
Applied Intelligence
https://doi.org/10.1007/s10489-022-04221-9

TextConvoNet : a convolutional neural network based architecture
for text classification

Sanskar Soni1 · Satyendra Singh Chouhan1 · Santosh Singh Rathore2

Accepted: 28 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper presents, TextConvoNet, a novel Convolutional Neural Network (CNN) based architecture for binary and multi-
class text classification problems. Most of the existing CNN-based models use one-dimensional convolving filters, where
each filter specializes in extracting n-grams features of a particular input word embeddings (Sentence Matrix). These
features can be termed as intra-sentence n-gram features. To the best of our knowledge, all the existing CNN models for text
classification are based on the aforementioned concept. The presented TextConvoNet not only extracts the intra-sentence
n-gram features but also captures the inter-sentence n-gram features in input text data. It uses an alternative approach for
input matrix representation and applies a two-dimensional multi-scale convolutional operation on the input. We perform an
experimental study on five binary and multi-class classification datasets and evaluate the performance of the TextConvoNet
for text classification. The results are evaluated using eight performance measures, accuracy, precision, recall, f1-score,
specificity, gmean1, gmean2, and Mathews correlation coefficient (MCC). Furthermore, we extensively compared presented
TextConvoNet with machine learning, deep learning, and attention-based models. The experimental results evidenced that
the presented TextConvoNet outperformed and yielded better performance than the other used models for text classification
purposes.

Keywords Text classification · Convolution neural network (CNN) · Multi-dimensional convolution · Deep learning

1 Introduction

Natural language processing (NLP) involves text process-
ing and extracting the key patterns from the natural/human
languages. It involves various tasks that rely on various
statistics and data-driven computation techniques. One of
the important tasks in NLP is text classification. It is a
classical problem where the prime objective is to clas-
sify (assign labels or tags) the textual contents [1]. Textual

� Satyendra Singh Chouhan
sschouhan.cse@mnit.ac.in

Sanskar Soni
2018ucp1265@mnit.ac.in

Santosh Singh Rathore
santoshs@iiitm.ac.in

1 Department of Computer Science and Engineering, MNIT
Jaipur, Jaipur, 302017, India

2 Department of Computer Science and Engineering,
ABV-IIITM Gwalior, Gwalior, 474015, India

contents can either be sentences, paragraphs, or queries [1,
2]. There are many real-world applications of text classifica-
tion, such as sentiment analysis [3], news classification [4],
intent classification [5], spam detection [6], and so on.

Text classification can be done by manual labeling of
the textual data. However, with the exponential growth of
text data in the industry and over the Internet, automated
text categorization has become very important. Automated
text classification approaches can be broadly classified into
Rule-based, Data-Driven based (Machine Learning/Deep
Learning-based approaches), and Hybrid approaches. Rule-
based approaches classify text into different categories
using a set of pre-defined rules. However, it requires
complete domain knowledge [7, 8]. Alternatively, machine
learning-based approaches have proven to be significantly
effective in recent years. All the machine learning
approaches work in two stages: first, they extract some
handcrafted features from the text. Next, these features
are fed into a machine learning model. A bag of
words, n-grams based model, term frequency, and inverse
document frequency (TF-IDF) and their extensions have
been popularly used for extracting the handcrafted features.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04221-9&domain=pdf
http://orcid.org/0000-0002-0280-7364
mailto: sschouhan.cse@mnit.ac.in
mailto: 2018ucp1265@mnit.ac.in
mailto: santoshs@iiitm.ac.in

S. Soni et al.

For the second stage, many classical machine learning
algorithms such as Support Vector Machine (SVM),
Decision Tree (DT), Conditional Probability-based such as
Naı̈ve Bayes, and other Ensemble-based approaches have
been used [9, 10].

Recently, some deep learning methods, specifically
Recurrent Neural Network (RNN) and Convolutional
Neural Network (CNN), have shown significant results in
text classification [11–16]. CNN-based models are trained
to recognize patterns in text automatically, such as key
phrases. Most CNN-based models utilize one-dimensional
(1-D) convolution followed by a one-dimensional pooling
operation (average or max) to extract a feature vector
from the input word embeddings. This feature vector
is fed into the classification layer as an input for
classification purposes. Input word embedding is a word
matrix where each row represents a word vector. Therefore,
one-dimensional (1-D) convolution extracts n-gram based
features by performing convolution operation on two or
more two-word vectors at a time.

However, improving text classification results by utiliz-
ing the n-gram features in between different sentences using
convolution operation remains an open research question
for all researchers. Furthermore, the input matrix structure
remains a point to ponder, which could be revamped to
apply multidimensional convolution. This paper presents,
TextConvoNet, a new CNN-based architecture for text clas-
sification. In contrast to the existing works, the proposed
architecture uses a 2-dimensional convolutional filter to
extract the intra-sentence and inter-sentence n-gram fea-
tures from text data. First, it represents the text data as a
paragraph-level (multi-sentence) embedding matrix, which
helps apply 2-dimensional convolutional filters. After that,
multiple convolutional filters are applied to the extracted
features. The resultant features are concatenated and fed
into the classification layer. To evaluate the performance
of the presented TextConvoNet, we perform a thorough
experimental analysis on five different benchmarked binary-
class and multi-class classification datasets. Evaluation of
the TextConvoNet is based on eight performance measures:
accuracy, precision, recall, f1-score, specificity, G-means,
and MCC. Furthermore, we compare the performance of
the TextConvoNet with state-of-the-art classification mod-
els, including attention-based models, BERT, and deep-
learning-based models.

1.1 Contributions

The main contributions of the presented work are as follows.

1. This work presents TextConvoNet, a CNN-based

architecture to represent input text data as a multidi-
mensional word embedding. The presented architecture
extracts both intra-sentence and inter-sentence features
of the text.

2. The presented architecture is comprehensively eval-
uated on five benchmarked text datasets, including
binary-class and multi-class datasets. This analysis
helps in generalizing the findings of the presented
work.

3. An extensive comparison of the presented TextCon-
voNet with existing machine learning models, deep
learning-based models, attention models, and state-of-
the-art CNN-based models is performed to validate the
performance of the presented TextConvoNet.

The rest of the article is organized as follows. Section 2
discusses the literature review. Section 3 presents infor-
mation on text classification using CNN models and pro-
vides details of the presented TextConvoNet architecture.
Section 4 provides the details of the experimental setup and
analysis. It includes details of used datasets followed by per-
formance measures and implementation details. Section 5
presents experimental results and comparison results of the
TextConvoNet with the state-of-the-art text classification
models. Section 6 discusses the main findings and lim-
itations of the presented work. Section 7 concludes the
paper along with the details of the future directions of the
presented work.

2 Literature review

Text classification is one of the important tasks in Natural
Language Processing (NLP). There have been many data-
driven-based approaches suggested for text classification.
Recently, deep learning-based approaches have emerged
and performed significantly well in text classification. This
section discusses some of the relevant deep learning-based
models suggested for text classification.

Two neural networks have been prevalent in NLP prob-
lems: Long Short Term Memory (LSTM) and Convolutional
Neural Network (CNN). LSTM can extract current infor-
mation and remember the past data points in sequence
[13, 14, 17, 18]. However, LSTM-based models have very
high training time because it is characterized as each token
per step. Recently, attention-based networks have proven
effective for Natural Langauge Processing [19, 20]. How-
ever, LSTM with attention networks introduces an addi-
tional computation burden. It is because of the exponential
function and normalized alignment score computation of all
the words in the text [21].

TextConvoNet : a convolutional neural network...

One of the early CNN-based models was Dynamic
CNN (DCNN) for text classification [22]. It used dynamic
max-pooling, where the first layer of DCNN makes a
sentence matrix using word embeddings. Then it has a
convolutional architecture that uses repeated convolutional
layers with dynamic k-max-pooling to extract feature maps
on the sentence. These feature maps are capable enough of
capturing the short and long-range relationship between the
words. Later, Kim [23] gave the simplest CNN-based model
for text classification, which has become the benchmark
architecture for many recent models for text classification.
Kim’s model adapted a single layer of convolution on top
of the input word vectors obtained from an unsupervised
neural language model (word2vec). It has been evident to
improve upon the state-of-the-art binary and multi-class text
classification problems. Recently, some attempts have been
made to enhance the architectures of CNN-based models.
Liu et al. [15, 24–26]. Instead of using pre-trained low-
dimensional word vectors as an input to CNN, authors [26]
directly applied CNNs to high-dimensional text data to learn
the embeddings of small text regions for the classification.
Most existing works have shown that convolutions of sizes
2, 3, 4, or 5 give significant results in text classification.

Some of the research explored the impact of model
performance while using word embeddings and CNN
architectures. Encouraged by VGG [27] and ResNets
[28], Conneau et al. [29] proposed a Very Deep CNN
(VDCNN) model for text processing. It applies CNN
directly at the character level and uses small convolutions
and pooling functions. The research exhibited that the
performance of VDCNN improves with the increase in
depth. In another work, Le et al. [30] showed that deep
architectures could outperform shallow architectures where
text data is represented as a sequence of characters. Later
on, in another research, Squeezed-VDCNN suggested [15]
which improved VDCNN to work on mobile platforms.
However, a basic shallow-and-wide network outperforms
deep models, such as DenseNet [31], with word embeddings
as inputs. There were some application-specific models
have been proposed for text classification. Some researchers
used deep learning-based models for short text classification
[32, 33]. In some research, language-specific (for example,
Arabic and Urdu) deep learning models have been proposed
[34, 35]. Moreover, the author used combination of CNN
and bi-LSTM for medical text classification [36]. In another
work, authors used CNN with a hierarchical encoder for
defect text classification [37].

