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Abstract

The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of
anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic.
Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the
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SARS-CoV-2 proteins, whichare crucially involved in the viral–host interaction, replication of the virus inside the host,
disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral
drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2),
3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase
(RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target
proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75
drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more
conveniently involved in key molecular interactions, showing binding free energy (�Gbind) in the range of −5.09 kcal/mol
(CTSL) to −26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions,
displays �EvdW values: −7.59 to −37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable
molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a
multi-targeted agent against COVID-19.
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Introduction
There are different members of Coronaviridae family of virus,
which often cause mild, moderate to severe respiratory symp-
toms in humans [1]. Recently, the novel coronavirus [2019-nCoV
or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2)] appears to be the highly infectious and contagious virus of
this family [1, 2]. Although SARS-CoV-2 shares a high level of
genetic similarity with SARS-CoV, the infection rate of SARS-
CoV-2 is much higher than suspected [3]. The molecular and
structural organization of the virus includes an envelope, non-
segmented, positive-sense RNA which codes for several struc-
tural proteins such as spike (S) protein, envelope (E) protein,
membrane (M) protein and the nucleocapsid (N) proteins and
also 16 putative non-structural proteins [NSPs, encoded by repli-
case complex (orf1ab)] [1, 4–6]. During the last couple of months,
dozens of coronavirus vaccines have already been tested, and
approximately more than hundreds are either under develop-
ment or in the preclinical investigation [5, 7]. However, the
success of these efforts remains elusive. Therefore, the need of
the hour is to identify novel and effective measures to control
the pandemic [3, 7, 8].

The major setback in identifying drugs/vaccines against
COVID-19 is the lack of knowledge about the mechanism of
action of the virus, molecular targets and network of associated
molecular interactions. Recently, several targets have already
been discovered that interact with SARS-CoV-2, such as human
angiotensin-converting enzyme 2 (hACE2), transmembrane
protease serine 2 (TMPRSS2), phosphatidylinositol 3-phosphate
5-kinase (PIKfyve), two pore channel subtype 2 (TPC2) and
cathepsin L (CTSL) [6, 9, 10]. At the same time, various research
groups have identified the effective inhibitors against some
of these targets, such as main protease Mpro (3CLPro) [11, 12],
envelope (E) protein [13], RNA-dependent RNA polymerase
(RdRp) [14] and spike (S) protein [15, 16].

Since the genes of RNA viruses (including SARS-CoV-2)
are genetically variable [17–19], they can quickly accumulate
genomic mutations through an error-prone viral reverse
transcriptase, which advances their adaptation inside the
human host. This further adds to the difficulty in designing
active antiviral therapeutics against RNA viruses [9]. Moreover,
most of the antiviral drugs today are single target drugs designed
against specific viral enzymes, which are essential for viral
interaction, replication or invasion. Therefore, the high rate of
mutations in these single viral drug targets has been main cause
for reduced susceptibility of currently available antiviral drugs
[20].

Nevertheless, finding the compounds having efficacy for
multiple molecular targets, remained a preferable approach
in disorders caused by highly mutable pathogens [21, 22].
Targeting different molecular targets with a single drug is
always a preferable approach over combination therapy to
avoid unwanted drug interactions [9, 23]. Additionally, the drugs
designed for multiple protein targets are extensively preferable
for the treatment of infectious, inherited and complex diseases
due to low treatment cost, less drug dosage and minimal
side effect and drug–drug interactions. Therefore, with the
immediate requirement of multi-targeted strategies against the
novel coronavirus SARS-CoV-2, with either biologically active
drug-like molecules or approved drugs are in pressing priority [6,
24, 25]. Recent advancements in the computational techniques
have proven their efficiency for identifying the potential drug
candidates [7, 26–28]. Considering the improvement, reliability
and accuracy of computational methods, it has become a

suitable choice to design structure-based drugs [21, 29–31].
Keeping these facts in mind, we adopted a multi-target drug
discovery approach to hit various druggable targets of SARS-
CoV-2, which may appear highly beneficial to strike this highly
mutated virus. The repurposing of FDA-approved drug molecules
is safe and significantly free from off-targets binding which
warrants severe toxicity [32, 33].

Thereby, we screened 75 FDA-approved antiviral drugs
against known targets of SARS-CoV-2 [34, 35]. We have taken
both human proteins as well as viral targets as a strategy. The
targets were chosen as the recently published structures of
SARS-CoV-2 proteins complexed with drug molecules. Following
seven targets were identified: (1) the hACE2 interacting with
the (2) transmembrane viral spike (S) glycoprotein at receptor-
binding domain (RBD), which forms homotrimers protruding
from the viral surface [6, 7, 15, 16]; (3) the highly immunogenic,
antigenic and abundantly expressed viral nucleocapsid (N)
protein, which plays essential roles in viral genome packaging
by formation of helical ribonucleoproteins [36]; (4) main protease
Mpro (3CLPro), an essential viral enzyme for processing the
polyprotein complexes that are translated from the viral RNA
[37]; (5) the human endosomal cysteine protease CTSL required
for viral entry [7, 38]; (6) non-structural viral protein NSP6
which dwells in the endoplasmic reticulum (ER) and has role
in the generation of autophagosomes [39] and (7) the NSP12,
along with the two other cofactors NSP7-NSP8 as a complex,
aiding increased RdRp template binding and processivity. Firstly,
the virtual screening of 75 FDA-approved antiviral drugs was
performed against these targets to select a highly potent multi-
targeted agent. The best binding poses of antiviral drugs with
target proteins display a wide range of binding affinities. Among
them, (+)-catechin (catechin) emerged as a multi-targeted agent
that can effectively bind with five target proteins: RBD, CTSL,
nucleocapsid protein, 3CLpro and NSP6.

