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Abstract: River ecosystems are critical for human and environmental health, with bacterioplankton
playing a vital role in biogeochemical cycles. Unveiling the spatial patterns of bacterioplankton
communities in relation to environmental factors is important for understanding the processes of
microbial variation and functional maintenance. However, our understanding of the correlations
among bacterioplankton communities, physicochemical factors, and land use, especially in large
rivers affected by intensive anthropogenic activities, remains relatively poor. Here, we investigated
the bacterioplankton communities in July 2018 in three main tributaries of the Pearl River, i.e., Beijiang,
Xijiang, and Pearl River Delta, based on 16S rRNA high-throughput sequencing. Results showed
that the most dominant phyla, Proteobacteria, Actinobacteria, Cyanobacteria, and Planctomycetes
accounted for 33.75%, 22.15%, 11.65%, and 10.48% of the total abundance, respectively. The
bacterioplankton communities showed remarkable differences among the three tributaries in terms of
composition, structure, diversity, and predictive functional profiles. Mantel and partial Mantel tests
revealed that the bacterioplankton communities were affected by physicochemical variables (p < 0.01)
and land use (p < 0.01). Redundancy analysis identified specific conductivity, dissolved oxygen,
agricultural land, ammonium, urban land, and water transparency as the dominant environmental
factors influencing the bacterioplankton communities in the Pearl River. Variation partitioning analysis
indicated that both physicochemical factors and land use had direct effects on the bacterioplankton
community, and that land use may also shape bacterioplankton communities through indirect effects
of physicochemical factors on riverine ecosystems. This study provides fundamental information on
the diversity, spatial patterns, and influencing factors of bacterioplankton communities in the Pearl
River, which should enhance our understanding of how such communities change in response to
environmental gradients and anthropogenic activities.
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1. Introduction

The microbial community is a key component of aquatic ecosystems and plays an important
role in biogeochemical cycling processes such as ammonia oxidation, nitrification, sulfate reduction,
and methane production [1–4]. Unveiling the spatial patterns of microbial communities in relation to
environmental factors is important for understanding the processes of microbial variation and functional
maintenance [5,6]. Planktonic microorganisms are highly dynamic within aquatic systems [7–9] and

Microorganisms 2020, 8, 814; doi:10.3390/microorganisms8060814 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0002-3995-1087
http://www.mdpi.com/2076-2607/8/6/814?type=check_update&version=1
http://dx.doi.org/10.3390/microorganisms8060814
http://www.mdpi.com/journal/microorganisms


Microorganisms 2020, 8, 814 2 of 16

variations in bacterioplankton communities in terms of composition, diversity, and function may occur
in response to environmental change [10,11].

River ecosystems are critical for human and ecological health. They are a major source of drinking
water and provide irrigation for agriculture, habitat for fish, and space for recreation. Rivers also offer
important freshwater habitats for microorganisms. Bacterioplankton communities exhibit complex
responses to environmental stresses and disturbances, as manifested by changes at both the population
and community levels [12,13]. Many studies have attempted to elucidate the distribution patterns and
driving factors shaping bacterioplankton communities in river ecosystems. Such studies have shown
that the bacterioplankton community structure can be strongly influenced by local environmental
conditions within the water channel, such as temperature [13] and nutrient [14], suspended solids [4],
and dissolved oxygen levels [15]. In addition, as lotic river water is under constant turnover, free-floating
microbial communities at fixed geographic locations are composed of immigrant microorganisms from
the planktonic community upstream and surrounding non-planktonic communities. Surrounding
inputs can affect microbial plankton directly, e.g., through the influx of organisms, and indirectly, e.g.,
via changes in conditions leading to shifts in competitive advantages and thus microbial communities.
As such, catchment geography and land use, e.g., agriculture and urbanization, are important drivers
of variations in bacterioplankton communities of lotic ecosystems [16,17]. However, despite increasing
knowledge of bacterioplankton in river ecosystems, our understanding of the associations among
bacterioplankton communities, physicochemical factors, and land use, especially in large rivers
impacted by intensive anthropogenic activities, remains relatively limited.