To the best of our knowledge, above discussed, all
the CNN-based networks extract the n-gram based feature
using varied sizes of kernels/filters. In light of the above
works, we present a novel CNN-based architecture that
extracts intra-sentence n-gram features and captures the
inter-sentence n-gram features.

3 Proposed TextConvoNet architecture

This section first discusses the existing CNN-based
approach of text classification with an example
(Section 3.1). Next, the section presents details of the
proposed TextConvoNet architecture (Section 3.2). The
mathematical symbols used in this section are given in
Table 1.

3.1 Text classification using existing CNNmodels
(background)

Text classification problems can be formally defined as
follows [38].

Definition 1 Given a text dataset T consisting of labelled
text articles. Depending on a particular NLP task, text
articles have a particular label/class l ∈ L. In case of binary-
class classification, there are two labels for the text dataset.
A text article te ∈ T consists of sentences and words. Let
us say, text article tei contain m sentences s1, . . . , sm and
sentence sj (0 ≤ j ≤ m) contain n words.

The objective of text classification is to learn a model
M that can correctly classify any new text articles tnew into
label l ∈ L.

Kim et al. [23] presented a simple and effective
architecture for text classification. From now on, we call

Table 1 Symbols used in proposed framework

Symbols Description

T Text dataset

l A label/class such that l ∈ L (set of classes)

te ∈ T A text data (instance) in the dateset

sj A j th sentence in a paragraph

we Word embedding (vector) of size z

n Number of words in a sentence

x Window size of x words

Ew Embedding matrix

cp A value in feature map (1-D vector) that obtained after
convolution operation at location p

C 1-D feature map vector

b ∈ R Bias value

k One dimensional kernel size

f (.) Any activation function

H Two dimensional kernel

ri,j A value in feature map (2-D matrix) at location (i, j)

σ Sigmoid activation fuction

ŷ Predicted class

BCE Binary cross entropy

CCE Categorical cross entropy

S. Soni et al.

Kim’s CNN model throughout the paper for simplicity. This
presented architecture served as a guiding light and basis for
many CNN-based architectures for text classification. Many
recent architectures internally use this model [39–42]. In
Kim’s CNN model, sentences are matched to the embedding
vectors made available as an input matrix to the model. It
uses only a single layer of convolution with word vectors on
top obtained from an existing pre-trained model, with kernel
sizes 3, 4, and 5. The resultant feature maps are further
processed using a max-pooling layer to distill or summarize
the extracted features, subsequently sent to a fully connected
layer. Figure 1 shows a simple example of text classification
using CNN-based Kim’s model.

As shown in Fig. 1, the input to the model is a sentence
represented as a matrix. Each row of the matrix is a vector
that represents a word. 1D convolution is performed onto the
matrix with the kernel size being 3 along with 4 and 5. Max-
Pooling is performed upon the filter maps, which are further
concatenated and sent to the last fully connected layer for
classification purpose. Formally, the sentence modeling is
as follows.

Sentence modelling In each sentence, wep ∈ Rz denotes
the word embedding (a vector) for the pth word in the
sentence, where z is the word embedding dimension.
Suppose that a sentence has n words, the sentence can
now be represented as an embedding matrix Ewe ∈
R

n×z. So we can refer to it as a word matrix where
every row denotes the vectors for a particular word of
the sentence. Let wep:p+q represents the concatenation of
vectors wep, wep+1, . . . , weq . The convolution operation is
performed on this input embedding layer. It involves a filter
k ∈ R

x,z that applies to a window of x words to produce

a new feature. For example, a feature cp is generated using
the window of words wep:p+x−1 by (1).

cp = f (we(p:p+x−1).k + b) (1)

Here, b ∈ R and f denotes the bias and non-linear
activation function respectively. The filter (kernel) k applies
to all possible windows using the same weights to create the
feature map (1-D vector).

C = [c1, c2, . . . , cn−x+1] (2)

3.2 Proposed TextConvoNet architecture

The proposed TextConvoNet architecture finds n-gram fea-
tures between words of the different sentences and the
intra-sentence n-gram feature. It is because, in the text
data, having multiple sentences may have useful n-gram
features. This could only be possible by using the para-
graph matrix instead of the sentence matrix and applying
2-D filters. Thus, the motivation and the research question
are to explore “if combining n-gram-based inter-sentence
characteristics with n-gram-based intra-sentence features is
beneficial or not”. In real-world scenarios, the paragraphs
are stringed together in a very complex manner, making it
very difficult for any model to come up with correct labeling,
whether it be any sentiment or a news category. Therefore,
there may be instances when the model cannot extract the
inter-sentence features and hence fails to come up with a
suitable result. Taking inspiration from the above shortcom-
ing, we present an alternative input structure for the model
and propose a novel CNN model using the alternative input
structure and employing 2-D Convolution [43].

INTRA-SENTENCE RELATIONSHIP

Kernel Size
:1⨉2

Stride:
(1,1)

Padding:
valid

Concat

0.2 0.1 -0.3 0.4

0.5 0.2 -0.3 -0.1

-0.1 -0.3 -0.2 0.4

0.3 -0.3 0.1 0.1

0.2 -0.3 0.4 0.2

0.1 0.2 -0.1 -0.1

-0.4 -0.4 0.2 0.3

Star

Studded

yet

disappointing

sometimes

harrowing

movie

The

filming

was

excellent

3 1 2 -3
-1 2 1 -3
1 1 -1 1

Kernel size=3
filter=100

Convolution 1D (+)

-1.0

-0.5

-3.6

-0.2

0.3

-1.0

-0.2

MAX
POOLING

CONCATENATING
ALL MAPS

AFTER
DROPOUT
INTO THE

FULLY
CONNECTED

LAYER

Fig. 1 Example: Text classification using CNN [23]

TextConvoNet : a convolutional neural network...

3.2.1 Input representation

We propose a new input representation for text data. In exist-
ing works, each sentence is represented as two-dimensional
matrix where each row represents an embedding vector for
a word. Whereas in our model, the input is represented as
three-dimensional matrix. In this representation, each row
depicts each sentence of a paragraph, with each cell as a
single word and the 3rd dimension as the embeddings or
the word vectors. This representation may be termed as a
sentence matrix. The formal description of our input struc-
ture is mentioned below. For each sentence in a paragraph,
let Ewi

∈ R
z represents the word embedding for the ith

word in the sentence, where z is the dimension of the word
embedding. Given that a paragraph has m sentences and n
words in each sentence, the paragraph can be represented
as an embedding matrix W of size (m, n, z) such that W ∈
R

m×n×z.
The overall architecture of our proposed model, TextCon-

voNet, is shown in Fig. 2. The presented TextConvoNet
model uses an alternate input structure of the paragraph,
using 2D convolution instead of 1D convolution and dif-
fering kernel sizes. TextConvoNet sends the input matrix

into 4 parallel pathways of Convolution layers. The first
two layers (intra-sentence layers) with 32 filters each and
kernel sizes of (1 × 2 and 1 × 3), respectively, are con-
catenated and have the role of extricating the intra-sentence
n-gram features. The other two layers (inter-sentence) with
32 filters each and kernel sizes of (2 × 1 and 2 × 2)
concatenated together have the sole purpose of drawing
out the inter-sentence n-gram features. These two intra-
sentence and inter-sentence layers are further concatenated
and fed into the fully connected layer consisting of 64 neu-
rons and subsequently perform the relevant classification
task. A detailed explanation of the architecture is given as
follows.

3.2.2 Convolution layer

This layer applies filters to the input to create feature maps
and condense out the input’s detected features. It is a process
where we take a small matrix of numbers (called kernel or
filter) and pass it over the paragraph matrix and transform
it based on the values from filter. Let Ew(m, n) be an input
paragraph matrix of size m × n and H is a two dimensional
with kernel size of (2g + 1, 2d + 1), where g and d

Fig. 2 Proposed TextConvoNet Architecture

S. Soni et al.

are constants. The outcome of the convolutional layer is
represented by (3).

ri,j =
g∑

u=−g

(
d∑

v=−d

H [u, v]F [i − u, j − v]
)

(3)

Here, ri,j is the value at location (i, j) in the feature map.

3.2.3 ReLu activation layer

The purpose of the ReLu activation layer after each
convolution layer is to normalize output. This layer also
aids the model to learn something complex and complicated
with a reduced possibility of vanishing gradient and cheap
computation costs. The activation function for ReLu is given
in (4). Here ri,j is the input to the ReLu function.

f (ri,j) = max(0, ri,j) (4)

3.2.4 Classification

The feature maps generated by using different kernel sizes
are concatenated and fed into the fully connected layer. The
fully connected layer is a multilayer perceptron connected
to all the activations from the previous layers. The activation
of these neurons is calculated by matrix multiplication of
its weights added by an offset value. A dropout layer is
also used that randomly activates or deactivates (makes
them 0) the outgoing edges of hidden units at each update
of the training phase, which helps to reduce overfitting.
In the end, the classification layer performs classification
based on the attributes extricated by the previous layers. It
is a traditional ANN layer with softmax or sigmoid as the
activation function.