Catechin (flavan-3-ol) is a natural phenol and a major chemi-
cal component of sinecatechin, a first FDA-approved herbal drug
for the treatment of external genital warts caused by human
papilloma virus (HPV) infections. Topical ointment Veregen is
a marketed medicine and it is a purified form of catechins,
extracted from the leaves of Chinese green tea, which comprises
80% catechins. It is well recognized for the antiviral activity,
anti-bacterial activity, anti-inflammatory and for the immunos-
timulatory actions [34]. Further, we have acquired several data
contributing to the stable structural dynamics of the protein–
ligand complex, including free energy landscape (FEL), which
validates the binding efficacy of drug molecules using molecular
dynamics (MD) simulation and molecular mechanics-Poisson–
Boltzmann Surface Area (MM-PBSA). Thus, identifying the cate-
chin as a novel multi-targeted agent may provide the structural
basis for the designing strategy of potential drug molecules,
targeting SARS-CoV-2 in the therapy of COVID-19.

Materials and methods
Protein structure retrieval

The three-dimensional coordinates of protein structures were
taken from the Protein Data Bank (www.rcsb.org) [40]. The
co-crystalized X-ray structure of SARS-CoV-2 spike receptor
with ACE2 (PDB ID: 6M0J) [41], 3-chymotrypsin-like cysteine
protease (3CLpro) (PDB ID: 6M2N), CTSL (PDB ID: 6F06) [41], crystal
structure of nucleocapsid protein (PDB ID: 6M3M) [36], RdRp
(PDB ID: 6M71) [42], non-structural protein 6 (NSP6) [39, 43]
and cryo–electron microscopy structure of RdRp enzyme with
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remdesivir and NSP12-NSP7-NSP8 complex (PDB ID: 7BV2) [14]
were taken as the targets for the virtual screening of selected
FDA-approved antiviral agents as shown in the supporting
information, Supplementary Figure S1 available online at
https://academic.oup.com/bib.

Virtual screening and molecular Docking

The virtual screening of FDA-approved antiviral compounds
against the selected SARS-CoV-2 proteins was performed using
Glide, Schrodinger, LLC [44–46]. Glide involves three-step filtering
methods, standard precision, extra precision and the selection
of best docked compounds by integrating coulombic and
van der Waals (vdW) interaction energies and Glide scoring
function. CORINA v2.64 software package [47] was utilized to
add the missing hydrogen atoms and optimize the sdf format
structures of the ligands. The lowest energy three-dimensional
structures of ligands were generated using Ligprep [48]. The
ionization/tautomeric states of the selected compounds were
taken care of by Epik and a maximum of up to 32 conformations
was generated per ligand, using the Schrodinger protocol [49–51].
The molecular interactions of docked complexes were analyzed
using PyMol [52] and LigPlot [53].

MD simulation

MD simulations were carried out on the coordinates of protein–
ligand complexes using GROMACS-2018.1 [54], with the protein
interactions approximated using CHARMM36 force field [55].
The ligand parameters were generated utilizing CGenFF server
[56]. Each protein–ligand complex was placed in the center of
a cubic simulation box with 10 Å distance to the edges and
solvated with TIP3P water molecules. The counterions (Na+
Cl−), 0.15 M, were added to neutralize the system. The periodic
boundary condition was defined in the x, y and z directions
[57], and the electrostatic interactions were evaluated using
particle-Ewald summation [57], and a cut-off of 10 Å was used
for calculation of vdW interactions. The resulting systems were
energy-minimized by steepest descent and conjugate gradient
algorithms. Energy minimization was performed for 50 000 steps.
Equilibration was first performed for 500 ps in an NVT ensemble
and for the subsequent 500 ps in an NPT ensemble. Tempera-
ture and pressure were set at T = 300 K and 1 bar, which was
controlled by a Parrinello–Danadio–Bussi thermostat [58] and
Parrinello–Rahman pressure [59], respectively. The integration
step of 2 fs was used. Each system was simulated for 200 ns and
the snapshots were saved every 10 ps for further analysis. All
production runs were performed on CUDA-enabled Tesla GPU
machine (DELL T640 with V100 GPU) and OS Centos 7 [60, 61].

MD analysis

The obtained MD trajectories were analyzed using GROMACS
utilities. The structural order parameters that we measured
are: root-mean-square deviation (RMSD), the radius of gyration
(Rg), solvent-accessible surface area (SASA), root-mean-square
fluctuation (RMSF) and hydrogen bond (H-bond) interactions. H-
bonds were defined by a distance cut-off of 3.5 Å between the
donor and acceptor atoms and by an angle cut-off of 30◦. Sim-
ilarly, a hydrophobic interaction was defined by the condition
that the distance between two residues (i and j, with |i − j| > 3)
is less than 4.5 Å. Principal component analysis performed using
the projection of principal components (PCs), PC1 and PC2, along

the native structure [61, 62] and gmx-sham utilized for the FEL
[63, 64].

