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Abstract: Antibiotic drug residues are crucial to ensure food safety and minimize risk to human
health. Herein, a sensitive high-performance liquid chromatography–tandem mass spectrometry
(HPLC–MS/MS) method was developed and validated for the determination of antibiotic residues
(mainly amphenicols) consisting of chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF),
and florfenicol amine (FFA) in aquatic products. Amphenicols were well separated on a Kinetex F5
(100 mm × 3.0 mm, 2.6 µm) chromatographic column with the mobile phases of 1 mM ammonium
acetate aqueous solution and methanol solution and measured after positive and negative electrospray
ionizations using four internal standards. To our knowledge, it was the first time to report the good
performance of F5 column and four internal standards for the determination of amphenicols. The
established method featured a good linear relationship between chromatographic peak area ratios
and the concentrations of amphenicols (R2 > 0.992), a wide and low detection matrix-based range of
0.01–5 µg/L, a low detection limit of 0.01 µg/kg, etc. The spiked assays evidenced the accuracy and
reliability of the developed method with the recoveries between 84.0 and 105%, the intraday relative
standard deviations (RSDs) over the range of 0.769–13.7%, and the interday RSDs over the range of
0.582–13.3%. Finally, the proposed method was applied to investigate amphenicol residues in various
aquatic products, including fish, shrimp, crab, shellfish, and other aquatic species.

Keywords: antibiotics; amphenicols; detection; sensitivity; aquatic products; HPLC–MS/MS

1. Introduction

The increasing demand for aquatic products promotes the sustainable development
of fishery. According to the China Fishery Yearbook, the total production of aquatic
products reached approximately 655 million tons in 2020, a slight increase of 69 million
tons compared to 2019. To prevent the various diseases, improve resistibility, and increase
productivity, antimicrobials (mainly antibiotics) are routinely utilized in the process of
aquaculture, and 73% of antimicrobials sold worldwide are used in animals raised for
food [1]. As a type of antibiotics, amphenicols (i.e., chloramphenicol (CAP), thiamphenicol
(TAP), florfenicol (FF), and florfenicol amine (FFA)) have been widely applied in livestock
due to their low cost, high efficiency, good practicability, and strong capability of inhibiting
the growth of Gram-positive and -negative bacteria, etc. [2–4]. However, CAP has been
banned by many countries for its high toxicity and side effects to human hematopoietic
system (e.g., aplastic anemia) [5,6]. As the derivatives of CAP, TAP and FF have less
toxic effects and higher antibacterial activity than CAP, whereas which are deemed to the
restricted veterinary drugs for their inhibition of red blood cells and embryonic toxicity [7,8].
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FFA is mainly produced by FF through its metabolism in animal-derived food, and is the
evidence of the usage of FF is also limited to veterinary drugs [9,10].

A variety of amphenicol detection approaches have been extensively developed by im-
munosorbent assay [11,12], fluorescence sensors [13–15], electrochemical sensors [16–19],
gas chromatography–mass spectrometry (GC/MS) [20–22], and high-performance liq-
uid chromatography–mass spectrometry (HPLC–MS/MS), etc. [23–29]. Among them,
HPLC–MS/MS technology has drawn substantial attention owing to its rapid response,
good sensitivity, high accuracy, strong separation ability, satisfactory compatibility of posi-
tive/negative ion modes, and widespread application in complex samples, such as swine,
bovine, poultry eggs, and chicken muscle [30–32]. However, the accumulation of antibi-
otics in aquatic products even a trace amount of amphenicol residues is likely a potential
threat to public health and requires more attention during consumption and diet [33–35].
Therefore, it is important to develop a sensitive and accurate method to detect the trace
levels of amphenicols to ensure the quality and safety of aquatic products and reduce the
hazards caused by amphenicols.

Herein, we proposed a highly sensitive HPLC–MS/MS method for detecting the
trace levels of amphenicol residues in various aquatic products (Figure 1). The liquid
phase and mass spectrometric conditions were investigated comprehensively, including
chromatographic column, mobile phase, and so on. The presented method was validated
by linear detection range, spiked assays, etc. Finally, the proposed method was used for
the determination of the trace amphenicols in various fish, shrimp, crab, and shellfish
aquatic samples.
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Figure 1. The schematic diagram of the proposed method.