3.2.5 Loss function

For binary-class text classification task, TextConvoNet is
trained by minimizing the binary-cross entropy (5) over
a sigmoid activation function. For the task of multi-class
classification, TextConvoNet is trained by minimizing the
categorical-cross entropy (6) over a softmax activation
function. The above loss functions can be formulated as

BCE = − 1

m

m∑

i

c∑

j

yij log(σ (ŷij))) − (1 − yij)log(1 − σ(ŷij))) (5)

CCE = − 1

m

m∑

i

c∑

j

yij log

(
eŷij

∑c
r=1e

ŷij

)
(6)

Here i is the index of a training instance, j is the index
of a label (class), ŷij is output of the final fully connected
layer, and yij is the ground truth (actual value) of ith training
sample of the j th class.

3.3 Analysis of TextConvoNet

Almost all real-life conversations, reviews, and remarks are
generally very long and complex and thus convey a different
perspective in each line. However, only a single deep-rooted
sentiment is attached to the whole paragraph. To uphold
the semantics, the paragraph is converted into paragraph-
level sentence embedding without any preprocessing of text.
The embedding matrix is then sent into 4 lateral pathways
subdivided into the intra-sentence (kernel sizes 1 × 2, 1 ×
3) layer and the inter-sentence layer (kernel sizes 2 × 1,
2 × 2) with 32 filters in every layer. These hyperparameters
were selected through the GridSearchCV method from
the plethora of other suitable hyperparameter choices.
The results also complemented our thinking/approach of
selecting small window sizes to capture every minute detail.
Similarly, using the GridSearchCV method, the learning
rate was chosen to be 0.01 and the number of neurons to
be 64 for the final fully connected layer. The convolutional
layers were limited to four only, as increased layers led to
overfitting.

3.4 Variants of TextConvoNet

We have created various variants of the proposed model
to develop an effective text classification framework.
Figure 2 shows the baseline model. However, it might be
interesting to see whether increasing the number of n-gram
based kernels, and inter-sentence kernels will improve the
model’s efficacy. Thus, we have extended the baseline to
create two versions of TextConvoNet: TextConvoNet 4 and
TextConvoNet 6.

– TextConvoNet 4: The base/parent model with 4 convo-
lution layers (with different kernel sizes), 2 for extract-
ing out the intra-sentence n-gram features, and the
other 2 for extricating the n-gram based inter-sentence
attributes.

– TextConvoNet 6: It is the same framework as mentioned
above but extending the convolutional pathways to 6,
3 for extracting out intra-sentence n-gram features and
other 3 for extracting inter-sentential n-gram features.

We have also performed modifications on various
parameters of TextConvoNet: number of filters, dropout
rate, kernel sizes, number of nodes in fully connected layer
and optimizers, etc. However, the effectiveness of these
modifications is experimentally validated in Section 5.

4 Experimental setup and analysis

This section first describes the used datasets. The model
building and evaluation using the presented TextConvoNet

TextConvoNet : a convolutional neural network...

is conducted via an experimental analysis on various
binary-class and multi-class text classification datasets. This
section also discusses the used performance measures and
baseline machine-learning and deep-learning-based models
used for comparison.

4.1 Used datasets

We have performed experiments on various publicly
available binary-class and multi-class text datasets. Only a
subset of instances from the datasets has been included for
training and testing. The details of the used datasets are
given in Table 2. No additional changes have been made to
the datasets, and no preprocessing has been applied to the
text. For the experiments, we have used two binary-class
and three multi-class datasets. The binary-class datasets are
the famous SST-2 and Amazon Review dataset. The multi-
class datasets consisted of Ohsumed (R8), Twitter Airline
Sentiment, and the Coronavirus Tagged datasets. All the
datasets are publicly available and are sourced from Kaggle.
The details of the datasets are mentioned below.

– DATASET-11: Binary SST−2: This dataset is similar
to the Stanford Sentiment Treebank dataset with only
positive and negative reviews. We have removed all
neutral reviews from the dataset.

– DATASET-22: Amazon Review for Sentiment Anal-
ysis Dataset: This dataset contains a few million cus-
tomer reviews and the star ratings.

– DATASET-33: R8 Dataset: This is a subset of Reuters-
21578 dataset containing 8 categories for multiclass
classification.

– DATASET-44: Twitter User Airline Sentiment: The
dataset contains the tweets of six different airlines as
positive, negative, or neutral.

– DATASET-55: Covid Tweets: The tweets have been
pulled from Twitter followed by manual tagging as
Extremely Negative, Negative, Neutral, Positive and
Extremely Positive.

4.2 Performance evaluationmeasures

In the experimental evaluation, we used eight different
performance measures. They are- accuracy, precision,
recall, f1-score, specificity, g-means (gmean 1 and gmean
2), and MCC (Mathews Correlation Coefficient). Various
previous works related to text classification tasks have used
these measures to evaluate the performance of the prediction

1https://www.kaggle.com/jgggjkmf/binary-sst2-dataset
2https://www.kaggle.com/bittlingmayer/amazonreviews
3https://www.kaggle.com/weipengfei/ohr8r52
4https://www.kaggle.com/crowdflower/twitter-airline-sentiment
5https://www.kaggle.com/datatattle/covid-19-nlp-text-classification

models. Therefore, we have chosen these measures due to
their broad applicability. A detailed description of these
performance measures is given in Appendix B, Table 9.

To assess the statistical significance of the presented
TextConvoNet 4 and TextConvoNet 6 with other considered
machine learning and deep learning techniques, we have
performed the Wilcoxon Signed-Rank paired sample test. It
is a non-parametric test that does not assume the normality
of within-pair differences. It tests the hypothesis of whether
the median difference is zero between the tested pair or not.
We have used a significance level of 95% (i.e., α=0.05)
for all the tests. The framed Null Hypothesis (H0) and
Alternative Hypothesis (Ha) are as follow.

H0: No statistically significant difference is there
between the paired group for value α=0.05.

Ha : A statistically significant difference is present
between the paired group for value of α=0.05.

The null hypothesis can be rejected when the experi-
mental p-value has come out to be lesser than the α value,
and it can be concluded that there is a significant differ-
ence between the paired group. If this is not the case, then
automatically accept the null hypothesis.

Further, we have performed an effect size analysis
using Pearson Effect r measure. The effect size shows the
magnitude of performance difference among the groups—
the more significant the effect of size, the stronger the
relationship between the two variables. It is defined by (7).

r = z√
2n

(7)

Where 2n = number of observations, including the cases
where the difference is 0 and z is the z-score value defined by
(8).

z = |U − μ| − 0.5

σ
(8)

According to Cohen [44], the effect size is: Low, if r≈0.1;
Medium, if r≈0.3; and Large, if r≈0.5.

4.3 Machine learning and deep learningmodels
used for comparison

For a comprehensive performance evaluation of the pro-
posed TextConvoNet, we have used seven different machine
learning techniques namely, Multinomial Naive Bayes
[45], Decision Tree (DT) [46], Random Forest (RF) [47],
Support Vector Classifier (SVC) [48], Gradient Boost-
ing classifier [49], K-Nearest Neighbour (KNN) [50], and
XGBoost [51]. An evaluation of the proposed TextConvoNet
using these techniques helps establish the usability of the

https://www.kaggle.com/jgggjkmf/binary-sst2-dataset
https://www.kaggle.com/bittlingmayer/amazonreviews
https://www.kaggle.com/weipengfei/ohr8r52
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/datatattle/covid-19-nlp-text-classification

S. Soni et al.

Table 2 Details of the used experimental datasets

Dataset Type of data #Classes Exceeding ratio Vocabulary size #Training set #Testing set

DATASET-1 BINARY 2 0.471 16449 6911 1821

DATASET-2 BINARY 2 0.495 39515 15000 5000

DATASET-3 MULTICLASS 8 0.297 13737 4937 2175

DATASET-4 MULTICLASS 3 0.563 16230 10000 3000

DATASET-5 MULTICLASS 5 0.553 24742 6000 1500

Note: Exceeding ratio = number of samples with a length greater than the average length/number of all training samples

TextConvoNet and increases the generalization of the results.
Since TextConvoNet is a convolutional neural network-based
deep learning architecture, we have included some deep
learning-based approaches for performance comparison.
Specifically, we have implemented Kim’s CNN model [23],
Long Short Term Memory (LSTM) [13, 52] and VDCNN
[27] based model proposed for text classification (Table 4)
and compared our model with these models. We have also
compared our model with other recent attention and/or
transformer-based deep learning models such as BERT [53],
Attention-based BiLSTM [17], Hierarchical attention net-
works (HAN) [18], and hybrid models such as BerCon-
voNet [38] and CNN-BiLSTM [54, 55]. The description and
implementation details of these techniques are given as fol-
lows. All implementation has been carried out using Python
libraries.

4.3.1 Kim’s CNNmodel [23]

A detailed description of Kim’s model has been provided
in Section 3.1. The implementation details of this model
are as follows. In Kim’s model, sentences are matched to
the embedding vectors that are made available as an input
matrix to the model. It uses 3 parallel layers of convolution
with word vectors on top obtained from the existing pre-
trained model, with 100 filters of kernel sizes 3, 4, and
5. It is followed by a dense layer of 64 neurons and a
classification layer.