Binding free energy estimation

The binding free energy of the protein–ligand complexes was
evaluated using MM-PBSA, which describes the structural and
molecular stability of the ligands in the active site of the protein
[27, 28, 65, 66]. The binding free energy of a protein–ligand
complex (�Gbinding) can be written as,

�Gbinding = 〈
Gcomplex

〉 − 〈
Greceptor

〉 − 〈
Gligand

〉
,

where Gcomplex represents the free energy of the protein–ligand
complex; Greceptor, the free energy of protein; Gligand is the free
energy of ligand and < > represents the ensemble average.

Excluding the entropy term (T�S), the above equation for the
binding free energy can be approximately written as,

�Gbinding = �EMM + �Gsolv,

where �EMM is the change in the average molecular mechanics
interaction energy (gas phase) upon ligand binding computed as
the sum of the changes in the bonded and non-bonded (elec-
trostatics and vdW) interactions upon ligand binding (�EMM =
�Ebonded + �Eelectrostatics + �Evdw). �Gsolv is the change in solvation
free energy upon ligand binding. Further, �Gsolv can be written
as,

�Gsolv = �GPOL + �GNP,

where �GPOL is the change in the polar part of the solvation
free energy, and �GNP is the change in the non-polar part of
the solvation free energy as a result of ligand binding to the
proteins. PB equation was used for the estimation of the polar
part of the solvation free energy, and the non-polar part was
estimated with a surface area-based approach. Binding free
energy (�Gbinding) for the protein–ligand complex was estimated
using the MMPBSA.py script of the AMBER Tools [67]. An ionic
strength of 0.15 M and a solute dielectric constant value of 2
was used for the PBSA calculations. Considering the convergence
issues associated with the MM-PBSA calculation, only last 50 ns
data were used.

Results and discussion
Targeting SARS-CoV-2 proteins for identifying
multi-target agents

The development of novel molecules is not thought to be real-
istic in the timeframe needed to impact on the pandemic of
SARS-CoV-2 [32, 35]. Thus, there is a clear need for new treat-
ments that will reduce the mortality rate while we wait for a
vaccine or the novel drug molecules. The repurposing of FDA-
approved drugs often provides an advantage to identify the
promising drug molecules in the shorter time which can be
undertaken for the medical application without delay [68, 69].
Furthermore, it is more cost-effective and less risky as com-
pared to the de novo drug discovery [32, 34, 35, 70]. However,
the ability of a chemical compound to work as a drug lies in
its competency to bind efficiently to a druggable target. While
there exist plenty of methods to evaluate the binding affinity of
a ligand toward a target starting from very reliable and accurate
alchemical free energy methods (computationally very costly) to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa378#supplementary-data
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less accurate docking methods, molecular docking and virtual
docking remain the first choice to screen chemicals as they
offer reasonable accuracy with modest computational efforts
[26, 28, 29]. Considering this, we have first performed molecular
docking study to screen the efficacy of 75 FDA-approved drugs
against various important druggable targets of SARS-CoV-2 [34].
Our docking study revealed that some of the FDA-approved drugs
have excellent interactions with particular target, displaying
satisfactory docking scores. Docking scores of the top 10 antivi-
ral drug molecules corresponding to each protein are enumer-
ated in Table 1. Results demonstrate the best binding affinity of
antiviral drugs: ritonavir, dolutegravir, tenofovir, tinofoviralafe-
namide, boceprevir, catechin and zanamivir toward the target
proteins: 3CLpro, RdRp, ACE2, CTSL, NSP6, nucleocapsid protein
and RBD, respectively (Supplementary Figures S2 and S3 avail-
able online at https://academic.oup.com/bib). Interestingly, the
naturally derived polyhydroxy molecule catechin showed multi-
targeted action against all seven targets; however, its promis-
ing binding capability (with the cut off range >5.0 kcal/mol)
was noticed against the five important targets engaged in the
invasion and survival of SARS-CoV-2 in to the human cells.
We found that catechin effectively binds to 3CLpro, CTSL, NSP6,
nucleocapsid protein and RBD of S protein, showing the docking
scores in the range of −5.79 to −8.34 kcal/mol.

Molecular interaction of catechin as multi-targeted
agent

The structure-based virtual screening protocol bestowed cat-
echin as the effective multi-targeted agent which effectively
hits 3CLpro, CTSL, NSP6, nucleocapsid protein and RBD (Figure 1
and supporting information, Supplementary Figure S3 available
online at https://academic.oup.com/bib). The SARS-CoV-2 pro-
tein, 3CLpro plays a critical role in the replication of the virus par-
ticles and is a potential target for anti-coronaviruses inhibitors
screening. The active site of 3CLpro consists of Cys-His catalytic
dyad (Cys145 and His41), which is highly conserved in the CoVs
family, also referred to as the main protease, Mpro [71]. The
molecular docking result shows that catechin nicely fits in the
active site of 3CLpro with the highest docking score, −8.34 kcal/-
mol, among all selected five target proteins. It displays H-bonds
with Thr26, Met49, Arg188 and Gln189, whereas Leu27, His41
and Leu58 are involved in hydrophobic interactions. Benzopyran
moiety of catechin is oriented toward Met49, Arg188 and Gln189,
noticeably, di-hydroxy phenyl occupied at the Cys145 and His41
catalytic dyad, which is crucial for ligand binding.