2. Results and Discussion
2.1. Mass Spectrometry Conditions

CAP, TAP, and FF displayed excellent response in negative ionization mode for the
halogen atoms and hydroxyl groups, and FFA showed a favorable response in positive
ionization mode, which was in agreement with the reported literature [36]. Additionally,
the four internal standards were used to improve the accuracy of measurement in this
work. Deprotonated molecular ions [M−H]− were adopted as precursor ions for CAP
(321.0 m/z), CAP-D5 (326.0 m/z), TAP (353.9 m/z), TAP-D3 (357.0 m/z), FF (356.0 m/z), and
FF-D3 (359.0 m/z). Protonated molecular ion [M+H]+ was employed as precursor to analyze
FFA (248.3 m/z) and FFA-D3 (251.3 m/z). Two different mass fragments were monitored for
each external precursor, and the most abundant fragment ion was applied for quantification,
and the other product ion was used for identification. Figure S1 shows the selective product
ion chromatograms of the four amphenicols at the concentration of 25 ng/mL.
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2.2. HPLC Conditions
2.2.1. Chromatographic Columns

The chromatographic columns have an important effect on the retention and separation
of target compounds, which were investigated for better separation effect and higher
sensitivity, including TSK-GEL Amide-80 (100 mm × 3.0 mm, 3 µm), ACQUITY HSS T3
(100 mm × 2.1 mm, 1.8 µm), CAPCELL PAK C18 (100 mm × 2.0 mm, 3 µm) and Kinetex F5
(100 mm × 3.0 mm, 2.6 µm). An amino chromatographic column is capable of separating
compounds containing amino groups for the carbamoyl-bonded silica gel filler with suitable
polarity, good retention, and high response [37]. As shown in Figure 2A, FFA fragment ion
was well retained on the TSK-GEL Amide-80 column, but the other three amphenicols (i.e.,
CAP, TAP, and FF) were not retained, suggesting that the amide column is not suitable for
separating the four amphenicols. A reversed-phase chromatographic column (e.g., C18) is
specified for separating CAP, TAP, and FF in the national standard (GB 20756-2006). As
a type of C18 column, a T3 column allows analytes to easily enter the pore structure of
filler materials, enhancing the retention of polar and hydrophobic molecules. Compared
to the TSK-GEL Amide-80 column, the four amphenicols were successfully separated on
the C18 and T3 chromatographic columns. Nevertheless, the chromatographic peak of
FFA was largely suppressed on the C18 and T3 columns, which was probably caused
by the relatively poor retention of FFA on the C18 and T3 columns, leading to it eluting
together with the dead volume [38]. Based on the pentafluorophenyl propyl filler, an F5
column could provide the unique polarity, hydrophobicity, aromaticity, selectivity of peak
shape for halogen-containing molecules (e.g., F or Cl atoms), and satisfactory retention
of the four amphenicols (the bottom line in Figure 2A). Moreover, it was observed that
the chromatographic peak areas of the four amphenicols detected by the F5 column were
higher than those by the T3 column and the stipulated C18 column (Figure 2B), which
indicated that the ability to reserve amphenicols on the column was greatly enhanced,
especially FF and FFA, thereby facilitating the improvement of detection sensitivity. To
our knowledge, there are few reports with regard to the usage of an F5 chromatographic
column for the separation and determination of antibiotic residues. Furthermore, the
influence of the length of the F5 chromatographic column on the responses of CAP, TAP, FF,
and FFA were evaluated simultaneously. As described in Figure 2C, the retention times
of CAP, TAP, FF, and FFA detected with a 50 mm F5 column were 3.43, 2.95, 3.22, and
2.75 min, respectively, which were delayed to 4.19, 3.63, 3.94, and 3.26 min, respectively,
with a 100 mm F5 column. Moreover, the chromatographic peak areas of most of the
amphenicols tested with the 100 mm F5 column were higher than those with the 50 mm F5
column (Figure 2D). Therefore, the 100 mm F5 column was more suitable for the detection
of amphenicols.