4.3.2 Long short termmemory (LSTM) [13, 52]

Long Short-Term Memory Networks (LSTMs) are a special
form of recurrent neural network (RNN) that can handle
long-term dependencies. Also, LSTMs have a chain-like
RNN structure, but the repeated module has a different
structure. Rather than having a single layer of the neural
network, there are four, which communicate in a unique
way. Some of the works used the LSTM model for different
text classification tasks [13, 14, 17, 18]. For the comparison
with our model, we used a single LSTM layer with 32
memory cells followed by the classification layer.

4.3.3 Very deep convolutional neural networks (VDCNN) [27]

Unlike TextConvoNet, which is a shallow network, VDCNN
uses multiple layered convolution and max-pooling oper-
ations. Therefore, inspired by VDCNN, we implemented
its version based on word embedding. This model uses
four different pooling processes, each of which reduces the
resolution by half, resulting in four different feature map
tiers: 64, 128, 256, and 512, followed by a max-pooling
layer. After the end of 4 convolution pair operations, the
512 × k resulting features are transformed into a single
vector which is the input to a three-layer fully connected
classifier (4096,2048,2048) with ReLU hidden units and
softmax outputs. Depending on the classification task, the
number of output neurons varies.

4.3.4 Attention+BiLSTMmodel [17]

It starts with an input layer that tokenizes input sentences
and indexed lists, followed by an embedding layer. There
exist bidirectional LSTM cells (100 hidden units) which
can be concatenated to get a representation of each token.
Attention weights are taken from linear projection and non-
linear activation. Final sentence representation is a weighted
sum of all token representations. The final classification
output is derived from a simple dense and softmax layer.

4.3.5 BERTmodel [53]

The pre-trained BERT model can be fine-tuned with just
one additional output layer to create state-of-the-art models
for a wide range of NLP tasks, and we have also used the
same strategy to compare TextConvoNet with BERT based
model. We used pre-trained bert-base-uncased embeddings
to encode, followed by a dense layer of 712 neurons ended
by a classification layer.

4.3.6 Hierarchical attention networks (HAN) model [18]

In our experiment, we set the word embedding dimension
to 300 and the GRU dimension to 50. A combination

TextConvoNet : a convolutional neural network...

of forward and backward GRU provides us with 100
dimensions for word/sentence annotation in this scenario.
The word/sentence context vectors have a dimension of
100 and are randomly initialized. We utilize a 32-piece
mini-batch size for training.

4.3.7 BERT+CNN [38]

Some recent works used BERT as a text embedder and CNN
as a classifier [38, 56]. In our experiments, the BERT+CNN
model uses kernel sizes of 2, 3, & 4 and the number of
kernels (filters) were set to 100. The word vector size was
768. The model is trained on a batch size of 100 with a
learning rate of 0.001. Adam optimizer is used with the
Binary Cross-Entropy loss function (BCE).

4.3.8 CNN+BiLSTM [54, 55]

Some recent works used a hybrid model based on CNN and
BiLSTM for text classification. In our experiments, we use a
densely connected BiLSTM layer after the two convolution
layers of kernel size 3 and one max pooling layer of size 3.
The embedding dimension was set to 300 and the learning
rate to 0.001.

4.3.9 Graph neural network basedmodels [57, 58]

In [57], a Graph Neural Network (GNN) based model,
TLGNN, is proposed. It generates a text-level graph for each
input text. It builds graphs by assuming smaller windows
in the text for extracting more local features. The details
of the methodology are given in [57]. For comparison
purposes, except for max length parameter, we consider the
exact implementation details and hyperparameters settings
provided in the paper. The max length parameter was
set to 100. In another work, the Sequential GNN model
is proposed for short text classfication [58]. It builds
individual graphs for each document based on word co-
occurrence and uses a bidirectional long short-term memory
network (Bi-LSTM) to extract the sequential features. After
that, it uses a Graph Convolutional Network (GCN) for
learning word representations. For comparison purposes, we
used the default settings of SeqGNN given in the original
paper.

4.4 Implementation details

All the experiments to examine the model performance
of TextConvoNet 4 and TextConvoNet 6 are carried out on
a system having with Dual-Core Intel Core i5 proces-
sor and 8 GB RAM, running Macintosh operating sys-
tem, with 64- bit processor and access to NVidia K80
GPU kernel. All experiments were performed in Python

3.0. The models are trained over a mini-batch size of
32 using Adam as an optimizer. The learning rate is
chosen to be 0.1, and the models are trained over 10
epochs with early stopping to avoid overfitting. All these
hyperparameters are chosen using a hyperparameter opti-
mization technique called GridSearchCV. We use GloVe6,
a pre-trained word embedding model for generating word
vectors from sentences.

5 Results and analysis

This section presents the results of the TextConvoNet on five
datasets (Section 4.1) on different performance measures.
Additionally, the comparison results of the TextConvoNet
with other machine learning and deep learning models are
reported in this section.

First, the performance comparison of TextConvoNet with
other baseline models is presented in the results and analy-
sis. A statistical test is conducted to assess whether TextCon-
voNet performed significantly different from other used
baseline models. Additionally, the performance analysis of
the presented model is performed by varying the number
of sentences in a paragraph. After that, the experimental
results to dataset size are discussed, i.e., how does the pre-
sented TextConvoNet performs with minimal data (few-shot
learning) and in challenging scenarios.

5.1 Results of TextConvoNet architecture

Table 3 shows the results of the presented TextConvoNet
architecture (TextConvoNet 6 and TextConvoNet 4) com-
pared to different machine learning and deep learning-based
models. The results are reported in terms of the used per-
formance measures, accuracy, precision, recall, f1-score,
specificity, Gmean1, and Gmean2. Table 3, reports results
for binary classification datasets (dataset 1 and dataset 2)
and multi-class classification datasets (dataset 3, dataset 4,
and dataset 5). The following inferences can be drawn from
the results.

It has been found that the presented TextConvoNet
produced significant result values for the considered
performance measures for different used datasets. For
accuracy, precision, and recall measures, the average
values of TextConvoNet 6 are 0.889, 0.829, and 0.807,
respectively. These values are higher than the other used
machine learning and deep learning-based models. The
TextConvoNet produced significant results for the f1-score
measure. The highest f1-score value is 0.969, with an

6https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/

S. Soni et al.

Table 3 Classification results of the proposed TextConvoNet and other baseline models for different performance measures, (*MNB: Multinomial
Naive Bayes, GBC= Gradient Boosting Classifier)

Models Accuracy Precision Recall F1-score Specificity Gmean1 Gmean2 MCC

DATASET-1
TextConvoNet 6 0.822 0.848 0.783 0.814 0.860 0.815 0.821 0.645
TextConvoNet 4 0.819 0.833 0.798 0.815 0.841 0.815 0.819 0.639
Kim’s model 0.798 0.753 0.886 0.814 0.711 0.817 0.793 0.605
LSTM 0.792 0.747 0.883 0.809 0.702 0.812 0.787 0.595
VDCNN 0.815 0.828 0.794 0.811 0.836 0.811 0.815 0.63
MNBs 0.819 0.804 0.844 0.823 0.795 0.824 0.819 0.639
Random forest 0.741 0.718 0.792 0.753 0.69 0.754 0.739 0.484
Decision tree 0.649 0.646 0.656 0.651 0.641 0.651 0.649 0.297
SVC 0.775 0.756 0.811 0.782 0.739 0.783 0.774 0.551
GBC 0.689 0.646 0.832 0.727 0.546 0.733 0.674 0.394
KNN 0.577 0.599 0.462 0.522 0.692 0.526 0.565 0.158
XGBoost 0.736 0.711 0.794 0.75 0.678 0.751 0.734 0.475

DATASET-2
TextConvoNet 6 0.909 0.909 0.862 0.890 0.939 0.876 0.901 0.807
TextConvoNet 4 0.871 0.829 0.905 0.855 0.859 0.861 0.879 0.741
Kim’s model 0.885 0.867 0.859 0.861 0.888 0.843 0.879 0.75
LSTM 0.877 0.849 0.83 0.845 0.904 0.852 0.87 0.75
VDCNN 0.77 0.968 0.467 0.61 0.983 0.694 0.686 0.565
MNB 0.824 0.831 0.921 0.812 0.556 0.881 0.715 0.532
Random forest 0.75 0.764 0.976 0.849 0.259 0.859 0.476 0.334
Decision tree 0.689 0.774 0.784 0.779 0.451 0.781 0.582 0.229
SVC 0.781 0.788 0.967 0.868 0.361 0.867 0.58 0.428
GBC 0.786 0.799 0.928 0.858 0.442 0.857 0.651 0.428
KNN 0.723 0.737 0.956 0.813 0.178 0.839 0.43 0.2
XGBoost 0.809 0.838 0.908 0.845 0.576 0.868 0.711 0.51