An excellent interaction of this compound was also seen with
CTSL, a crucial human protease that promotes SARS-CoV-2 entry
by S protein activation [7, 72]. Indeed, catechin occupied the
active site of this protease, stabilizing through H-bond interac-
tions as well as hydrophobic interaction. Phenolic hydroxy par-
ticipate in H-bonding with Ser216, and hydroxy at benzopyran
moiety showed H-bonding with Met161. Benzopyran ring was
stabilized by the hydrophobic interaction with Trp26, His163 and
Ala214.

In the CoVs family, nucleocapsid acts as a multifunctional
RNA-binding protein and plays an indispensable role in regu-
lating viral RNA transcription/replication and the modulation
of host cell metabolism [73]. The recently solved N-terminal
domain of SARS-CoV-2 nucleocapsid consists of antiparallel
β-sheets at the core, protruding β-hairpin and short 310-helix
[36]. The molecular interaction of catechin with nucleocapsid
shows that phenolic hydroxy formed H-bond interaction with Ta
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Figure 1. Molecular interactions of FDA-approved antiviral drug, catechin at the binding pocket of potential target proteins, RBD of S protein, 3CLpro, CTSL, nucleocapsid

and NSP6, using LigPlot. The bar chart showing the target proteins specific antiviral drugs binding affinity (kcal/mol) obtained through virtual screening (represented

by green bars) and the comparative binding affinity (kcal/mol) with catechin shown with red bars.

Ala108, and phenyl moiety imparted hydrophobic interaction
with Trp5, Ala109 and Ile110. Hydroxy group at benzopyran
moiety was stabilized by the H-bond interaction with Asn28
and Ser31. Additionally, this benzopyran moiety was stabilized
through hydrophobic interactions with His98 and Ile99. Another
important CoVs protein, non-structural viral protein 6 (NSP6),
plays an essential role in viral RNA synthesis by sequestering the

membrane of ER of the host cell [74]. A strong affinity of catechin
with NSP6 was also discerned. Indeed, catechin contoured well
in the active site of NSP6, displaying a satisfactory docking
score (−6.68 kcal/mol). It was noticed that catechin forms
tight interactions in the active site through three H-bond
interactions and several hydrophobic interactions. Hydroxy
groups of catechin are found to be involved in H-bonding with
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Leu239, Tyr242 and Asn232. Phenyl group, as well as benzopyran
moiety, was well stabilized by the hydrophobic interactions
with His62, Ala65, Tyr175 and Phe228. The configuration and
orientation of catechin was also found to be favorable, showing
convincing interactions with the virus surface S glycoprotein
which mediates entry into host cells, adhering at the host
receptor (hACE2). Evidently, catechin also effectively inhibits
the interaction of RBD of S protein with ACE2. Docking result
indicates that the scaffold of catechin is well stabilized in the
active site of RBD through four H-bonding interactions. These
H-bonds are seen between hydroxy groups and active site amino
acids such as Tyr453, Tyr495, Gly496 and Asn501. Additionally,
hydrophobic interactions between catechin scaffold and amino
acids, Arg403, Tyr453, Tyr495, Gly496 and Phe497, are also
observed. Interestingly, catechin is also supported by π–π

interactions, which can be noticed with Tyr453, Phe497 and
Tyr495.

Thus, our molecular docking study evidently indicates
that catechin strongly interacts with these five crucial targets
associated with SARS-CoV-2, which clearly designates the
multi-targeted action against SARS-CoV-2 [75]. However, con-
sidering the approximations made in molecular docking (lack
of receptor flexibility and conformational entropy, lack of
information about the number and free energy of water
molecules in the binding site of the protein, etc.) to allow fast
screening of chemicals, the dynamics of the protein–ligand
interactions are overlooked, and therefore, might not explain
the stability of the ligands in the active site of the protein.
In the cellular system, biomolecular interactions are dynamic
in nature, and the conformational flexibility is an intriguing
property of proteins which triggers the biological functions and
molecular recognitions [27, 30, 76]. A better understanding of
protein–ligand interactions requires an accurate description
of the spatial orientation of ligands at the active site of the
protein, conformational dynamics which modulates the drug
binding, interaction energy and molecular stability [77–79]. To
understand the biomolecular interactions at atomic resolution,
MD simulation is an efficient and well-established method
which mimics the flexible nature of biomolecules, protein
conformational changes, protein–ligand interactions, structural
perturbation and provides a more realistic picture with atomic
details in reference to time [61, 80, 81]. Thereby, to gain a deeper
insight into the structural dynamics and stability of catechin
binding with SARS-CoV-2 proteins, multiple MD simulations
were performed for the period of 200 ns [82, 83]. Additionally,
the energetic contribution of binding pocket residues to
accommodate the drug molecule, catechin, is estimated using
MM-PBSA [28, 84].