2.2.2. Mobile Phase

The composition of the mobile phase has a significant effect on the ionization efficiency
of the analytes. Formic acid (FA) or acetic acid could provide a proton and always be
adopted as the additive in the mobile phase to improve ionization efficiency [39]. Barreti
et al. used ammonium acetate (AMA) as the additive in the mobile phase to improve
FFA retention and reduce the interference caused by matrix components [38]. To study
the effects of FA and AMA on the ionization efficiency of amphenicols, 0.1% FA aqueous
solution, 0.1% FA aqueous solution containing 10 mM AMA (0.1% FA + 10 mM AMA), and
10 mM AMA aqueous solution were applied as the mobile phases in this work. As shown
in Figure 3A, the shape of the FFA chromatographic peak with 10 mM AMA aqueous
solution without FA as the mobile phase was much sharper than those obtained using 0.1%
FA and 0.1% FA + 10 mM AMA aqueous solutions as the mobile phases, which suggested
the relatively poor reservation of FFA on the F5 column in the presence of FA solution,
implying the good performance of AMA on FFA reservation.
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Meanwhile, the influences of AMA concentration on the responses of CAP, TAP, FF,
and FFA were sequentially assessed, which was presented in Figure 3B,C. As observed in
Figure 3B, FFA was hardly retained with the absence of AMA in the mobile phase (i.e., pure
water) but was successfully retained as the concentration of AMA increased from 1, 2, 5, to
10 mM, further manifesting that AMA could promote the retention of FFA. Furthermore,
the retention time of FFA shifted slowly from 3.62, 3.40, 3.33, to 3.25 min with the AMA
concentration increasing from 1 to 10 mM, which illustrated that AMA was conducive to
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the separation of FFA. In addition, the retention times of CAP, TAP, and FF were not affected
by the concentration of AMA even when the chromatographic peak areas were impacted.
As shown in Figure 3C, the chromatographic peak areas of CAP, TAP, and FF fragment ions
increased with the AMA concentration enhancing from 0 to 1 mM but decreased gradually
with the AMA concentration further increasing from 1 to 10 mM, which was ascribed to the
adduct formation with NH4

+ at low AMA concentration in the electrospray [36]. Moreover,
the peak area of FFA transition under 2 mM AMA aqueous solution was higher than
those of other concentrations of AMA aqueous solutions. The results confirmed ionization
enhancement for CAP, TAP, FF, and FFA at low concentration of AMA aqueous solution
and ionization suppression at high concentration of AMA aqueous solution. Therefore, 1
or 2 mM AMA aqueous solution was appropriate for the detection of antibiotic residues.

Additionally, to improve the rapidity of the detection method, the impact of detection
time on the measurements was also studied, and the results are displayed in Figure 4.
As depicted in Figure 4A, the retention times of CAP, TAP, FF, and FFA at a detection
time of 8 min were 4.19, 3.67, 3.94, and 3.26 min, respectively, which were shortened to
3.54, 3.22, 3.36, and 3.00 min, respectively, at a detection time of 6 min. Moreover, the
chromatographic regions of CAP, TAP, and FF at the detection time of 6 min were distinctly
higher than those at 8 min, while the chromatographic region of FFA at the detection
time of 6 min was fractionally smaller than that at 8 min (Figure 4B). Hence, in order to
procure the high sensitivity and rapidity, a 6 min detection time was applied to measure
the antibiotic residues.
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Overall, the measurement of the amphenicol residues was performed on a 100 mm F5
column with the mobile phase of 1 mM AMA for 6 min. Figure S2 shows the chromatograms
of 0.1 µg/L standard solution of amphenicols detected under the optimal conditions.

2.3. Method Validation
2.3.1. Linearity, Sensitivity, and Matrix Effect of the Proposed Method

Under the optimized conditions, a facile, rapid, and sensitive method for amphenicol
determination was established. Table 1 lists the parameters of the proposed method, such
as the linear detection range, correlation coefficient (R2), limit of detection (LOD), limit of
quantitation (LOQ), matrix effect (ME), etc.
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Table 1. Linear range, LOD, LOQ, and matrix effect of CAP, TAP, FF, and FFA.