DATASET-3
TextConvoNet 6 0.992 0.968 0.968 0.968 0.995 0.968 0.981 0.963
TextConvoNet 4 0.992 0.969 0.969 0.969 0.996 0.969 0.982 0.965
Kim’s model 0.986 0.945 0.945 0.945 0.992 0.945 0.968 0.937
LSTM 0.874 0.495 0.495 0.495 0.928 0.495 0.678 0.423
VDCNN 0.965 0.862 0.862 0.862 0.98 0.862 0.919 0.842
MNB 0.99 0.958 0.958 0.958 0.994 0.958 0.976 0.952
Random forest 0.983 0.931 0.931 0.931 0.99 0.931 0.96 0.921
Decision tree 0.977 0.91 0.91 0.91 0.987 0.91 0.948 0.897
SVC 0.978 0.914 0.914 0.914 0.988 0.914 0.95 0.901
GBC 0.986 0.944 0.944 0.944 0.992 0.944 0.968 0.936
KNN 0.972 0.887 0.887 0.887 0.984 0.887 0.934 0.871
XGBoost 0.99 0.96 0.96 0.96 0.994 0.96 0.977 0.955
DATASET-4
TextConvoNet 6 0.884 0.826 0.826 0.826 0.913 0.826 0.869 0.739
TextConvoNet 4 0.873 0.809 0.809 0.809 0.904 0.809 0.855 0.713
Kim’s model 0.869 0.803 0.803 0.803 0.901 0.803 0.851 0.704
LSTM 0.876 0.813 0.813 0.813 0.907 0.813 0.859 0.72
VDCNN 0.871 0.806 0.806 0.806 0.903 0.806 0.853 0.709
MNB 0.87 0.804 0.804 0.804 0.902 0.804 0.852 0.706
Random forest 0.872 0.809 0.809 0.809 0.904 0.809 0.855 0.713
Decision tree 0.807 0.71 0.71 0.71 0.855 0.71 0.779 0.565

SVC 0.881 0.821 0.821 0.821 0.911 0.821 0.865 0.732

GBC 0.866 0.8 0.8 0.8 0.9 0.8 0.848 0.699

TextConvoNet : a convolutional neural network...

Table 3 (continued)

Models Accuracy Precision Recall F1-score Specificity Gmean1 Gmean2 MCC

KNN 0.662 0.493 0.493 0.493 0.746 0.493 0.606 0.239

XGBoost 0.877 0.815 0.815 0.815 0.908 0.815 0.86 0.723

DATASET-5

TextConvoNet 6 0.839 0.597 0.597 0.597 0.899 0.597 0.732 0.496

TextConvoNet 4 0.828 0.571 0.571 0.571 0.893 0.571 0.714 0.463

Kim’s model 0.804 0.51 0.51 0.51 0.878 0.51 0.669 0.388

LSTM 0.702 0.255 0.255 0.255 0.814 0.255 0.456 0.069

VDCNN 0.762 0.404 0.404 0.404 0.851 0.404 0.586 0.255

MNB 0.754 0.385 0.385 0.385 0.846 0.385 0.571 0.232

Random forest 0.75 0.375 0.375 0.375 0.844 0.375 0.562 0.218

Decision tree 0.729 0.321 0.321 0.321 0.83 0.321 0.517 0.152

SVC 0.76 0.401 0.401 0.401 0.85 0.401 0.584 0.251

GBC 0.78 0.449 0.449 0.449 0.862 0.449 0.622 0.312

KNN 0.69 0.224 0.224 0.224 0.806 0.224 0.425 0.03

XGBoost 0.785 0.461 0.461 0.461 0.865 0.461 0.632 0.327

Average

TextConvoNet 6 0.8892 0.8296 0.8072 0.819 0.9212 0.8164 0.8608 0.73

TextConvoNet 4 0.8766 0.8022 0.8104 0.8038 0.8986 0.805 0.8498 0.7042

Kim’s model 0.8684 0.7756 0.77925 0.7866 0.874 0.7836 0.832 0.6768

LSTM 0.8242 0.6318 0.6552 0.6434 0.851 0.6454 0.73 0.5114

VDCNN 0.8366 0.7736 0.6666 0.6986 0.9106 0.7154 0.7718 0.6002

MNB 0.8514 0.7564 0.7824 0.7564 0.8186 0.7704 0.7866 0.6122

Random forest 0.8192 0.7194 0.7766 0.7434 0.7374 0.7456 0.7184 0.534

Decision tree 0.7702 0.6722 0.6762 0.6742 0.7528 0.6746 0.695 0.428

SVC 0.835 0.736 0.7828 0.7572 0.7698 0.7572 0.7506 0.5726

GBC 0.8214 0.7276 0.7906 0.7556 0.7484 0.7566 0.7526 0.5538

KNN 0.7248 0.588 0.6044 0.5878 0.6812 0.5938 0.592 0.2996

XGBoost 0.8394 0.757 0.7876 0.7662 0.8042 0.771 0.7828 0.598

Bold entries show the significant values

average value of 0.819. Similarly, the specificity measure’s
highest value is 0.996, and the average value is 0.921.
For other measures, g-means (Gmean1 and Gmean2) and
MCC, the TextConvoNet produced average values of 0.816,
0.86, and 0.73, respectively. On average, for accuracy,
the maximum performance improvement achieved by
TextConvoNet compared to other models is 16%. Similarly,
on average, for precision, recall, and f1-score, the maximum
average improvement achieved by TextConvoNet is 24%,
21%, and 23.9%, respectively. For the other measures, on
average, the improvement achieved by TextConvoNet is 24%
in terms of Specificity, 22% in terms of Gmean1, 27% in
terms of Gmean2, and 44% in terms of MCC measure.
Overall, in multi-class datasets (3, 4, and 5), variants of
TextConvoNet perform better than all the other models in
terms of all the performance measures.

5.2 Comparison of the TextConvoNet with recent
attention-basedmodels, BERTmodel and graph
basedmodels

This section compares the performance of the presented
TextConvoNet with two attention-based models: BiLSTM
followed by attention (Attention+BiLSTM), Hierarchical
Attention Network (HAN) model, one transformer-based
BERT model, and CNN-based hybrid text classification
models: BERT-CNN (BerConvoNet) and CNN-BiLSTM.
Additionally, it is also compared with graph-based mod-
els: Text Level Graph Neural Network (TLGNN) and
Sequential GNN (SeqGNN). Section 4.3 provides details
of these models. Table 4 shows the results of TextCon-
voNet and other considered models, BiLSTM +Attention,
BERT, HAN, BerConvoNet, CNN-BiLSTM, TLGNN, and

S. Soni et al.

Table 4 Result comparison of TextConvoNet with attention and/or transformer-based deep learning models

Accuracy Precision Recall F1-score Specificity Gmean 1 Gmean 2 MCC

DATASET-1

BiLSTM + Attention 0.806 0.816 0.790 0.803 0.822 0.803 0.806 0.613

BERT 0.776 0.736 0.859 0.793 0.694 0.795 0.772 0.560

HAN 0.802 0.791 0.821 0.806 0.783 0.806 0.802 0.606

BerConvoNet 0.831 0.802 0.797 0.794 0.697 0.799 0.814 0.640

CNN-BiLSTM 0.820 0.796 0.859 0.826 0.781 0.827 0.819 0.642

TLGNN 0.710 0.725 0.675 0.699 0.745 0.700 0.709 0.422

SeqGNN 0.821 0.787 0.882 0.828 0.763 0.829 0.820 0.649

TextConvoNet 6 0.822 0.848 0.783 0.814 0.860 0.815 0.821 0.645

TextConvoNet 4 0.819 0.833 0.798 0.815 0.841 0.815 0.819 0.639

DATASET-2

BiLSTM + Attention 0.886 0.883 0.846 0.864 0.915 0.864 0.880 0.766

BERT 0.772 0.685 0.867 0.765 0.700 0.771 0.779 0.564

HAN 0.863 0.880 0.788 0.831 0.919 0.833 0.851 0.720

BerConvoNet 0.883 0.821 0.911 0.866 0.859 0.849 0.852 0.755

CNN-BiLSTM 0.872 0.901 0.861 0.881 0.886 0.881 0.873 0.745

TLGNN 0.732 0.653 0.800 0.719 0.680 0.723 0.737 0.476

SeqGNN 0.821 0.780 0.882 0.828 0.763 0.829 0.820 0.649

TextConvoNet 6 0.904 0.905 0.867 0.886 0.932 0.886 0.899 0.804

TextConvoNet 4 0.872 0.819 0.902 0.858 0.849 0.859 0.875 0.745

DATASET-3

BiLSTM + Attention 0.990 0.960 0.960 0.960 0.994 0.960 0.977 0.954

BERT 0.956 0.825 0.825 0.825 0.975 0.825 0.897 0.801

HAN 0.890 0.560 0.560 0.560 0.937 0.560 0.724 0.497

BerConvoNet 0.992 0.968 0.968 0.968 0.995 0.966 0.982 0.966

CNN-BiLSTM 0.989 0.959 0.959 0.959 0.994 0.959 0.976 0.954

TLGNN 0.944 0.777 0.777 0.777 0.968 0.777 0.867 0.745

SeqGNN 0.967 0.962 0.819 0.885 0.994 0.887 0.902 0.870

TextConvoNet 6 0.992 0.968 0.968 0.968 0.995 0.968 0.981 0.963

TextConvoNet 4 0.992 0.969 0.969 0.969 0.996 0.969 0.982 0.965

DATASET-4

BiLSTM + Attention 0.861 0.792 0.792 0.792 0.896 0.792 0.843 0.689

BERT 0.808 0.712 0.712 0.712 0.856 0.712 0.7806 0.568

HAN 0.795 0.693 0.693 0.693 0.846 0.693 0.766 0.540

BerConvoNet 0.882 0.824 0.824 0.824 0.921 0.826 0.868 0.738

CNN-BiLSTM 0.841 0.762 0.762 0.762 0.881 0.762 0.819 0.643

TLGNN 0.800 0.700 0.706 0.706 0.850 0.706 0.771 0.551

SeqGNN 0.875 0.861 0.747 0.8 0.940 0.802 0.838 0.714

TextConvoNet 6 0.884 0.826 0.826 0.826 0.913 0.826 0.869 0.739

TextConvoNet 4 0.873 0.809 0.809 0.809 0.904 0.809 0.855 0.713

DATASET-5

BiLSTM + Attention 0.799 0.493 0.493 0.493 0.874 0.499 0.660 0.374

BERT 0.711 0.278 0.278 0.278 0.819 0.278 0.477 0.098

HAN 0.700 0.250 0.250 0.250 0.812 0.250 0.450 0.062

BerConvoNet 0.828 0.572 0.572 0.572 0.894 0.572 0.721 0.474

CNN-BiLSTM 0.830 0.576 0.576 0.576 0.89 0.576 0.718 0.470

TextConvoNet : a convolutional neural network...

