that
participate in the activation of different growth-regulatory
pathways.115 Tumorigenic pancreatic cells produce growth
factors implicated in cell growth regulation through paracrine
or autocrine mechanisms.116–118 Therefore, exogenous

lipids can stimulate cell growth by increasing the levels of
the intracellular signals linked to activation of the growth
factor receptors.119 Third, lipids may also accelerate cellular
growth through the promotion of membrane backbones. The
type of dietary fat was shown to significantly influence the
composition of fatty acids of pancreatic membranes.120,121

In addition, a high-fat diet inducing inflammation in K-Ras
(G12D) mouse models, which recapitulate human PDAC, was
shown to enhance tumor promotion.122 The enhanced
pancreatic tumorigenesis was prompted by a marked eleva-
tion in metabolic rates and energy uptake through an elevation
in expression of genes encoding regulators of fatty acid
uptake and oxidation.122 A high-fat diet and obesity are indeed
strongly associated with the incidence of human pancreatic
cancer.120,123,124 A few reports have indicated that consump-
tion of omega-3 fatty acids has a suppressive effect on the
progression of breast, prostate and colon cancers.121,125–127

Blockage of cell-cycle progression and induction of pro-
grammed cell death were recently shown to be the outcomes
of an omega-3-based fat diet in (EL)-K-Ras transgenic mice
that develop pancreatic neoplasia.128 On the other hand,
increased consumption of omega-6 fatty acids is highly
correlated with progression of breast, prostate, colon and
pancreatic tumors.129–133

Autophagy as an Essential Tumor Growth Mechanism in
Pancreatic Tumors

Autophagy (also known as macroautophagy) is a regulated
catabolic process of cytoplasmic organelles and macro-
molecules.129,130,134 The degradation process starts with
invagination of a single-membrane vesicle,130 which seques-
ters cytoplasmic components into a double-membrane vesicle
that forms the autophagosome.135 The autophagosome is then
fused to the lysosomes, resulting in lysosomal degradation of
its cargo.135 The autophagy process is initiated by the function
of ULK1 and ULK2 proteins that were inactivated by mTOR
activity,131,136 and is followed by the activity of the ULK1/2-
Atg13-FIP200-Atg101 complex, which mediates delocalization
of class III PI3K (PI3KC3) from microtubules to the endoplas-
mic reticulum for initiation of vesicle nucleation.131–133,136 The
PI3KC3 complex, which contains the autophagy proteins
Beclin1, p150 and Ambra 1, generates phosphoinositide 3-
phosphate in the nucleation membrane, which stimulates
recruitment of other autophagy (Atg) proteins to the autopha-
gosome.137 Next, Atg12 is conjugated to Atg5 and Atg16L1
through an ubiquitination-like process to form the Atg16
complex.138 The Atg16 complex then mediates expansion
and progression of autophagy at the autophagosomal
membrane.138 In an additional ubiquitination-like process,
regarded as the most specific step of autophagy, Atg4 cleaves
LC3 protein, exposing its C-terminal glycine, which then binds
to phosphatidylethanolamine (PE),139 promoting recruitment of
LC3-PE to the autophagosomal membrane.139

The basic role of this metabolic mechanism, which becomes
active under cellular starvation, is to facilitate recycling of
cellular material for energy production. In cancer cells its
function is rather complicated as it has conflicting implications
depending on the context and the source of the tumorigenic
tissue. In several cancer cell types, including breast cancer,140
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Mantle cell lymphoma,141 chronic myeloid leukemia,142 non-
small cell lung carcinoma143 and cervical cancer,144 autophagy
induction was found to correlate with tumorigenesis suppres-
sion. In contrast, recent data indicate that in pancreatic tumor
cells autophagy fulfills a pro-oncogenic role in transformation
induced by oncogenes and in subsequent tumor maintenance.
Evidence for the presence of autophagy in pancreatic tumors
was provided at the end of the 1990s, when autophagic
characteristics were observed in atypical acinar cell nodules of
rats with pancreatic adenocarcinoma.145 A more recent study
showed that basal autophagy was elevated in all examined
human-derived PDAC cell lines, in 81% of primary PDAC tumor
samples, and in all high-grade pancreatic intraepithelial
neoplasms. However, only minimal autophagic signaling was
observed in low-grade PanIN or normal pancreatic ductal
epithelium.146 Retrospective examination of autophagy com-
ponents in untreated pancreatic tumor tissues from human
patients revealed the prominent presence of LC3 and pointed
to a positive correlation between heightened autophagy and
increased tumorigenic progression.147