Matrix Targets Linear Range
(µg/L) R2 LOD (µg/kg) LOQ (µg/kg) ME (%)

H2O

CAP

0.01–5.00

0.99311

- -

-
TAP 0.99449 -
FF 0.99579 -

FFA 0.99613 -

Carassius auratus

CAP

0.01–5.00

0.99475

0.01 0.02

20
TAP 0.99554 8.04
FF 0.99592 <−20

FFA 0.99642 <−20

Litopenaeus Vannamei

CAP

0.01–5.00

0.9959

0.01 0.02

6.04
TAP 0.99353 −11.3
FF 0.99362 <−20

FFA 0.99675 17.9

Eriocheir sinensis

CAP

0.01–5.00

0.99568

0.01 0.02

<−20
TAP 0.99592 <−20
FF 0.99785 <−20

FFA 0.9967 <−20

Sinonovacula constricta

CAP

0.01–5.00

0.99886

0.01 0.02

<−20
TAP 0.99696 <−20
FF 0.99442 <−20

FFA 0.99275 <−20

It was observed that the ME values of CAP, TAP, FF, and FFA in Carassius auratus were
more than 20%, 8.04%, less than −20%, and less than −20%, respectively, which indicated
the ionic enhancement of CAP and the significant ionic suppression of FF and FFA in the
Carassius auratus matrix (ME less than ±20% [40]). Additionally, the ME values of CAP,
TAP, FF, and FFA in Litopenaeus Vannamei sample were 6.04%, −11.3%, less than −20%,
and 11.9%, respectively, which also showed the ionic suppression of FF in the Litopenaeus
Vannamei matrix. However, the ME values of CAP, TAP, FF, and FFA in Eriocheir sinensis and
Sinonovacula constricta samples were all less than −20%, which revealed the serious ionic
suppression of amphenicols in the Eriocheir sinensis and Sinonovacula constricta matrices.
Therefore, to overcome the matrix effects and improve the accuracy of quantification for
amphenicols, matrix-matched calibration curves were utilized during the measurement of
amphenicol residues.

Obviously, the relationship between the area ratios and their corresponding concentra-
tions of amphenicols in several matrix samples showed satisfactory linearity (R2 > 0.992)
with the concentration varying from 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, to 5 µg/L. LOD and
LOQ were measured as 0.01 (signal-to-noise ratio, S/N > 3) and 0.02 (S/N > 10) µg/kg, re-
spectively, which were much lower than those stipulated in the National Standard of China
(GB 20756-2006: 0.1 µg/kg for CAP and 1.0 µg/kg for TAP, FF, and FFA), demonstrating
the high sensitivity of the developed method for amphenicol detection. Table 2 summarizes
the measurement of amphenicols in aquatic products reported in the literature using the
HPLC–MS/MS method, which further demonstrated that the presented method exhibited
relatively low and wide linear range and high sensitivity for the detection of the four
amphenicols mainly due to the favorable performance of the F5 column and appropriate
mobile phase.
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Table 2. Comparison of amphenicol determination reported in the literature using the HPLC–
MS/MS method.

Analytes Columns Mobile Phases Linear Range LOD (µg/kg) Matrix Ref.

CAP, FF C18
2 mM ammonium acetate
and acetonitrile, both with

0.1% formic acid
0.5–20 µg/kg 0.15 Fish [41]

FF C18 0.1% formic acid in water
and acetonitrile 5–50 µg/kg 5.0 shrimp

muscle [42]

CAP, TAP,
FF, FFA C18

Water and acetonitrile,
both with 2 mM of
ammonium acetate

−
CAP:0.13,
TAP:5.45,
FF:2.86,

FFA:248.20
Fish [38]

CAP, TAP,
FF, FFA C18

Double-distilled water
and 0.1% acetic acid in

acetonitrile
–

CAP:0.01 (shrimp and flatfish);
TAP:0.09 (shrimp), 0.05 (flatfish);
FF: 0.01 (shrimp), 0.005 (flatfish);

FFA: 1.3 (shrimp), 1 (flatfish);

shrimp and
flatfish [39]

CAP, TAP,
FF C18 Water and methanol

CAP: 0.3–50,
TAP: 1.5–100,

FF: 0.5–20

CAP: 0.02,
TAP: 0.06,
FF: 0.02

fish muscles [43]