The Pearl River is the largest river in southern China, stretching some 2400 km in length [18].
The river is used for a wide range of purposes (e.g., agriculture, industry, transport, and recreation)
and is an important drinking water source for many surrounding cities. Thus, the Pearl River area
experienced considerable anthropogenic disturbance due to remarkable industrial and agricultural
development along with rapid population growth [19]. For example, the Pearl River Delta, is one of
China’s most industrialized regions, with a population of more than 50 million and annual wastewater
production of about 9 × 109 m3, including 7 × 109 and 2 × 109 m3 of domestic and industrial wastewater,
respectively [20]. Such waste can have a negative impact on the biotic and abiotic components of
riverine ecosystems [21]. Although bacterioplankton community dynamics in the Pearl River Estuary
are well studied [22–25], our understanding of bacterioplankton communities in the Pearl River and
their responses to environmental gradients and land use activity is still lacking.

In this study, we analyzed the bacterioplankton communities in three main tributaries of the Pearl
River in July 2018, a typical flood season, using 16S rRNA high-throughput sequencing. We aimed to
(1) characterize the composition, diversity, and spatial patterns of bacterioplankton communities in
the Pearl River and (2) elucidate the roles of physicochemical factors and land use in shaping these
communities. To the best of our knowledge, this is the first study to report on the effects of land use and
physicochemical factors on bacterioplankton communities in the Pearl River, which should enhance
our understanding of how aquatic ecosystems change and function in response to environmental
gradients and anthropogenic activities.

2. Materials and Methods

2.1. Study Site and Sampling

A total of 30 water samples were collected in July 2018 from 15 sites (FK, YN, DQ, YC, ZQ for
Xijiang River (XJ); SK, YD, LF, QY, LB for Beijing River (BJ); and SH, GM, JJ, WH, ZZ for Pearl River
Delta (PRD) (Figure 1) along the Pearl River in southern China. At each site, duplicate surface water
samples (approximately 30–50 m apart) were obtained. All the water samples were collected at 0.5 m
depth to minimize the error caused by sampled depth. The water samples (500 mL) were filtered for
16S rRNA sequencing through 0.2 µm pore polycarbonate membranes (Millipore, MA, USA). Another
1000 mL of water was used for physicochemical analyses.
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Figure 1. Location of the Pearl River study sites. Pie plot shows land use cover (%). 

2.2. Physicochemical Analyses and Land Use Data 

Physicochemical variables, including dissolved oxygen (DO), temperature, salinity, pH, total 
dissolved solids (TDS), specific conductivity (SpC), and oxidation-reduction potential (ORP), were 
measured in situ with a YSI multiparameter probe (YSI Proplus, Yellow Springs, OH, USA). Water 
transparency (cm) was measured by a Secchi disk (SunVote, Changsha, China) (20 cm diameter). 
Ammonium (NH4-N), nitrate (NO3-N), nitrite (NO2-N), total phosphorus (TP), phosphate (PO4-P), 
chlorophylla, and suspended solids (SS), were measured in the laboratory following standard 
protocols [26,27]. 

Satellite datasets from the Landstat 8 OLI database (Available online: 
https://landsat.gsfc.nasa.gov) (2016–2018) were used to determine land use cover. The satellite images 
were corrected and stitched in ENVI 5.3 (ITT Visual Information Solutions, Boulder, CO, USA), and 
then they classified into land use types using knowledge-based supervised and maximum likelihood 
classification methods. Land use was classified into agricultural land, forestland, grassland, urban 
land, highway, and bare soil. The 1:100,000 scale map of land use was then interpreted. ArcGIS 10.2.2 
(ESRI, Redlands, CA, USA) was applied to extract land-use percentages using a 10 km × 2 km buffer 
zone upstream of the sampling points. 

2.3. DNA Extraction, PCR Amplification, and 16S rRNA Sequencing 

DNA was extracted from all samples using the HiPure Stool DNA Kits (Magen, Guangzhou, 
China). The 16S rDNA V3-V4 hypervariable region was amplified using primers 341F 
(CCTACGGGNGGCWGCAG) and 806R (GGACTACHVGGGTATCTAAT). After being quantified 
with QuantiFluorTM fluorometer, purified amplicons by PCR were pooled in equimolar amounts 
and paired ends were sequenced (2 × 250) on an Illumina HiSeq2500 platform according to the 
standard protocols at Gene Denovo Biological Technology Co. Ltd. (Guangzhou, China). The 16S 
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2.2. Physicochemical Analyses and Land Use Data

Physicochemical variables, including dissolved oxygen (DO), temperature, salinity, pH, total
dissolved solids (TDS), specific conductivity (SpC), and oxidation-reduction potential (ORP), were
measured in situ with a YSI multiparameter probe (YSI Proplus, Yellow Springs, OH, USA). Water
transparency (cm) was measured by a Secchi disk (SunVote, Changsha, China) (20 cm diameter).
Ammonium (NH4-N), nitrate (NO3-N), nitrite (NO2-N), total phosphorus (TP), phosphate (PO4-P),
chlorophylla, and suspended solids (SS), were measured in the laboratory following standard
protocols [26,27].