Table 4 (continued)

Accuracy Precision Recall F1-score Specificity Gmean 1 Gmean 2 MCC

TLGNN 0.729 0.322 0.322 0.322 0.830 0.322 0.517 0.153

SeqGNN 0.737 0.285 0.209 0.241 0.869 0.244 0.426 0.0885

TextConvoNet 6 0.839 0.597 0.597 0.597 0.899 0.597 0.732 0.496

TextConvoNet 4 0.828 0.571 0.571 0.571 0.893 0.571 0.714 0.463

Bold entries show the significant values

SeqGNN, on different performance measures. From the
table, it can be observed that the BERT and HAN mod-
els have produced relatively poor results on all the datasets
compared to other models. On datasets 1 and 3, TextCon-
voNet 4 has produced the best results in comparison with
others. On datasets 2, 4, and 5, TextConvoNet 6 has yielded
better performance than other others. Overall, it has been
found that TextConvoNet performed better in comparison
to other models. The performance of the BerConvoNet is
comparable to the presented TextConvoNet models. The pre-
sented models produced better performance than the graph-
based models for all the datasets, except for Dataset-1.

Where the SeqGNN produced better recall and f1-score val-
ues than the presented models. Furthermore, it has been
observed from Table 3 that the non-attention-based com-
peting models have produced different values for the used
performance measures themselves. However, for these mod-
els, the precision, recall, and F1-score values are the same
for datasets 3, 4, and 5. These three are multiclass datasets.
We have adopted the micro-averaging technique of calcu-
lating the values of different metrics for multiclass classi-
fication. Micro-averaging is a well-suited technique as it
doesn’t discriminate between classes based on their popu-
lation. Hence, micro-averaging in a multiclass setting with

Table 5 Different versions of TextConvoNet

Filters Dropout rate Optimizers Dense layer (units) Kernel size (intra-sentence layers) Kernel sizes (inter-sentence layers)

V1.1 32 0.4 adam 64 (1X2,1X3,1X4) (2X1,2X2,2X3)

V1.2 32 0.4 RMSProp 64 (1X2,1X3,1X4) (2X1,2X2,2X3)

V1.3 48 0.4 adam 64 (1X2,1X3,1X4) (2X1,2X2,2X3)

V1.4 48 0.5 adam 64 (1X2,1X3,1X4) (2X1,2X2,2X3)

V1.5 32 0.4 adam 96 (1X2,1X3,1X4) (2X1,2X2,2X3)

V1.6 32 0.5 adam 96 (1X2,1X3,1X4) (2X1,2X2,2X3)

V2.1 32 0.4 adam 64 (1X3,1X4,1X5) (2X2,2X3,2X4)

V2.2 32 0.4 RMSProp 64 (1X3,1X4,1X5) (2X2,2X3,2X4)

V2.3 48 0.4 adam 64 (1X3,1X4,1X5) (2X2,2X3,2X4)

V2.4 48 0.5 adam 64 (1X3,1X4,1X5) (2X2,2X3,2X4)

V2.5 32 0.4 adam 96 (1X3,1X4,1X5) (2X2,2X3,2X4)

V2.6 32 0.5 adam 96 (1X3,1X4,1X5) (2X2,2X3,2X4)

V3.1 32 0.4 adam 64 (1X2,1X3,1X4) (3X1,3X2,3X3)

V3.2 32 0.4 RMSProp 64 (1X2,1X3,1X4) (3X1,3X2,3X3)

V3.3 48 0.4 adam 64 (1X2,1X3,1X4) (3X1,3X2,3X3)

V3.4 48 0.5 adam 64 (1X2,1X3,1X4) (3X1,3X2,3X3)

V3.5 32 0.4 adam 96 (1X2,1X3,1X4) (3X1,3X2,3X3)

V3.6 32 0.5 adam 96 (1X2,1X3,1X4) (3X1,3X2,3X3)

V4.1 32 0.4 adam 64 (1X3,1X4,1X5) (3X2,3X3,3X4)

V4.2 32 0.4 RMSProp 64 (1X3,1X4,1X5) (3X2,3X3,3X4)

V4.3 48 0.4 adam 64 (1X3,1X4,1X5) (3X2,3X3,3X4)

V4.4 48 0.5 adam 64 (1X3,1X4,1X5) (3X2,3X3,3X4)

V4.5 32 0.4 adam 96 (1X3,1X4,1X5) (3X2,3X3,3X4)

V4.6 32 0.5 adam 96 (1X3,1X4,1X5) (3X2,3X3,3X4)

S. Soni et al.

all labels included, produces equal precision and recall (thus
F1-score) for datasets 3, 4, and 5 (multiclass datasets).

Overall, it has been found that the presented TextCon-
voNet outperformed all the other attention and non-attention
models for multiclass datasets (Datasets -3, 4, and 5) for all
performance measures. For binary class datasets, TexCon-
voNet produced a relatively lower performance for only 2-3
cases compared to other models. The results of the presented
TextConvoNet model are comparable or improved than the
other used attention models and the BERT model.

5.3 Effect of different parameter values
on the performance of the TextConvoNet

The presented TextConvoNet has been evaluated over a
variety of parameters given in Table 5 to analyze their
effect on the performance of the TextConvoNet for vari-
ous measures. Between any two versions, there is a change
in the kernel size. Within a version, between any two

sub-versions, there are changes in the number of filters,
dropout rate before the classification layer, optimizer, and
the units in the fully connected layer. Generally, perfor-
mance measures can change by adhering to the needs,
application, and model type. In practice, each NLP appli-
cation is unique. Therefore, a unique approach/model is
needed for every application of NLP. Hence, this analysis
has been performed on all five datasets for accuracy, preci-
sion, and recall measures, and results are recorded. Table 6
shows the results of this analysis. The following observa-
tions have been drawn from the results of various versions of
TextConvoNet.

– It has been found that Adam is the best optimizer for the
presented model. All other used optimizers took a large
amount of time to train or did not give good results, as
in the case of RMSProp (V1.2, V2.2, V3.2, V4.2).

– Dropout Rate of 0.4 was found to be optimum as the
value 0.5 model was slightly overfitting.

Table 6 Results of accuracy, precision, and recall evaluation measures on different datasets

Accuracy Precision Recall

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

V1.1 0.822 0.904 0.992 0.884 0.839 0.848 0.905 0.968 0.826 0.597 0.783 0.867 0.968 0.826 0.597
V1.2 0.825 0.880 0.991 0.867 0.799 0.811 0.891 0.963 0.801 0.497 0.848 0.821 0.963 0.801 0.497