Inhibition of autophagy by chloroquine treatment or genetic
intervention led to ROS induction, augmentation of DNA
damage and alteration of metabolic outcome as result of
impaired mitochondrial oxidative phosphorylation. These
events led to a marked growth suppression of pancreatic
cancer cells, tumor regression and prolonged survival in a
K-Ras-driven genetic mouse model of PDAC, and in cancer
xenografts, suggesting that autophagy is necessary for
tumorigenic growth of pancreatic cancer, and that pharmaco-
logic intervention in this metabolic process may be of clinical
benefit in the treatment of pancreatic neoplasms. As chlor-
oquine and its derivatives are efficacious autophagy inhibitors
and for some decades have been safely administered within
therapeutic protocols for various purposes, these data can be
directly translated into treatment of pancreatic cancer patients,
providing a rational strategy toward curing this disease.146,148

Given their dense stroma and poor vascularization, PDAC
cells typically exhibit low nutrient intake and weak growth
factor flux. The inadequate vascularization leads to hypoxic
conditions, which induce autophagy. Autophagy is triggered
primarily by the adaptive response action of the chief
transcriptional regulator HIF-1a,149 which in addition to
activating a large cassette of target genes activates the
transcription of Bnip3 and Bnip3L, both essential for hypoxia-
induced autophagy.150 Owing to the BH3 domain possessed
by Beclin1, both Bnip3L and Bnip3 compete with Beclin 1 for
binding to Bcl2, which upon their increased expression
releases Beclin 1, causing induction of autophagy.149,151

Nevertheless, it was suggested that the reaction of Bnip3 to
hypoxic conditions and its induction of autophagy as a cellular
response to starvation are part of its role during the early
stages, but not during the more advanced stages of PDAC
development. Recent studies indicate that the expression of
Bnip3 is negatively correlated with the progression of
pancreatic cancer, as unlike other HIF-1a target genes, Bnip3
was silenced by gene methylation in PDAC tumor cells.152

It was therefore proposed that Bnip3 becomes downregulated
as the disease progresses, and that alternative mechanisms
account for the continuous induction of autophagy at the more
advanced stages of disease.

Recently, the receptor for advanced glycation end products
(RAGEs)153 and ROS were shown to be prominent factors in
autophagy in PDAC (Figure 2). RAGE, a multiligand receptor
of the immunoglobulin superfamily,154 was shown to partici-
pate in the intracellular generation of ROS155,156 and in tumor-
promoting inflammation.157,158 In PDAC tumor cells, RAGE is
overexpressed and its expression is correlated with tumor cell
survival, migration and invasiveness.159,160 In both human
and murine pancreatic tumor cell lines, depletion of RAGE
significantly increased sensitivity to hypoxia, to UV radiation
and to cytotoxic chemotherapy, concomitantly with signifi-
cantly increased induction of cleaved caspase-3.161 RAGE
overexpression, on the other hand, enhanced cell survival by
reducing apoptosis and promoting autophagy.161 RAGE is a
pattern-recognition receptor capable of binding several
ligands, among them the nuclear chromatin remodeling
protein known as high-mobility group box 1 (HMGB1).162 This
protein was shown to be extracted from necrotic and
inflammatory cells and, when released in the extracellular
environment, to serve as a cytokine that may contribute to
inflammation and tumor progression.163,164 A decrease in
intracellular HMGB1 through targeted knockdown was found
to reduce autophagy and increase the sensitivity of PDAC-
derived cells to apoptosis induced by the chemotherapeutic
drug melphalan. It was therefore proposed that interaction of
HMGB1with RAGE leads to enhanced cell resistance to
programmed cell death in PDAC.161 In addition, exposure of
pancreatic tumor cells to H2O2 was shown to increase RAGE
expression through activation of the NF-kB signaling pathway,
which was suppressed by administration of inhibitors of the
NF-kB pathway.165 Further studies conducted in pancreatic
tumor cells indicated that the inflammatory pathway mediated
by HMGB1 and RAGE is essential for optimal mitochondrial
production of ATP. Absence or reduction of either RAGE or
HMGB1 significantly reduced ATP production and slowed
tumor growth, clearly indicating a link between the HMGB1–
RAGE pathway and alterations in bioenergetics.166