Satellite datasets from the Landstat 8 OLI database (Available online: https://landsat.gsfc.nasa.gov)
(2016–2018) were used to determine land use cover. The satellite images were corrected and stitched
in ENVI 5.3 (ITT Visual Information Solutions, Boulder, CO, USA), and then they classified into
land use types using knowledge-based supervised and maximum likelihood classification methods.
Land use was classified into agricultural land, forestland, grassland, urban land, highway, and bare
soil. The 1:100,000 scale map of land use was then interpreted. ArcGIS 10.2.2 (ESRI, Redlands, CA,
USA) was applied to extract land-use percentages using a 10 km × 2 km buffer zone upstream of the
sampling points.

2.3. DNA Extraction, PCR Amplification, and 16S rRNA Sequencing

DNA was extracted from all samples using the HiPure Stool DNA Kits (Magen, Guangzhou,
China). The 16S rDNA V3-V4 hypervariable region was amplified using primers 341F (CCTACG
GGNGGCWGCAG) and 806R (GGACTACHVGGGTATCTAAT). After being quantified with
QuantiFluorTM fluorometer, purified amplicons by PCR were pooled in equimolar amounts
and paired ends were sequenced (2 × 250) on an Illumina HiSeq2500 platform according to the
standard protocols at Gene Denovo Biological Technology Co. Ltd. (Guangzhou, China). The
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16S high-throughput sequencing raw data was uploaded in the NCBI Sequence Read Archive with
accession no. PRJNA579235.

2.4. Processing of Sequencing Data

The raw reads were filtered using FASTP. Paired-end clean reads were then merged using FLASH
v. 1.2.11 [28]. Noisy sequences of the raw tags were further filtered by the QIIME v. 1.9.1 [29] to
obtain clean tags [30]. The clean tags were then subjected to reference-based chimera checking and
removal using the UCHIME algorithm to obtain effective tags. The effective tags were clustered
into operational taxonomic units (OTU) of ≥97% similarity using the UPARSE [31] pipeline. The
representative sequence within each cluster was selected from the tag sequence with the highest
abundance and then classified into taxonomic groups by a naive Bayesian model using the Ribosomal
Database Project (RDP) classifier [32] based on the SILVA [33] database.

2.5. Statistical Analysis

Physicochemical factors and land use were analyzed by principal component analysis (PCA) to
identify potential spatial patterns in the different tributaries.

Alpha diversity, including Good’s coverage, Abundance-based Coverage Estimator (ACE), Chao1,
Simpson, and Shannon indices, were calculated via QIIME. Differences in diversity indices among the
different tributaries were examined with Kruskal–Wallis tests for global comparison and Wilcoxon
tests for pairwise comparisons (p < 0.05).

Nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) were
performed to compare bacterioplankton communities based on the Bray–Curtis dissimilarity index
using the Vegan package in R [34]. Linear discriminant analysis (LDA) and linear effect size (LEfSe)
analyses were used to detect taxa with differential abundance among the three tributaries with the
Galaxy online tool (http://huttenhower.sph.harvard.edu/lefse/).

The Mantel test was used to examine the correlation between the environment (e.g., local
physicochemical factors and land use) and bacterioplankton communities, and a partial Mantel
test was used to determine the relationship between a certain type of factor (local physicochemical
factors or land use) and bacterioplankton community, controlling for the effects of other factors (land
use or local physicochemical factors). The Mantel and partial Mantel tests were conducted with
the Vegan package [34]. Redundancy analysis (RDA) was used to determine associations between
bacterioplankton communities and environmental factors. Variation partitioning analysis (VPA) was
performed to determine important variables (local physicochemical factors versus land use), how
much variation each explained, and the size of their shared effects. The Monte Carlo permutation test
(permutations = 499) was used to assess the statistical significance of these relationships. Both RDA
and VPA analyses were performed using CANOCO 5.0 software [35].