V1.3 0.820 0.890 0.992 0.874 0.835 0.822 0.900 0.968 0.811 0.587 0.816 0.837 0.968 0.811 0.587

V1.4 0.821 0.893 0.992 0.883 0.836 0.806 0.919 0.970 0.825 0.589 0.845 0.823 0.970 0.825 0.589

V1.5 0.823 0.890 0.992 0.880 0.824 0.802 0.864 0.968 0.821 0.561 0.856 0.884 0.968 0.821 0.561

V1.6 0.805 0.896 0.992 0.868 0.825 0.762 0.916 0.968 0.802 0.563 0.886 0.835 0.968 0.802 0.563

V2.1 0.823 0.880 0.992 0.880 0.818 0.806 0.846 0.969 0.820 0.545 0.850 0.881 0.969 0.820 0.545

V2.2 0.807 0.842 0.992 0.876 0.806 0.775 0.942 0.970 0.815 0.515 0.865 0.674 0.970 0.815 0.515

V2.3 0.825 0.891 0.991 0.879 0.829 0.801 0.853 0.964 0.819 0.573 0.864 0.902 0.964 0.819 0.573

V2.4 0.825 0.896 0.991 0.886 0.831 0.821 0.916 0.963 0.830 0.579 0.829 0.835 0.963 0.830 0.579

V2.5 0.826 0.890 0.991 0.875 0.827 0.805 0.883 0.966 0.812 0.567 0.860 0.858 0.966 0.812 0.567

V2.6 0.811 0.892 0.994 0.892 0.828 0.764 0.874 0.978 0.838 0.569 0.900 0.874 0.978 0.838 0.569

V3.1 0.826 0.884 0.992 0.879 0.824 0.825 0.881 0.968 0.819 0.561 0.826 0.844 0.968 0.819 0.561

V3.2 0.794 0.874 0.992 0.854 0.806 0.732 0.817 0.966 0.782 0.516 0.925 0.912 0.966 0.782 0.516

V3.3 0.826 0.894 0.994 0.882 0.832 0.805 0.870 0.976 0.823 0.580 0.861 0.886 0.976 0.823 0.580

V3.4 0.825 0.878 0.994 0.880 0.827 0.826 0.822 0.974 0.820 0.567 0.822 0.914 0.974 0.820 0.567

V3.5 0.820 0.894 0.992 0.884 0.822 0.799 0.911 0.967 0.826 0.554 0.855 0.835 0.967 0.826 0.554

V3.6 0.818 0.886 0.992 0.869 0.824 0.785 0.907 0.968 0.804 0.560 0.875 0.819 0.968 0.804 0.560

0.825 0.808 0.917 0.968 0.817 0.563 0.861 0.851 0.968 0.817 0.563

V4.2 0.800 0.851 0.991 0.871 0.790 0.885 0.932 0.962 0.806 0.476 0.688 0.705 0.962 0.806 0.476

V4.3 0.812 0.897 0.992 0.878 0.826 0.783 0.885 0.968 0.817 0.564 0.862 0.874 0.968 0.817 0.564

V4.4 0.822 0.889 0.990 0.885 0.827 0.804 0.867 0.962 0.828 0.567 0.850 0.877 0.962 0.828 0.567

V4.5 0.825 0.896 0.993 0.884 0.815 0.828 0.890 0.971 0.827 0.537 0.821 0.865 0.971 0.827 0.537

V4.6 0.823 0.884 0.992 0.875 0.823 0.795 0.862 0.968 0.812 0.557 0.868 0.870 0.968 0.812 0.557

Bold entries show the significant values

TextConvoNet : a convolutional neural network...

Fig. 3 Training time with
different values of m

– In datasets with longer texts (such as Dataset-2 and
Dataset-5), versions 3 and 4 give slightly better results
when compared to versions 1 and 2. The large kernel
sizes in versions 3 and 4 might be the possible reason
behind the inference. In contrast, datasets (Datasets 1,
3, and 4) with comparatively smaller paragraphs do well
in versions 1 and 2.

Optimum value of number of sentences in a paragraph (m)
To evaluate our models’ run-time performance, we tracked
the training time by varying the value of (m). The rationale
behind it is that varying the value of m ranging from (m

4 to

m) leads to an increase in the computation time. The results
for the run-time performance of TextConvoNet are shown
in Fig. 3. The value of m has been varied from m

4 to m,
and the performance metrics for each of the above m-values
were calculated. The results are mentioned in Table 7. The
observations obtained from the results are as follows.

– It has been observed that TextConvoNet 6 improves
marginally for all the performance measures when
the value is varied from m

4 to m on datasets having
a maximum length of sentences in a paragraph
considerably small, as shown for (Dataset-4).

Table 7 Optimum value of m

m/4 m/2 3m/4 m

TextConvo
Net 6

TextConvo
Net 4

TextConvo
Net 6

TextConvo
Net 4

TextConvo
Net 6

TextConvo
Net 4

TextConvo
Net 6

TextConvo
Net 4

DATASET-2
Accuracy 0.890 0.886 0.901 0.887 0.889 0.888 0.901 0.894
Precision 0.894 0.864 0.903 0.901 0.888 0.875 0.899 0.911
Recall 0.844 0.872 0.863 0.828 0.849 0.863 0.867 0.835
F1 score 0.868 0.868 0.882 0.863 0.868 0.869 0.883 0.871
Specificity 0.925 0.896 0.930 0.932 0.919 0.907 0.926 0.939
Gmean1 0.869 0.868 0.883 0.864 0.868 0.869 0.883 0.872
Gmean2 0.883 0.884 0.896 0.878 0.883 0.885 0.896 0.885
MCC 0.775 0.768 0.798 0.769 0.773 0.771 0.798 0.784
[6pt] DATASET-4
Accuracy 0.826 0.820 0.827 0.828 0.829 0.829 0.829 0.824
Precision 0.565 0.551 0.569 0.570 0.573 0.572 0.572 0.559
Recall 0.565 0.551 0.569 0.570 0.573 0.572 0.572 0.559
F1 score 0.565 0.551 0.569 0.570 0.573 0.572 0.572 0.559
Specificity 0.891 0.888 0.892 0.893 0.893 0.893 0.893 0.890
Gmean1 0.565 0.551 0.569 0.570 0.573 0.572 0.572 0.559
Gmean2 0.710 0.699 0.712 0.713 0.715 0.715 0.715 0.705
MCC 0.457 0.438 0.461 0.463 0.466 0.465 0.465 0.449

Bold entries show the significant values

S. Soni et al.

– For the datasets having maximum length of sentenca
es in a paragraph considerably larger, TextConvoNet 6

performs well for lower values of m
(

m
4 , m

2 , 3m
4

)
.

The possible reason for the following observations could
be that TextConvoNet 6 finds it difficult to extract features
from smaller paragraphs due to fewer data and hence
requiring a high number of sentences to work on, as seen
in Dataset-4. On the other hand, TextConvoNet 6 drops a
portion of sentences, such as in the case of Dataset-2, having
larger paragraphs due to the ample amount of textual data
already present. Therefore, the training time reduces for the
TextConvoNet 6.

5.4 Performance evaluation of TextConvoNet
for fewshot learning

In minimal data and challenging scenarios, it becomes
rather important that the model can train well on a
minimalist dataset (i.e., a dataset with a fewer training
instances) and perform reasonably well on the test set [59].
Few-shot learning for text classification is a scenario in
which a small amount of labeled data for each category is
available. The goal of the prediction model is to generalize
new unseen examples in the same categories quickly and
effectively. In the experiment, the test dataset’s size remains
constant, as mentioned in Table 2, for all the training
percentages and is plotted against the test error rate at
those training percentages. We evaluate TextConvoNet 6,
TextConvoNet 4, Kim’s CNN model, LSTM, and VDCNN
on one binary dataset and one multi-class dataset with
varying proportions of training examples. The results are
shown in Figs. 4 and 5.

It is observed that the TextConvoNet model performs
better than all the other baseline models with lower
test error rates at an even lower proportion of training
examples. Furthermore, the TextConvoNet achieved lower
test error rates without any change in its parameter
space. TextConvoNet extracts not just the n-gram based

Fig. 4 Test error rates on Dataset-1 (Binary-class)

Fig. 5 Test error rates on Dataset-4 (Multi-class)

characteristics between the words of the same sentence
as 1-D CNN does but also the inter-sentence n-gram
based features. As a result, TextConvonet will be able to
extract additional features that 1-D CNN models will not
be able to. It strengthens our claim that the proposed
TextConvoNet performs reasonably well even with fewer
training examples.

5.5 Statistical test results

Table 8 repors the Wilcoxon signed-rank test results in
terms of p-values and effect r for the TextConvoNet 6 and
TextConvoNet 4 with other used techniques, respectively. If
the p-value is less than 0.05, the performance difference
is statistically significant and marked with the asterisk
(*); thus, the null hypothesis is rejected. The effect r
value of the test shows the magnitude of the performance
difference between the comparison groups. From Table 8,
it is observed that there is a statistically significant
difference between the presented TextConvoNet 6 and all
other considered techniques. The experimental p-values
are less than the significance level of 0.05 in all groups.
Further, effect r values are higher than 0.45 in all
the groups, showing a large magnitude of performance
diffen the TextConvoNet 6 and other techniques. Similarly,
Table 8 shows that the performance difference between
the presented TextConvoNet 4 and other techniques is also
statistically significant at the given significance level for
all cases. A significant difference can be seen in all the
groups as the p-values are below 0.05. Further, effect r
values are higher than 0.40 for all the groups showing a large
magnitude of the performance difference.

6 Discussion

This work has presented TextConvoNet, a CNN-based archi-
tecture for text classification. The essence of the text

TextConvoNet : a convolutional neural network...

Ta
bl
e
8

R
es

ul
ts

of
W

ilc
ox

on
si

gn
ed

-r
an

k
pa

ir
ed

sa
m

pl
ed

te
st

be
tw

ee
n

th
e

pr
es

en
te

d
Te

xt
C

on
vo

N
et

6,
Te

xt
C

on
vo

N
et

4,
an

d
ot

he
r

te
ch

ni
qu

es
/m

od
el

s
(*

sh
ow

in
g

th
e

gr
ou

ps
w

ith
th

e
st

at
is

tic
al

ly
si

gn
if

ic
an

td
if

fe
re

nc
e)

C
om

pa
ri

so
n

G
ro

up
P-

va
lu

e
E

ff
ec

tr
C

om
pa

ri
so

n
G

ro
up

P-
va

lu
e

E
ff

ec
tr

Te
xt

C
on

vo
N

et
6

(T
w

o-
ta

ile
d)

V
s.

Te
xt

C
on

vo
N

et
4

3.
36

E
-0

5*
0.

46
3

Te
xt

C
on

vo
N

et
4

(T
w

o-
ta

ile
d)

V
s.

Y
oo

nk
im

0.
00

01
7*

0.
41

9

Y
oo

nk
im

1.
63

E
-0

7*
0.

58
5

L
ST

M
3.

36
E

-0
5*

0.
46

3

L
ST

M
4.