Conformational stability of protein–ligand complexes

We assessed the conformational stability of the protein–ligand
complexes by measuring various structural order parameters
like RMSD, Rg, SASA and RMSF, as shown in Figure 2. On com-
paring the Cα-RMSD of RBD, CTSL and nucleocapsid protein
complex, we observed that catechin achieved stability in the
active site of the protein very quickly (Figure 2A). These systems
attained equilibrium in 0–5 ns and remained stable throughout
the simulation time. The RMSD plot of 3CLpro shows an initial
rise in RMSD ∼0.2 nm, which settles gradually, and a stable
equilibrium can be seen up to 90 ns. We find a slight drop in the
RMSD of ∼0.1 nm around ∼100 ns and the undisrupted trajectory
is seen up to 200 ns, suggesting stable interaction of catechin
in the binding pocket of CTSL. The trajectory of NSP6 with

catechin shows slightly large deviations in RMSD during 0–80 ns;
thereafter, a gradual drop in RMSD can be seen, which attains
equilibrium around ∼120 ns. Notably, the stable conformational
dynamics of NSP6–catechin is observed up to 200 ns. Thus, the
shorter equilibration time taken by RBD, CTSL, nucleocapsid
and 3CLpro to achieve a steady equilibrium suggests a better
equilibrated and stabilized protein–ligand complex structure
compared to NSP6. However, the stable trajectory of the NSP6–
catechin complex during 120–200 ns signifies that the ligand
is spatially well occupied and stabilized with the molecular
interactions at the binding pocket of NSP6.

To further understand the structural stability of the pro-
tein–ligand complexes, we determined the compactness of the
protein structure by computing the radius of gyration (Rg). The Rg

plots represented in Figure 2B show that the structural dynamics
of RBD, CTSL and nucleocapsid protein and 3CLpro remain quite
stable throughout the simulation time. The structural integrity of
these four proteins was observed to be intact with the average Rg

values, 1.83 ± 0.01 nm, 1.64 ± 0.01 nm, 1.50 ± 0.01 nm and 2.19 ±
0.01 nm, respectively. The slight deviations in the Rg plot of NSP6
can be seen during 0–80 ns; after that, the steady equilibrium
is noted till the end of simulation at 200 ns, which signifies the
stable structural dynamics of the NSP6–catechin complex with
an average Rg value, 2.23 ± 0.03 nm. The initial perturbation
in the Rg trajectory may indicate the spatial adjustment of the
ligand in the binding site of NSP6.

Another important quantity that we measure and analyze
to probe the conformational stability of the protein–ligand
complex is the SASA. The solvent environment around the
protein plays a key role in maintaining the protein fold and
governs the protein–ligand interaction processes, orientation
and stability. Interestingly, we find that the SASA plots of
all five protein–ligand complexes (RBD, CTSL, nucleocapsid
protein, 3CLpro and NSP6) remain fairly equilibrated during
the entire simulation period (0–200 ns) which provides clear
evidence of the stable conformational dynamics of protein–
ligand interactions (Figure 2C). The average values of the
structural order parameters, RMSD, Rg and SASA are shown in
the supporting information, Supplementary Table S2 available
online at https://academic.oup.com/bib.

Next, we investigated the binding stability of the catechin
at the active site of the respected proteins by monitoring the
time evolution plots of the average distance from the center of
binding pocket to the ligand, as shown in the supporting infor-
mation, Supplementary Figure S4 available online at https://a
cademic.oup.com/bib. During the period of 200 ns simulation,
the average distance of catechin from the binding site of all
five proteins ranges between 0.33 nm and 0.40 nm. Although,
the peaks of sharp drifts appeared transiently at ∼80 ns and
140 ns for RBD and nucleocapsid protein, respectively, the overall
distance of catechin to the active site remains favorable for
the stable molecular interaction. It is worth noting that the
average distance plots of CTSL, 3CLpro and NSP6 remain stable
throughout simulation time. Thus, this analysis provides an
elegant evidence of the spatially well-fitted catechin orientation
in the binding sites of proteins.

We further performed RMSF analysis to evaluate the
positional fluctuation of each amino acid around its average
mean position (Figure 2D). This analysis provides a clue about
the mobility of atomic fluctuations related to the structural
stability of molecular interaction during the simulation. Usually,
the higher values of RMSF are often associated with loops or
may be the terminal residues, whereas the lower RMSF values
indicate the rigid conformation of stable secondary structures

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa378#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa378#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 2. Time evolution plot of the structural order parameters of the antiviral drug, catechin-docked complex with target proteins: RBD, 3CLpro, CTSL, nucleocapsid

and NSP6. (A) The RMSD of backbone Cα -atoms, (B) radius of gyration (Rg), (C) SASA plots, (D) RMSF showing the average fluctuation of amino acid residues and (E) the

propensity of H-bonds interaction between the proteins and catechin during the period of simulation (200 ns) at 300 K.

of α-helices and β-sheets. The result indicates that all the
complexes show equilibrium fluctuations, except NSP6. The
plot shows that the values of RMSF significantly vary for all
residues of NSP6 in comparison to the other proteins, RBD, CTSL,
nucleocapsid protein and 3CLpro, respectively. The RMSF plots
of these proteins show an average atomic fluctuation <0.15 Å
for amino acid residues, which belong to the stable secondary
structure, and the regions which displayed high fluctuations
represented the atomic flexibility of loops. The structure of
NSP6 consists of a helical structure at the core, capped by
antiparallel β-sheets and two small helices. The binding pocket
is characterized by α-helix-2-4 and α-helix-6-7 and antiparallel
β-sheets (β1 and β2) which are enclosed by a hydrophobic loop
(Phe235-Tyr242) connecting helices and β-sheets. The RMSF plot
shows on average, high fluctuations for the residues belonging
to longest loop (Val84-Leu110) connecting α-helix-3 and α-
helix-4, loops (Gln257-Ser262 and Leu275-Pro282) connecting
to small two helices (α8 and α9) with β-sheets, respectively.