Functional changes in the bacterioplankton communities among the different tributaries were
predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt) [36]. Rarefied 16S rRNA copy numbers were used to reconstruct the metagenome functional
genes, which were further classified via KEGG categories at levels 1, 2, and 3 [37]. Multifunctional
diversity using Shannon H as a diversity index was calculated based on the KEGG category abundances
following Peter and Sommaruga [38]. Aggregated boosted tree analysis was performed to assess the
relative influence of physicochemical factors and land use on multifunctional diversity, using the
gbmplus package [39].

3. Results

3.1. Environmental Variables

Spatial variations in 15 physicochemical factors and six land use types were analyzed by PCA to
identify differences among tributaries (Figure 2). The first two principal components described 31.82%
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and 18.44% of total environmental variation, respectively (Figure 2B). Axis 1 showed a gradient of
physicochemical parameters and axis 2 showed a gradient of land use (Figure 2C). Axis 1 was highly
positively correlated with salinity (SpC, TDS), SS, and ORP, and negatively associated with water
transparency and NH4-N. Axis 2 was highly positively correlated with highways and forests, and
negatively associated with agricultural land.

Both XJ and PRD were close to each other, but distant from BJ (Figure 2A). BJ was prominently
separated from XJ and PRD by the first PCA axis, whereas XJ and PRD were further differentiated
by the second axis. Water transparency and NH4N were relatively higher in BJ than in XJ and PRD,
whereas DO and ORP were relatively higher in XJ than in BJ and PRD. PRD had relatively higher
values for agricultural land, urban land, SS, and NO2N, but lower values related to water transparency,
forests and highways.
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Figure 2. Principal component analysis (PCA) results for environmental variables in the Pearl River.
(A) Vector plot indicating correlations among environmental variables and their scores on axis 1 and
2. (B) Multivariate analyses of environmental variables using a scatter diagram, with each tributary
presented as an ellipsoid. (C) Bar plot showing eigenvalues in PCA. BJ, Beijiang; XJ, Xijiang; and PRD,
Pearl River Delta. The abbreviations of environmental variables are defined in Materials and Methods.
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3.2. Bacterioplankton Community Composition, Diversity, and Spatial Variations

A total of 1,686,856 high-quality sequences were generated from all samples. Rarefaction
curves for all samples demonstrated a plateau (Figure S1), indicating that the number of sequences
analyzed sufficiently represented bacterial diversity. Further, Good’s coverage values for all samples
ranged from 0.979 to 0.989, confirming the completeness of sequencing. The number of sequences
per sample ranged from 41,800 to 76,447, with an average of 56,229 sequences per sample. For
comparison, operational taxonomic unit (OTU) abundances were normalized to 41,800 sequences in
subsequent analyses. Of the classifiable sequences, 53 phyla were identified. The most dominant
groups, Proteobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia,
Firmicutes, Acidobacteria, Gemmatimonadetes, and Chloroflexi, accounted for 33.75%, 22.15%,
11.65%, 10.48%, 6.34%, 5.85%, 2.78%, 1.91%, 1.01%, and 0.77% of total abundance, respectively
(Figure 3A). At the genus level, 747 genera were identified. The most abundant groups were hgcI_clade,
CL500-29_marine_group, Planctomyces, Synechococcus, Aquabacterium, Ideonella, Exiguobacterium, CL500-3,
Polynucleobacter, and Acinetobacter, which accounted for 10.81%, 6.03%, 3.84%, 3.71%, 3.25%, 1.92%,
1.86%, 1.74%, 1.33%, and 1.23% of total bacterioplankton community, respectively (Figure 3B)
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diversity than BJ, but only for the Shannon index. 