CAP, TAP,
FF, C18 Water and methanol, both

with 0.1% formic acid 0.1–500 µg/L CAP: 0.4, TAP: 1.0, FF: 0.2
feces (pig,

chicken, and
duck)

[25]

CAP, TAP,
FF, FFA F5 1 mM ammonium acetate

and methanol 0.01–5.0 µg/L 0.01
Fish, shrimp,

crab, and
shellfish

This
work

2.3.2. Accuracy, Repeatability, and Feasibility of the Proposed Method by Spiked Assays

Blank samples of Carassius auratus, Litopenaeus vannamei, Eriocheir sinensis, and Sinono-
vacula constricta were selected for the spiked assays to explore the accuracy, repeatability,
and feasibility of the proposed method. As shown in Table 3, the average recoveries (R)
of 0.20, 0.50, and 2.00 µg/kg of the four amphenicols were in the range of 84.0–97.8% in
Carassius auratus, 89.0–105% in Litopenaeus vannamei, 89.2–101% in Eriocheir sinensis, and
89.7–99.8% in Sinonovacula constricta, which indicated the high accuracy of the developed
method. Figure S3 shows the chromatograms of the spiked 0.5 µg/kg amphenicols in Caras-
sius auratus. Furthermore, the intraprecisions and interprecisions of the amphenicols were
in the range of 0.769–13.7% and 2.15–13.3% in Carassius auratus, 2.26–12.1% and 0.778–8.68%
in Litopenaeus vannamei, 1.43–6.61% and 0.582–4.34% in Eriocheir sinensis, and 1.22–9.22%
and 0.911–4.69% in Sinonovacula constricta. The results indicated that the established method
featured good accuracy, favorable repeatability, and satisfactory feasibility and could be
applied in the detection of amphenicol residues in real aquatic samples.

2.4. Detection in Real Aquatic Samples

A total of 720 aquatic samples were tested according to the optimized conditions,
including fish, shrimp, crab, shellfish, and so on. To ensure the accuracy of measure-
ment, quality control experiments were simultaneously conducted, and the recoveries
ranged from 93.4 to 101%, which illustrated the reliability of the test. As listed in Table
S1, amphenicol residues were found in 58 aquatic samples with detection rate of 8.06%.
Specifically, the prohibited antibiotic drug CAP was not detected in any of the collected
samples, while the restricted antibiotic drug TAP was found in three fish samples with
levels of 0.834–1.81 µg/kg, which showed that the usage of CAP and TAP decreased under
the strict policy. However, FF was detected in 27 aquatic samples containing fish, shrimp,
crab, shellfish, and other aquatic products. The amounts of FF were over the range of
0.0615–107 µg/kg, with the maximum value of FF in Pelodiscus sinensis. Likewise, FFA
was found in 33 aquatic samples (mainly fish and other aquatic products) with detection
values in the range of 0.261–243 µg/kg, and the maximum value of FFA was measured in
Monopterus albus. Currently, the National Standard of China (GB 31650-2019) stipulates
that the maximum residue limits (MRLs) of TAP and FF (sum of FF and FFA) in the muscle
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and skin of fish should be 50 and 1000 µg/kg, respectively. The amount of amphenicols
detected in the samples was much less than their MRLs, which implied the relative safety
of the collected samples. Nevertheless, monitoring is still required to prevent the potential
hazard from relatively high detection levels.

Table 3. The recoveries and RSDs of CAP, TAP, FF, and FFA by the spiked assays.

Matrix Analytes Spiked Levels
(µg/kg)

Measured Levels
(µg/kg)

Accuracy and Repeatability

R (%, n = 3) Intra-RSD (%, n = 3) Inter-RSD (%, n = 3)