The average residual fluctuations observed were reasonably
lower for terminal residues of α-helix-2 (Phe42-Phe59), α-helix-
3 (Lys63-Met86), α-helix-4 (Lys109-Arg129), α-helix-6 (Ala157-
Thr196), α-helix-7(Tyr175-Tyr196) and N-terminal of connecting
loop (Phe235-Tyr242) and β1 (Asp243-Val246) which are actively
involved in molecular interactions with drug molecules.
Further, we also established the conformational stability by
analyzing the secondary structural contents, which were
observed intact during the simulation (supporting information,
Supplementary Figure S5 available online at https://academi
c.oup.com/bib). The structural snapshots of protein–ligand
interactions captured at the time interval of 20 ns described in
the supporting information Supplementary Figure S6 available
online at https://academic.oup.com/bib. Thus, the overall results
clearly indicate the stable conformational dynamics of the target
proteins complexed with antiviral drug, catechin.

Another parameter, H-bonds interaction is one of the major
players in governing the ligand stability at the active site of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa378#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa378#supplementary-data
https://academic.oup.com/bib
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Figure 3. ED plots. The conformational landscape of target proteins complexed

with the FDA-approved antiviral drug, catechin. The projection of the collective

motion of proteins in the essential subspace along the PCs, PC1 and PC2. The

target proteins are represented with different color codes as shown in the

schema.

protein. Thus, we further investigated the time evolution plots of
H-bonds involved in the molecular interaction of catechin with
proteins (Figure 2E). The average occupancy of H-bonds (donor
and acceptor), excluding ionic interactions were examined
during the last 50 ns of simulation time and are summarized
in the supporting information, Supplementary Table S3 avail-
able online at https://academic.oup.com/bib. We found the
maximum occupancy of five H-bonds between the catechin
and RBD; however, four H-bonds remained consistent up to
∼50 ns. Out of these, two H-bonds vanished at ∼60 ns, which
were regained at ∼100 ns. Nevertheless, three H-bonds were
observed to be stable during the last 50 ns of simulation. The
result shows that catechin formed H-bond interaction with
residues, Tyr451 (OH) with ligand (H7 and H8) and Asp442 (O)
with ligand (H7). 3CLpro showed six H-bond interactions with
catechin which could be seen up to ∼150 ns, but only three
remained stable during the last 50 ns, which were formed
between the residues, Asp187 (O)—ligand (H7), His164 (HE2)—
ligand (O2) and Thr26 (O)—ligand (H14). CTSL formed three H-
bonds, which were observed consistent up to 170 ns. It showed
maximum occupancy with Asp162 (OD2)—ligand (H7), Asp160
(OD1)—ligand (H8) and Asp160 (OD2)—ligand (H8). Three H-
bonds were formed between nucleocapsid–catechin, which
were observed with Arg46 (HN)—ligand (O1), Asp56 (OD1)—
ligand (H7) and Thr44 (HG1)—ligand (O2). NSP6 showed the
possibility of three-four H-bonds, however, there were two H-
bonds between Thr238 (O)—ligand (H14) and Thr130 (HG1)—
ligand (O1), having maximum occupancy during the last 50 ns
of simulation. These results indicate that catechin is stabilized
by an average of two-three H-bonds at the binding pocket of
proteins.

Essential dynamics

Protein function is regulated by switching between various con-
formations. The modular nature of proteins to switch between
various states is governed by the collective motion of protein,
which is intrinsic to many biological processes and plays a
crucial role in the transmission of biological signals. For a pro-
tein to be functional, a reasonable amount of flexibility, as

well as rigidity is required, specifically for the residues in the
binding site. Essentially, a tighter interaction would restrict the
motion of the protein, thereby not allowing it to sample some
conformations required for its activity. Therefore, in order to
understand the collective motion of protein occupied in the
conformational space during the simulation, we applied the
dimension reduction method, essential dynamics (ED) analysis
by the projection of the first two PCs, PC1 and PC2. The PC1 and
PC2 were calculated by diagonalizing the covariance matrix of
eigenvectors to define the essential subspace in which most of
the protein dynamics occur. The dynamic motion of proteins
obtained through the projection of PC1 and PC2 are shown
in Figure 3. It is apparent from these plots that the collective
motion of proteins, RBD, CTSL and nucleocapsid protein is local-
ized in a small conformational space in comparison to 3CLpro

and NSP6, which revealed consistent results corresponding to
the structural order analyses, RMSD, Rg and SASA, as described
in Figure 2A–C. The well-defined small clusters of RBD, CTSL and
nucleocapsid protein clearly indicate the reliability and stability
of the complex structure with catechin. The ED plot of 3CLpro dis-
plays a slight increase in the conformational phase space, which
can be seen along the PC2, which suggests that protein navigated
the broad conformational space before achieving the ensemble
of the dynamically equilibrated state. Contrary to this, NSP6
experiences a wide region of phase space. In fact, it explored
a large conformational space in comparison to the other four
proteins, which represent the overall higher flexibility of the
protein. Thus, we observed a significantly compact structure of
RBD, CTSL and nucleocapsid protein and 3CLpro as compared to
NSP6, which may facilitate the vital interactions with catechin.