Figure 3. Composition of bacterioplankton community at the phylum (A) and genus levels (B) across
all samples. Only the top 10 taxa with the largest mean relative abundance are shown. BJ, Beijiang; XJ,
Xijiang; and PRD, Pearl River Delta.
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For the diversity indices, the number of OTUs ranged from 1597 to 2450, with an average of 1954.
The Shannon and Simpson indices ranged from 6.98 to 8.69 and 0.95 to 0.99, respectively. The Chao
and ACE indices ranged from 2056.7 to 3372.4 and 2028.1 to 3397.1, respectively. Kruskal—Wallis tests
demonstrated no significant differences in species richness indices (Chao and ACE) among the three
tributaries, whereas diversity indices (Shannon and Simpson) showed significant spatial variation
(Figure 4). The Shannon and Simpson index values were higher in PRD than those in BJ, whereas no
significant differences existed between PRD and XJ. In addition, XJ showed higher diversity than BJ,
but only for the Shannon index.
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Figure 4. Comparison of alpha diversities, including Abundance-based Coverage Estimator (ACE),
Chao, and Shannon and Simpson indices among different Pearl River tributaries. BJ, Beijiang; XJ,
Xijiang; and PRD, Pearl River Delta.

Based on the NMDS and ANOSIM analyses, the samples within the three tributaries showed
significant clustering (Figure 5; Table 1; ANOSIM, p < 0.01). The BJ group was separated from the other
groups, whereas XJ and PRD demonstrated partial overlap. These spatial patterns were consistent
with environmental factors (Figure 2).
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Table 1. Analysis of similarity (ANOSIM) test of bacterioplankton communities based on Bray–Curtis
distances among three tributaries of the Pearl River.

Tests Group R Value p Value

Global test BJ–XJ–PRD 0.835 0.001

Paired comparison
BJ–XJ 0.998 0.001

BJ–PRD 0.979 0.001
XJ–PRD 0.385 0.001

LEfSe analysis was used to determine indicator taxa associated with the three tributaries. Across
phylum to genus, 12, 4, and 10 indicators were identified for XJ, PRD, and BJ groups, respectively.
Some lineages belonging to Proteobacteria, such as Methylophilales (order), Methylophilaceae (family),
Candidatus_Methylopumilus (genus), and Dechloromonas (genus), were identified as potential biomarkers
for PRD (Figure 6). Genera Deinococcus, Paenibacillus, Flavobacterium, and lubricus_group were
significantly enriched in XJ, whereas SM1A02 and CL500_3 showed high relative abundance in BJ.
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Figure 6. Linear discrimination analysis (LDA) and linear effect size (LEfSe) analysis identified most
differentially abundant taxa (LDA values > 3) across the Pearl River tributaries. Differentially abundant
taxa of each tributary are distinguished by different colors. Taxa without significant difference are
uniformly yellow. Radiating circles from inside to out represent taxonomic levels from phylum to genus.

3.3. Effects of Physicochemical Variables and Land Use on Bacterioplankton Communities

The Mantel tests indicated that environmental factors significantly shaped the bacterioplankton
communities (Mantel test: r = 0.638; p = 0.001). Partial Mantel tests revealed that the bacterioplankton
communities were affected by both physicochemical variables (partial Mantel test: r = 0.618; p = 0.001)
and land use (partial Mantel test: r = 0.225; p = 0.001). Forward selection and Monte Carlo permutation
(499 iterations) of RDA showed that environmental variables SpC (F = 14.9; p = 0.002), DO (F = 4.4;
p = 0.002), agricultural land (F = 2; p = 0.006), NH4-N (F = 2; p = 0.004), urban land (F = 1.9; p = 0.014),
and water transparency (F = 1.8; p = 0.016) significantly influenced the Pearl River bacterioplankton
communities (Figure 7A). The first and second axes modeled 39.52% and 10.04% of total variance
for bacterioplankton communities, respectively. We conducted VPA to determine which variables
(physicochemical variables versus land use) were important and how much variance each explained
alone or in combination. Physicochemical variables and land use together explained 57.6% of total
variation (Figure 7B; F = 3; p = 0.002). The conditional effect of physicochemical variables was 42.6%
(F = 2.6; p = 0.002). The conditional effect of land use was 8.9% (F = 1.6; p = 0.02). The shared effect of
these two groups was 6.1%. In total, 42.4% of variation remained unexplained.

For predicted functional profiling, Kruskal–Wallis tests indicated that there were significant
differences in all predicted KEGG level 2 pathways among the three tributaries except for “Cell
Growth and Death” within Cellular Processes and “Digestive System” within Organismal Systems
(Table S1). The functional variations among the three tributaries showed a similar spatial pattern as
the bacterioplankton communities, that is, BJ was separated from the two other tributaries, whereas
the functions of XJ and PRD showed partial overlap (Figure 8A).