Carassius
auratus

CAP
0.20 0.193 ± 0.071 96.5 13.7 5.69
0.50 0.480 ± 0.055 96.1 10.8 1.74
2.00 1.88 ± 0.017 93.9 2.82 1.28

TAP
0.20 0.180 ± 0.068 90.0 12.4 10.0
0.50 0.489 ± 0.031 97.8 3.70 3.31
2.00 1.87 ± 0.025 93.4 6.06 1.13

FF
0.20 0.168 ± 0.078 84.0 3.31 13.3
0.50 0.455 ± 0.049 91.1 3.75 3.70
2.00 1.88 ± 0.035 93.9 5.53 3.23

FFA
0.20 0.192 ± 0.048 96.0 7.01 2.88
0.50 0.461 ± 0.033 92.3 4.38 2.15
2.00 1.88 ± 0.025 94.0 0.769 3.29

Litopenaeus
vannamei

CAP
0.20 0.185 ± 0.053 92.5 5.16 4.22
0.50 0.454 ± 0.049 90.9 8.83 4.75
2.00 1.92 ± 0.038 96.0 8.68 1.96

TAP
0.20 0.178 ± 0.080 89.0 12.0 8.25
0.50 0.476 ± 0.041 95.1 6.40 5.27
2.00 2.02 ± 0.021 101 3.46 0.939

FF
0.20 0.207 ± 0.021 104 2.43 1.37
0.50 0.476 ± 0.030 95.3 5.90 0.778
2.00 1.90 ± 0.018 94.9 2.26 1.41

FFA
0.20 0.210 ± 0.068 105 12.1 8.68
0.50 0.490 ± 0.022 98.0 3.82 1.55
2.00 1.96 ± 0.027 98.2 2.35 1.24

Eriocheir
sinensis

CAP
0.20 0.185 ± 0.046 92.3 4.54 4.34
0.50 0.458 ± 0.034 91.5 6.50 1.53
2.00 1.95 ± 0.017 97.7 2.51 1.02

TAP
0.20 0.199 ± 0.030 99.7 2.76 2.94
0.50 0.446 ± 0.041 89.2 6.61 3.23
2.00 1.99 ± 0.024 99.4 4.46 0.582

FF
0.20 0.192 ± 0.025 96.0 2.76 1.40
0.50 0.475 ± 0.025 95.0 2.55 3.68
2.00 2.00 ± 0.028 100 5.29 3.54

FFA
0.20 0.201 ± 0.025 101 2.99 1.61
0.50 0.487 ± 0.018 97.3 1.86 0.590
2.00 1.93 ± 0.021 96.6 1.43 1.49

Sinonovacula
constricta

CAP
0.20 0.182 ± 0.049 91.2 8.40 3.35
0.50 0.493 ± 0.033 98.7 1.22 3.15
2.00 2.00 ± 0.018 99.8 2.86 1.89

TAP
0.20 0.190 ± 0.029 94.8 1.69 2.83
0.50 0.484 ± 0.026 96.9 3.84 3.09
2.00 1.97 ± 0.020 98.3 1.47 1.47

FF
0.20 0.192 ± 0.026 96.2 3.65 1.20
0.50 0.494 ± 0.016 98.9 1.96 0.911
2.00 1.98 ± 0.018 99.2 2.03 1.13

FFA
0.20 1.85 ± 0.061 92.5 9.22 4.69
0.50 0.449 ± 0.042 89.7 2.87 3.20
2.00 1.99 ± 0.016 99.5 2.19 1.15

3. Materials and Methods
3.1. Materials and Instrument

The certified standard substances of chloramphenicol (CAP, 99%), thiamphenicol
(TAP, 99%), florfenicol (FF, 99.8%), florfenicol amine (FFA, 99.8%), and chloramphenicol-d5
(CAP-D5, 100 ppm) were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany).
Thiamphenicol-d3 (TAP-D3, 97%), florfenicol-d3 (FF-D3, 98%), and florfenicol amine-d3
(FFA-D3, 98%) were supplied by Toronto Research Chemicals company (TRC, Toronto,
Canada). Methanol (MeOH, HPLC grade), ethyl acetate (EA, HPLC grade), and n-hexane
(95%, HPLC grade) were obtained from J. T. Baker Chemical Products Trading Co., Ltd.
(Phillipsburg, NJ, USA). Formic acid (FA, 98%), ammonium acetate (AMA, HPLC grade,
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99%), and ammonium hydroxide (25–28%) were provided by Shanghai Aladdin Biochemi-
cal Technology Co., Ltd. (Shanghai, China), Shanghai Honeywell Trading Co., Ltd. (Shang-
hai, China), and Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China), respectively.
Ultrapure water (18.2 MΩ·cm−1) was produced by Milli-Q EQ 7000 (Millipore, Billerica,
MA, USA) and used throughout the experiments. A 5500 QTRAP triple quadrupole mass
spectrometer (Applied Biosystems SCIEX, Framingham, MA, USA) equipped with a liquid
chromatography (LC–MS/MS, Shimadu, Kyoto, Japan) was employed to measure the
amphenicol residues.