Free energy landscape

FEL provides an accurate description of the minimum energy
conformational ensembles of biomolecules, which is undoubt-
edly essential to understand the conformational transition
underlying protein–ligand interactions [85]. Thus, FEL plot is
constructed using Boltzmann inversion (F = −RT lnP), where
P is the two-dimensional probability distribution of the first
two PCs, PC1 and PC2, as reaction coordinates. Figure 4 shows
that the binding of catechin with proteins occurs through the
minimum free energy pathway. The structural ensemble derived
from FEL shows that the catechin-bound complex with RBD
navigated the broad conformational space, clustered in the
different energy basins, distributed along the PC1. However,
these energy minima separated through the low transition
barrier <2.0 kcal/mol indicates that with the small excursion,
the ensemble states of RBD can easily move out from one
energy basin to another. This may be the reason we observed
a small and consolidated cluster of stable populations in the ED
analysis. The FEL plot of 3CLpro shows the appearance of two
distinct populations confined to two different energy basins,
separated with high transition barrier >4.0 kcal/mol, which
signifies the population of loosely and tightly ligand bound
conformations of the protein. The conformational ensemble
occupying the small energy basin represented the population
of the equilibration phase, which readily achieved a stable
equilibrium. These equilibrated ensembles of stable complex
transverse to a broad and deep energy basin. The complex with
CTSL shows single but elongated energy minima, which depicts
the heterogeneous population of different sub-states, but the
very less transition barrier <1.0 kcal/mol between the ensemble
states suggested the stable conformation of the protein–ligand
complex confined to energy basin interplays between the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa378#supplementary-data
https://academic.oup.com/bib
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Figure 4. FEL of target proteins complexed with catechin. (A) RBD, (B) 3CLpro, (C) CTSL, (D) nucleocapsid and (E) NSP6. The free energy is given in kcal/mol and indicated

by the color code, from lower to higher energy in the right panel.

Figure 5. The binding free energy terms obtained from the MM-PBSA calculations relative to the binding of catechin, with five target proteins as labeled in the plot and

the color codes for different energy components as shown in the schema.

subspace. Whereas, the rugged FEL with segmented small energy
minima of nucleocapsid protein suggested the population
of loosely bound complex [86]. The low transition barriers
(∼1.5 kcal/mol) between the small energy basins indicate a more
prolonged equilibration phase of complex structure. During the
progression of simulation, the protein underwent structural
modifications to accommodate the ligand and adopted a stable
conformation; thus, the equilibrated ensemble smoothly shifted

to broad and deep energy minima. Remarkably, The FEL of
NSP6 shows that the stably bound conformation of the protein–
ligand complex is widely populated to a single consolidated
energy minimum, which provides the elegant evidence of
interactions inducing the stable conformational transition of
NSP6–catechin complex. Thus, the comparison of FEL results
indicates the different binding stabilities of the catechin-bound
protein–ligand complexes.
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Figure 6. The residue decomposition plot (MM-PBSA) representing the binding energy contribution of the active site residues of five target proteins energetically

stabilizing the catechin at binding pockets. (A) RBD, (B) 3CLpro, (C) CTSL, (D) nucleocapsid and (E) NSP6.
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Binding free energy and ligand–residue interaction
decomposition

In order to understand the molecular interaction and stability
associated with the binding of catechin to five different proteins
of SARS-CoV-2, a detailed analysis of the binding free energy
is executed through the MM-PBSA. MM-PBSA provides the best
prediction accuracy in terms of energy components of bonded,
polar and non-polar solvation free energy, electrostatic and vdW
interactions. In addition, it supplies the residue decomposi-
tion plot, which helps to probe the contribution of amino acid
residues involved in the spatial interaction to stabilize ligands
at the binding pocket of the protein. This analysis was per-
formed on the fully converged trajectory of the last 50 ns with
a solute dielectric constant value of 2 and an ionic strength of
0.15 M (supporting information, Supplementary Figure S7 avail-
able online at https://academic.oup.com/bib). Results show that
catechin favorably binds to all five proteins, however, it shows
a wide range of the total binding free energies (�Gbind) as enu-
merated in the supporting information, Supplementary Table
S4 available online at https://academic.oup.com/bib. As illus-
trated in Figure 5, catechin possesses the highest binding affinity
toward NSP6, with a maximum value of �Gbind = −26.09 kcal/mol,
whereas the lowest was toward CTSL (�Gbind = −5.09 kcal/mol).
Results show relatively more favorable contribution of vdW ener-
gies (�EvdW) –37.39 kcal/mol and −24.76 kcal/mol for NSP6 and
3CLpro as compared to nucleocapsid protein (−16.34 kcal/mol)
and RBD (−15.8 kcal/mol), respectively. Whereas the less contri-
bution of vdW interaction (−7.59 kcal/mol) is observed for CTSL.
Another binding energy component, electrostatic (�Eeel) energy,
which describes ligand–protein interactions, is a critical factor
in determining the binding stability of ligand. The interaction of
catechin with CTSL shows the major contribution of electrostatic
energy −29.61 kcal/mol; however, the lowest values of �EvdW

= −7.59 kcal/mol and �Gbind = −5.09 kcal/mol signify that the
electrostatic energy contributes relatively less as compared to
the other energies in the binding stability of catechin. Thus, the
binding free energy analysis revealed that the binding of cate-
chin at the active site of proteins are predominantly stabilized
by hydrophobic interactions.