Analyses based on aggregated boosted tree models were used to interpret the relative importance
of physicochemical factors and land use on multifunctional diversity. Results indicated that DO was the
major factor affecting multifunctional diversity, accounting for 24.73% of relative influence (Figure 8B),
with Chlorophylla, pH, agricultural land, and NH4-N accounting for 11.06%, 9.43%, 8.06%, and 7.88%,
respectively. The top five factors explained over half of the relative influence. The fitted line showed
that with increasing OTU diversity (Shannon index), multifunctional diversity also increased, but
when OTU diversity approached 8, multifunctional diversity reached saturation, indicating functional
redundancy within the bacterioplankton communities (Figure 8C).
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multifunctional diversity. Blue line indicates fit between OTU diversity (Shannon) and multifunctional
diversity. Gray shadow under blue line represents 95% confidence intervals.

4. Discussion

Microbial communities are fundamental in the functioning of river ecosystems. The present study
evaluated the bacterioplankton community in a large subtropical river that is highly modified by
human activities. We revealed that the three tributaries formed distinct bacterioplankton communities,
which were, in turn, significantly influenced by physicochemical variables and land use.
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The predominant bacterioplankton communities in the Pearl River were Proteobacteria and
Actinobacteria, which accounted for more than half the total abundance. This finding is consistent with
previous river-based studies [17,40–43]. Proteobacteria play an important role in aquatic carbon and
nitrogen cycling [44] and are dominant microorganisms in freshwater environments [42]. In addition,
Actinobacteria can adapt well to various freshwater ecosystems due to pronounced ecophysiological
plasticity [45]. Some taxa in Actinobacteria can utilize glucose and function in heterotrophic nitrification,
thus playing vital roles in nutrient and energy cycling in aquatic habitats [46]. Ecological functions
may explain the wide distribution of these groups in aquatic ecosystems.

Comparison of the bacterioplankton community structure among different tributaries of the
Pearl River demonstrated significant spatial differentiations in flood season. Our results corroborated
previous findings that bacterioplankton communities are highly dynamic along the longitudinal
gradient of rivers [7,8,17]. Although no significant differences were found in species richness
indices (Chao and ACE) among the three tributaries, the diversity indices (Shannon and Simpson)
showed marked spatial variation, indicating heterogeneity of bacterioplankton abundance distribution
among the different tributaries. For example, some lineages belonging to Proteobacteria, such
as Methylophilales (order), Methylophilaceae (family), Candidatus_Methylopumilus (genus), and
Dechloromonas (genus) were mainly restricted to PRD (LEfse; Figure 6). Genera such as Deinococcus,
Paenibacillus, Flavobacterium, and lubricus_group were enriched in XJ, whereas SM1A02 and CL500_3
showed relatively high abundance in BJ. Further ordination analysis revealed that the BJ group was
separated from the two other groups, whereas XJ and PRD showed partial overlap (Figure 5), despite
the fact that the PRD is tidally influenced [19]. We therefore concluded that the bacterioplankton
community structure in the PRD had obvious characteristics of freshwater ecosystems as this section
lacked salinity. Similar results have also been reported in tidal reach areas of the Yangtze River [41].

Bacterioplankton communities are relatively sensitive to environmental perturbations, and
environmental conditions and nutrient sources often determine microbial community composition
among aquatic ecosystems [4,47]. Spatial variability can reflect changes in key environmental
factors that influence the growth and survival of microbes [8]. In this study, the spatial patterns of
bacterioplankton communities were similar to the cluster patterns of environmental factors. Mantel
and RDA analyses showed that both physicochemical variables and land use significantly impacted
the bacterioplankton communities, and together explained 57.6% of total variation. These results
indicate that physicochemical variables and land use are dominant factors driving bacterioplankton
communities in the Pearl River. Forward selection analysis demonstrated that SpC, DO, agricultural
land, NH4-N, urban land, and water transparency were the most significant environmental variables
influencing the Pearl River bacterioplankton communities. Both NH4-N and water transparency are
reflections of the nutrient state in water bodies. Previous studies have identified the nutrient state as a
leading factor affecting microbes [8,48,49], as the availability of nutrients may limit bacterioplankton
growth in aquatic environments [50]. Nutrients can also influence phytoplankton and zooplankton
compositions [51], and thus indirectly drive changes in river bacterioplankton communities via food
web dynamics involving both phyto- and zooplankton. DO is considered an important index that
affects the survival and reproduction of bacteria in aquatic ecosystems [52], and thus the structure of
bacterioplankton communities is intimately linked to DO. We also observed that DO was the largest
factor affecting the multifunctional diversity of the bacterioplankton communities. The significant role
of SpC in shaping the bacterioplankton communities may partly be explained by its strong correlations
with DO, water transparency, and NH4-N (Figure 2C) or other factors not measured in this study, as
the effects of conductivity in freshwater rivers may not be directly due to mineral composition or the
salts. Ruiz-González et al. also observed that conductivity is a primary environmental determinant for
the bacterioplankton community in the Ebro River [53].