3.2. Samples

The aquatic products samples were collected from Fujian, Guangdong, Shanghai,
Zhejiang, Shandong, and Henan Provinces, including crucian carp (Carassius auratus),
white shrimp (Litopenaeus vannamei), Chinese mitten crab (Eriocheir sinensis), Sinonovacula
constricta, Pampus cinereus, turbot (Scophthalmus maximus), mandarin fish (Siniperca chu-
atsi), Silurus asotus, scallop (Placopecta magellanicus), Portunus trituberculatus, white amur
bream (Parabramis pekinensis), snakehead (Ophiocephalus argus), grass carp (Ctenopharyn-
godon idellus), bighead carp (Aristichthys nobilis), silver carp (hypophthalmichehys molitrix),
yellow-headed catfish (Pseudobagrus fulvidraco), sea perch (Lateolabrax japonicus), common
carp (Cyprinus carpio), loach (Misgurnus anguillicaudatus), large yellow croaker (Larimichthys
crocea), freshwater eel (Anguilla japonica), swamp eel (Monopterus albus), red swamp crayfish
(Procambarus clarkii), Macrobrachium rosenbergii, dark striped puffer fish (Takifugu obscurus),
turtle (Pelodiscus sinensis), bullfrog (Lithobates catesbeiana), etc. Each sample was cleaned,
and the edible tissues were dissected, cut into pieces, homogenized, and then stored at
−20 ◦C for further treatment.

3.3. Sample Pretreatment

2.000 (± 0.002) g of the homogenized aquatic product samples were accurately
weighed into 30 mL centrifuge tubes. Then, 40 µL of the 10 ng/mL mixed internal standard
solution, 15 mL ethyl acetate solution, and 0.45 mL ammonium hydroxide were added
in sequence. After shaking vigorously, the stock solutions were subjected to ultrasound
for 10 min and subsequently centrifuged at 4000 r/min for 5 min. The supernatant was
collected into a flask, and the lower layer sample was extracted repeatedly. The combined
supernatant was concentrated by rotary evaporation at 40 ◦C. The dried flask was dissolved
with 3.0 mL n-hexane and 2.0 mL water, which was then transferred to a centrifugal tube
and centrifuged at 4000 r/min for 10 min. After removing the organic layer, the residual
solution was filtered by 0.22 µm aqueous phase filtration membrane for the determination
of amphenicol residues by HPLC–MS/MS.

3.4. LC–MS/MS Conditions

The amphenicol residues were separated by a Kinetex F5 chromatographic column
(100 mm × 3.0 mm, 2.6 µm) at 40 ◦C with a flow rate of 0.35 mL/min and an injection
volume of 10 µL. 1 mmol/L ammonium acetate aqueous solution and methanol were used
as the mobile phase A and B, respectively. The gradient elution program is listed in Table 4.

Table 4. Gradient elution program of the target analysts.

Time/min Mobile Phase A/% Mobile Phase B/%

0 98 2
0.5 98 8
2.0 20 80
3.0 20 80
3.5 98 2
6.0 98 2
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The amphenicol residues were acquired in multiple response monitoring (MRM)
positive and negative ionization modes in electrospray source ion (ESI) at a spray voltage of
4500 V. CAP, TAP, FF, FFA, and their corresponding deuterium internal standard substances
were fully scanned by first-level mass spectrometry (Q1). The formed [M−H]− precursor
ions for CAP, TAP, and FF in ESI− mode and [M+H]+ precursor ion for FFA in ESI+ mode
were scanned by second-level mass spectrometry(Q3). The temperature of the ion transport
tube was set to 650 ◦C. The mass spectrum parameters, such as curtain gas, ion source
gas, and auxiliary gas, were optimized to appropriate values. The Q1 mass fragments, Q3
mass fragments, declustering potentials (DP), and collision energies (CE) of the amphenicol
analytes are shown in Table 5.