To further quantify the contribution of binding pocket
residues to the molecular interaction of catechin with five
different proteins, the free energy decomposition per residue
was employed (Figure 6). The plot of free energy decomposition
analysis shows that the active site residues, Agr346, Phe347,
Leu441, Asp442, Lys444, Tyr449, Asn450 and Try451 energetically
favor the binding stability of catechin to RBD. Remarkably,
it is noted that Agr346 contributed the highest binding free
energy, �EvdW (−2.10 kcal/mol), �Eeel (−1.73 kcal/mol) and �Gbind

(−2.10 kcal/mol), which indicated the favorable electrostatic and
vdW interactions with catechin (Figure 6A). The protonated (-
NH3+) Agr346 shows the electrostatic interactions, whereas the
side chain guanidinium [-C(NH2)2] facilitated the hydrophobic
interaction with ligand. The binding interaction with 3CLpro

shows that the amino acid residues, Leu27, His47, Ser46, Met49,
His164, Met165, Asp187 and Gln189, contributed the most to the
total �Gbind (−16.98 kcal/mol). Although the vdW interaction
primarily stabilizes the catechin at the binding pocket of
3CLpro, the electrostatic interaction also contributes toward
the observed stability by His164 (−3.80 kcal/mol) and Asp187
(−3.10 kcal/mol), respectively (Figure 6B). Indeed, catechin is
predominantly stabilized in the binding pocket of CTSL through
the electrostatic interaction, which is mostly contributed
by the residues Asp71 (−11.31 kcal/mol), Asp114 (−11.36

kcal/mol), Asp160 (−7.61 kcal/mol) and Asp162 (−7.89 kcal/mol),
respectively (Figure 6C). Figure 6D showing the free energy
decomposition plot of nucleocapsid protein indicates the
substantial contribution of amino acids, Thr44, Arg45, Arg46,
Asp56, Arg60 and Tyr62 to energetically hold catechin at the
binding pocket. Surprisingly, it is noted that Arg45 contributed
to both electrostatic (−3.07 kcal/mol) and vdW interaction
(−1.88 kcal/mol), but Arg46 contributed only vdW interaction
(−2.83 kcal/mol). This may be the reason we observed a moderate
range of total binding energy (�Gbind) of value: −14.15 kcal/mol.
The favorable binding of catechin with NSP6 shows the
significant contribution of residues, Lys61, His62, His64, Ala65,
Asp133, Asp134, Phe228, Leu237, Thr238, Leu239 and Gln290
(Figure 6E). Interestingly, it is noted that Thr238 contributed
the higher electrostatic energy (−5.0 kcal/mol), whereas the
maximum vdW energy (−2.22 kcal/mol) was contributed by
Phe228. However, the binding pocket of NSP6 mostly consists
of hydrophobic residues; thus, we observed the major collective
contribution of vdW energy for stabilizing the ligand interaction.

Conclusion
In summary, using molecular docking and classical MD
simulation, we have explored the possibility of 75 FDA-
approved antiviral drugs for their potential of being used as an
effective therapeutic strategy to control SARS-CoV-2 infections.
The virtual screening results showed that seven therapeutic
agents, ritonavir, dolutegravir, tenofovir, tinofoviralafenamide,
boceprevir, catechin and zanamivir, could efficiently bind to the
SARS-CoV-2 proteins: 3CLpro, RdRp, ACE2, CTSL, NSP6, nucleocap-
sid protein and RBD of spike (S) protein, respectively. Of these,
catechin has the potential to act as a multi-targeted agent, as it
has the highest binding affinity toward the five crucial proteins
of the virus, RBD, CTSL, nucleocapsid protein, 3CLpro and NSP6,
which are essential for the invasion and infection of the host
cell. Further, MD simulation, FELs and binding free estimation
of catechin with the five target proteins explained the stable
interactions of catechin with the critical residues in terms of
occupancy of H-bonds and residue contributions to the binding
free energy. Thus, our investigation bestowed promising multi-
targeted agent catechin, which can be explored as an effective
therapeutic agent against the SARS-CoV-2 virus to control the
COVID-19 pandemic.

Key Points
• Virtual screening-based repurposing of FDA-approved

antiviral drugs for identifying the multi-targeted agent
against SARS-CoV-2.

• Catechin is identified as an effective multi-targeted
agent.

• Out of seven target proteins, it shows higher binding
affinity with 3CLpro, CTSL, RBD of S protein, NSP6 and
nucleocapsid protein.

• Molecular interactions were evaluated through MD
simulations, FELs and binding free energy estimations.
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