Anthropogenic factors such as agricultural and urban land use significantly contributed to the
variability in the bacterioplankton communities among the three tributaries. This result may be
explained by both direct and indirect anthropogenic influences on bacterioplankton community
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compositions. Firstly, bacteria may enter riverine waters directly through a variety of point and
non-point sources such as urban runoff, wastewater treatment plant outflows, and agricultural
areas [54,55]. The current study region is a major hub of China’s economic growth and one
of the most urbanized areas in the world, with the Pearl River being the main water source for
domestic, agricultural, and industrial usage in the surrounding cities [56]. Pollutants from agriculture,
industrial, and manufacturing discharge, and municipal sewage cause serious environmental
problems [57–59]. Therefore, it is not surprising that agricultural and urban land use significantly
shaped the bacterioplankton communities in this study. Secondly, the shared effects of physicochemical
factors and land use were 6.1%, suggesting that land use could structure the riverine bacterioplankton
community via changing river conditions caused by water outflow [8]. In the current study, we observed
a positive correlation between urban or agricultural land use and several physicochemical factors (e.g.,
NO2-N, TP, PO4-P, and SS). NO2-N, TP, and PO4-P are essential nutrients for primary production and
microbial growth [60,61]. Suspended solids can act as a nutrient source for aquatic microorganisms and
provide habitat for bacterial growth [4]. Therefore, land use activities could affect survival and growth
of certain bacteria via these physicochemical factors, and thereby indirectly shape the bacterioplankton
community. However, the pure effect of land use was only 8.9%, which was much smaller than that of
physicochemical factors (42.6%). Our results indicate that, although land use matters, physicochemical
variables are still the dominant factors structuring the bacterioplankton communities in this large river.
In addition, since there are likely to be vertical gradients of physicochemical variables with depth, such
as nutrients and particulate loads (suspended solids), it will be necessary to consider both vertical and
horizontal patterns of bacterioplankton communities in future studies.

5. Conclusions

This study investigated the bacterioplankton communities in July 2018 in three main tributaries
of the Pearl River, i.e., Beijiang, Xijiang, and Pearl River Delta, based on 16S rRNA high-throughput
sequencing. We revealed that the three tributaries formed distinct bacterioplankton communities in
relation to the environmental gradients. Both physicochemical factors and land use had direct effects
on the bacterioplankton communities, and land use may shape bacterioplankton communities through
indirect effects of physicochemical factors on the riverine ecosystem. However, physiochemical factors
outweighed land use in structuring bacterioplankton communities in this large subtropical river. This
study provided fundamental information on the diversity, spatial patterns, and influencing factors
of bacterioplankton communities in the Pearl River, which should enhance our understanding of
how bacterioplankton change in response to environmental gradients and anthropogenic activities.
However, as the current study only covered one season, future studies are needed to provide insight
into microbial communities and functions at both the spatial and temporal scale, including biological
factors and other physicochemical variables.
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Abbreviations

XJ Xijiang River
BJ Beijing River
PRD Pearl River Delta
DO Dissolved oxygen
TDS Total dissolved solids
SpC Specific conductivity
ORP Oxidation-reduction potential
NH4-N Ammonium
NO3-N Nitrate
NO2-N Nitrite
TP Total phosphorus
PO4-P Phosphate
SS Suspended solids
OTU Operational taxonomic units
PCA Principal component analysis
NMDS Nonmetric multidimensional scaling
ANOSIM Analysis of similarity
LDA Linear discriminant analysis
LEfSe Linear effect size analysis
RDA Redundancy analysis
VPA Variation partitioning analysis

PICRUSt
Phylogenetic investigation of communities by
reconstruction of unobserved states
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