Besides activating the RAGE receptor in neighboring cells,
HMGB1 was also shown to mediate autophagy in human
Panc2.03 and mouse Panc02 pancreatic carcinoma cell lines
through an additional mechanism, regulated by its interactions
with Beclin 1. Upon cellular starvation, the oxidated HMGB1
translocates from the nucleus to the cytoplasm, where it
disrupts interactions between Bcl-2 and Beclin 1 by competi-
tively binding to the latter.167

Several recent studies have confirmed the correlation
between autophagy induction and oncogenic constitutively
active Ras in several human cancer cell lines, as well as the
need for autophagy in Ras-induced malignant cell transforma-
tions.146,148,168,169 It was recently suggested that in cancers
mediated by Ras oncogenes, cancer cells develop autophagy
addiction as a survival mechanism.170 Oncogenic K-Ras and
H-Ras were shown to promote autophagy, which supports
transformation and cell survival mainly through the main-
tenance of mitochondrial operation and ATP levels. In
addition, in the scope of a recent comprehensive study, a
few human cancer cell lines harboring endogenous oncogenic
Ras mutations, including bladder, lung, colorectal and
pancreatic cancer cell lines, exhibited significantly high levels
of basal autophagy. These studies suggested that oncogenic
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Ras increases depletion of energy sources, rendering cells
dependent on autophagy to preserve their mitochondrial
function for energy production and possibly by providing
catabolically derived metabolic substrates.148 Thus, the
accumulated data point to a pro-survival action of autophagy
in cancer cell lines transformed by oncogenic Ras, suggesting
that Ras-driven pancreatic tumors may be particularly
sensitive to inhibition of the autophagy metabolic pathway to
which they have become addicted.

Conclusions

Pancreatic tumor cells harbor a unique combination of
complicated genetic aberrations, such as mutations in
K-Ras that lead to its overactivation and produce uncontrolled
cell proliferation. Some of these distinctive aberrations have

now been identified and are being successfully exploited in
clinical laboratories as diagnostic markers. Nevertheless,
pancreatic cancer remains one of the most lethal malignan-
cies, and intense investigation of the pathology of its
molecular circuits should lead to further progress in our ability
to cure this deadly disease. The large body of accumulated
evidence strongly supports the notion of ‘oncogenic addic-
tion’, in which these malignant pancreatic cells become highly
dependent on their genomic aberrations. Thus, the same
mutated signaling pathways that promote their unregulated
growth are also responsible for their survival. For this reason,
intensive efforts are underway to understand the mechanisms
underlying oncogenic addiction of cancer cells, as breaking
the chain of oncogenic addiction seems to hold hope for a cure
by killing the cancer cells. Over the past two decades, this
scientific undertaking has led to the discovery of metabolic

Table 1 Examples of the effects of various chemical compounds and treatments on metabolic pathways that involved in pancreatic tumorigenicity

Drug/compound/
treatment

Treatment outcome(s) Suggested mechanism Reference

Everolimus (rapamycin
analog)

Inhibition of cell proliferation and glycolysis, and
induction of apoptotic cell death of Panc-1 human
pancreatic cancer cells

Upregulation of levels of miR-143 transcripts,
concomitant with decrease in HK2 transcripts levels