Table 5. Mass spectral parameters for amphenicols.

Compounds Q1 Mass (m/z) Q3 Mass (m/z) DP (V) CE (V)

CAP 321.0
152.1 * −106 −21
256.9 −138 −15

TAP 353.9
184.9 * −80 −28
289.9 −80 −18

FF 356.0
336.0 * −80 25
184.9 −80 −27

FFA 248.3
230.2 * 80 18
130.2 80 33

CAP-D5 326.0 157.0 −80 −24
TAP-D3 357.0 188.1 −80 −30
FF-D3 359.0 188.1 −80 −27

FFA-D3 251.3 233.2 80 15
* Quantitative ion.

3.5. Method Validation

The developed method was validated by linear range, calibration curves, correlation
coefficient, LOD, LOQ, matrix effect, accuracy, etc. The calibration curves were plotted
by the external standard to internal standard chromatographic peak area ratios and the
corresponding concentrations of the standard solutions. The solvent-based calibration
curve was prepared by water, while the matrix-based calibration curves were prepared
by the blank matrix solution, which was acquired through pretreatment. LOD and LOQ
were determined from the matrix-based calibration curve at S/N of 3 and 10 according
to the reported literature, respectively [44,45]. ME was tested by the solvent-based and
matrix-based calibration curves according to Equation (1) [46].

ME (%) =

(
1 − Ssolvent

Smatrix

)
× 100% (1)

where Ssolvent and Smatrix are the slopes of the solvent-based and matrix-based calibration
curves, respectively. The value of ME implies an ionization enhancement (less than 0), an
ionization suppression (more than 0), or no influence (equal to 0).

Spiked assays were utilized to investigate the accuracy, repeatability, and feasibility
of the proposed method. The spiked levels were 0.2, 0.5, and 2 µg/kg, respectively. Each
sample was conducted in three parallel tests to ensure the reliability of the results.

3.6. Statistical Analysis

All the figures were drawn by Origin 2021 software. Microsoft Excel 2019 was em-
ployed for statistical analysis, including calculation of the spiked recovery, relative standard
deviations, uncertainty, etc.
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4. Conclusions

A facile, rapid, and sensitive HPLC–MS/MS method was established for the determi-
nation of trace antibiotic residues (i.e., chloramphenicol, thiamphenicol, florfenicol, and
florfenicol amine), and the level of antibiotic residues in various 720 aquatic products was
studied. The liquid phase and mass spectrometric conditions were optimized, including
chromatographic column, column length, mobile phase, and so on. The results showed that
the F5 chromatographic column exhibited better performance than the TSK, T3, and C18
columns. Furthermore, 1 mM aqueous was the most appropriate mobile phase to promote
the retention and separation of most components of antibiotic residues. Under optimal
conditions, the proposed method displayed a good linear relationship in the matrix-based
range of 0.01–5 µg/L and a low LOD of 0.01 µg/kg. The accuracy and reliability of the
developed method were evidenced by the average recoveries ranging from 84.0 to 105%,
intraday RSDs from 0.769 to 13.7%, and interday RSDs from 0.582 to 13.3%. Finally, the
developed method was applied to detect amphenicol residues in real aquatic samples. The
results showed that CAP was not detected in any of the collected samples, while the levels
of TAP, FF, and FFA were over the ranges of 0.834–1.81, 0.0615–107, and 0.261–243 µg/kg in
the acquired samples, respectively. The maximum values of TAP, FF, and FFA were tested
in Parabramis pekinensis, Pelodiscus sinensis, and Monopterus albus, respectively. Although
the levels of amphenicols were much less than their MRLs, monitoring is still needed to
avoid the potential hazard of their bioaccumulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11101427/s1, Figure S1. The selective product ions
chromatograms of 25 ng/mL CAP, TAP, FF and FFA; Figure S2. Q3 ions fragments of the 0.1 µg/L
amphenicols standard solution detected by the optimal conditions; Figure S3. Q3 ions fragments
of the spiked 0.5 µg/kg amphenicols in Carassius auratus; Table S1. The determination results of
amphenicols in 58 positive aquatic products.
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