50

FX11 (inhibitor of
LDHA)

Cell growth inhibition of P198 human pancreatic
cancer cells (increased sensitivity under hypoxia).
Inhibition of pancreatic tumor xenograft progression

Reduction of ATP levels and induction of marked
oxidative stress and cell death. Decreased NADþ

recycling (increased NADH/NADþ ratio)

52

K-Ras(G12D) doxy with-
drawal (transgenic
mice)

Doxy induction provokes acinar-to-ductal
metaplasia and PanIN lesions within 2 weeks.
Doxy withdrawal leads to rapid tumor regression with
morphological deterioration of tumor cells and rapid
degeneration of stromal elements, decreased tumor
cell proliferation and increased apoptosis

Significant reduction in expression levels of several
glycolytic enzymes, not accompanied by significant
alterations in levels of TCA cycle intermediates.
Marked reduction in nonoxidative PPP-specific
metabolites S7P and SBP, accompanied by
reduction in the flux of glucose into the nonoxidative
arm of the PPP

60

Salirasib (Ras inhibitor) Significant antiproliferative effects in pancreatic
cancerous cells (Panc-1 and MIA PaCa-2) and on a
variety of tumorigenic cell lines (melanoma, Merkel
cell carcinoma, LNCaP, CWR-R1)

Reduction of Ras-mediated downstream signaling
pathway (including Akt and Erk)

92–97

Salirasib Significant antiproliferative effects in glioblastoma
cells, accompanied by apoptotic cell death

HIF-1a degradation, leading to glycolysis shutdown
and severe energy crisis

53,100

Salirasib in combination
with 2-DG (glucose
analog)

Additive inhibition of cell proliferation, synergistic
induction of apoptosis and complete shrinkage of
Panc-1 pancreatic carcinoma cells

Glycolysis inhibition 103

2-DG in combination
with 3-BrPA
(anti-glycolytic agent)

MiaPaCa2 and Panc-1 pancreatic cancer cells
manifest energy depletion and increased cell
necrosis

Glycolysis inhibition 99

RNA interference
targeting glutaminase

Significant reduction in PDAC cell growth Targeting of transaminase, which abolishes the
noncanonical pathway in which PDAC cells
metabolize glutamine

111

Docosahexaenoic acid
(DHA) diet (omega-3
fatty acid)

Recurrence and proliferative index of pancreatic
precancer in EL-K-Ras mice was decreased in mice
maintained on DHA diet. DHA treatment in tissue
culture resulted in a dose-dependent reduction in cell
cycle progression through both G1/G0 blockage and
induction of programmed cell death

128

RAGE-silencing by
shRNA

Diminished autophagy, increased apoptotic rate and
decreased tumor cell survival in human panc2.03
and mouse panc02 cancer cell lines

161

HMGB1-knockdown by
shRNA

Reduction in autophagy and increase in sensitivity of
PDAC-derived cells to apoptosis induced by the
chemotherapeutic drug melphalan

161

Ethyl pyruvate
(pharmacological
inhibitor of nuclear
HMGB1)

In vivo, tumor cell growth was significantly reduced.
In vitro, increased apoptotic signal (PARP) and
decreased signals of inflammation (p-p65), and
autophagy (LC3-II), and reduced ATP production

166

Chloroquine
(autophagy blocker)

Significant growth suppression of pancreatic cancer
cells, tumor regression and prolonged survival

Increased total and mitochondrial ROS levels, along
with DNA damage. Severe decrease in oxidative
phosphorylation. Significant elevation in uptake of
glucose and lactate production

146,148
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pathways shown to be significant factors in the etiology of
pancreatic cancer. The experimental evidence presented in
this review reflects some of the central metabolic pathways
currently known to fuel cellular metabolism in the tumorigenic
microenvironment of pancreatic tissue. As described in each
of the sections and summarized in Table 1, breakthroughs in
the understanding of each of the denoted metabolic pathways
can potentially lead to the discovery of novel soft spots, which
could herald the advent of new therapies that can effectively
target pancreatic cancer.
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