66
E

-0
8*

0.
61

V
D

C
N

N
6.

75
E

-0
7*

0.
55

V
D

C
N

N
2.

77
E

-0
7*

0.
57

4
C

L
ST

M
1.

83
E

-0
5*

0.
47

9

C
L

ST
M

5.
47

E
-0

8*
0.

60
7

M
N

B
0.

00
03

9*
0.

39
5

M
N

B
1.

72
E

-0
6*

0.
53

4
R

F
4.

66
E

-0
8*

0.
61

R
F

6.
40

E
-0

8*
0.

60
4

D
T

6.
50

E
-0

9*
0.

64
8

D
T

6.
50

E
-0

9*
0.

64
8

SV
C

1.
22

E
-0

5*
0.

48
9

SV
C

1.
76

E
-0

7
0.

83
G

B
C

1.
29

E
-0

7*
0.

59

G
B

C
1.

76
E

-0
7*

0.
58

3
K

N
N

9.
89

E
-0

9*
0.

64

K
N

N
1.

07
E

-0
8*

0.
63

9
X

G
B

oo
st

5.
82

E
-0

5*
0.

44
9

X
G

B
oo

st
1.

20
E

-0
7

0.
59

1
B

iL
ST

M
+

A
tte

nt
io

n
8.

79
E

-0
5*

0.
43

8

B
iL

ST
M

+
A

tte
nt

io
n

1.
29

E
-0

8*
0.

63
5

B
E

R
T

1.
37

E
-0

8*
0.

63
4

B
E

R
T

1.
37

E
-0

8
0.

63
4

H
A

N
1.

50
E

-0
7*

0.
58

7

H
A

N
1.

16
E

-0
8*

0.
63

8
B

er
C

on
vo

N
et

0.
05

5
0.

17
8

B
er

C
on

vo
N

et
0.

00
01

1*
0.

41
2

C
N

N
-B

iL
ST

M
0.

07
0

0.
16

4

C
N

N
-B

iL
ST

M
1.

05
E

-0
6*

0.
53

T
L

G
N

N
4.

66
E

-0
9*

0.
64

T
L

G
N

N
4.

66
E

-0
9*

0.
64

2
Se

qG
N

N
1.

73
E

-0
5*

0.
46

2

Se
qG

N
N

3.
8E

-0
6*

0.
50

*M
N

B
=

M
ul

ti
no

m
ia

lN
aı̈

ve
B

ay
es

,R
F

=
R

an
do

m
Fo

re
st

,D
T

=
D

ec
is

io
n

Tr
ee

,S
V

C
=

Su
pp

or
tV

ec
to

r
C

la
ss

if
ie

r,
G

B
C

=
G

ra
di

en
tB

oo
st

in
g

C
la

ss
if

ie
r

S. Soni et al.

classification model is to extract the key phrases from the
text to assign them an appropriate label. Most existing mod-
els utilized one-dimensional (1-D) convolution followed by
a one-dimensional pooling operation to extract a feature
vector from the input word embeddings. The existing 1-
D convolution only extracts n-gram-based features from
two or more than two-word in a sentence. However, these
models did not extract the n-gram features between dif-
ferent sentences. The presented TextConvoNet architecture
uses a 2-dimensional convolutional filter and extracts text
data’s intra-sentence and inter-sentence n-gram features.
Therefore, it results in a rich feature set for better text
classification. A comprehensive evaluation of the presented
TextConvoNet using five different datasets and eight per-
formance measures showed that TextConvoNet produced
a state-of-the-art performance for text classification. We
summarize the main findings of the presented work as
follows.

– We found that the presented TextConvoNet architecture
produced a maximum average improvement in the
performance of around 20% or more for different
performance measures compared to the used machine
learning models and deep learning-based models.

– When compared with the existing attention-based
models and BERT model, we found that the presented
TextConvoNet outperformed all the other attention and
non-attention models for multiclass datasets (Datasets
3, 4, and 5). The performance of the TexConvoNet
is approximately equal to or improved than the other
models for binary class datasets.

– When the presented TexConvoNet is evaluated for
the few-shot learning scenario, we found that the
TextConvoNet produced lower test error rates than all
the other baseline models with a lower proportion of
training examples.

Table 9 Description of the performance evaluation metrics

Measures Formula Description

Accuracy T P+T N
T P+FP+T N+FN

Accuracy refers to the amount of accurate assumptions the algorithm produces for
forecasts of all sorts.

Precision T P
T P+FP

Precision is the percentage of successful cases that were reported correctly.

Recall T P
T P+FN

It is the number of right positive outcomes divided by the number of all related
samples (including samples that were meant to be positive).

F1-score 2×P×R
P+R

It is the harmonic mean of the precision and recall values.

MCC (T P∗T N−FP∗FN)√
(T P+FP)∗(T P+FN)∗(T N+FP)∗(T N+FN)

MCC is the correlation coefficient between the actual values of the class and the
predicted values of the class.

Specificity T N
T P+FN

It is used to calculate the fraction of negative values correctly classified.

Gmean1
√

Precision × Recall Gmean1 is computed as the square root of the product of precision and recall.

Gmean2
√

Specif icity × Recall Gmean2 is computed as the square root of the product of specificity and recall.

7 Conclusion and future work

This paper presented a convolutional neural network-
based deep learning architecture for text classification. The
important feature of the presented TextConvoNet is that it
extracts the intra-sentence n-gram features from the text
data and also extracts the inter-sentence n-gram features.
We used the 2-D CNN model to provide an alternate
input representation for text data (paragraph matrix).
An extensive performance evaluation of the presented
TextConvoNet architecture on five different text datasets
has been done. The results showed that the presented
TextConvoNet yielded better performance than the baseline
machine learning models and state-of-the-art deep-learning-
based models. The improved performance of TextConvoNet
has been recorded for both binary-class and multi-class
classification problems. The analysis showed that extracting
the inter-sentence features along with the intra-sentence
features improves the performance of the CNN model’s
text classification task. In future work, we will explore
the idea of representing input in higher dimensions so that
convolution operations can capture various features from the
textual data.

Appendix A

We have prepared a supplementary file, which includes the
following details. The first part discusses the implementa-
tion of all the machine learning and deep learning models
with the used values of the control parameters. This file is
available in the GitHub repository7.

Appendix B: Used performance evaluation
measures

7https://github.com/sonisanskar/TextConvoNet

https://github.com/sonisanskar/TextConvoNet

TextConvoNet : a convolutional neural network...

Declarations

Conflict of Interests The authors declare that they have no conflict of
interest.

References

1. Kowsari K, Meimandi KJ, Heidarysafa M, Mendu S, Barnes
L, Brown D (2019) Text classification algorithms: a survey.
Information 10(4):150

2. Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu
M, Gao J (2021) Deep learning–based text classification: a
comprehensive review. ACM Comput Surveys (CSUR) 54(3):1–
40

3. Wang SI, Manning CD (2012) Baselines and bigrams: simple,
good sentiment and topic classification. In: Proceedings of
the 50th annual meeting of the association for computational
linguistics (vol 2: short papers), pp 90–94

4. Bozarth L, Budak C (2020) Toward a better performance
evaluation framework for fake news classification. In: Proceedings
of the international AAAI conference on web and social media,
vol 14, pp 60–71

5. Parmar J, Soni S, Chouhan SS (2020) Owi: open-world intent
identification framework for dialog based system. In: International
conference on big data analytics, pp 329–343

6. Wang X, Qi K, An J, Zhou M (2019) Drifted twitter spam
classification using multiscale detection test on kl divergence.
IEEE Access 7:108384–108394

7. Scott S, Matwin S (1999) Feature engineering for text classifica-
tion. In: ICML. Citeseer, vol 99, pp 379–388

8. Hadi W, Al-Radaideh QA, Alhawari S (2018) Integrating
associative rule-based classification with naı̈ve bayes for text
classification. Appl Soft Comput 69:344–356

9. Ikonomakis M, Kotsiantis S, Tampakas V (2005) Text classifica-
tion using machine learning techniques. WSEAS Trans Comput
4(8):966–974

10. HaCohen-Kerner Y, Miller D, Yigal Y (2020) The influence
of preprocessing on text classification using a bag-of-words
representation. Plos One 15(5):e0232525

11. Wang J, Wang Z, Zhang D, Yan J (2017) Combining knowledge
with deep convolutional neural networks for short text classifica-
tion. In: IJCAI, vol 350

12. Shi M, Wang K, Li C (2019) A c-lstm with word embedding
model for news text classification. In: 2019 IEEE/ACIS 18th
international conference on computer and information science
(ICIS). IEEE, pp 253–257

13. Adhikari A, Ram A, Tang R, Lin J (2019) Rethinking complex
neural network architectures for document classification. In:
Proceedings of the 2019 conference of the north american chapter
of the association for computational linguistics: human language
technologies, pp 4046–4051

14. Yang P, Xu S, Li W, Ma S, Wu W, Wang H (2018) Sgm: sequence
generation model for multi-label classification. In: Proceedings
of the 27th international conference on computational linguistics,
pp 3915–3926

15. Duque AB, Santos LJ, Macêdo D, Zanchettin C (2019) Squeezed
very deep convolutional neural networks for text classification. In:
International conference on artificial neural networks. Springer,
pp 193–207

16. Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu
M, Gao J (2021) Deep learning–based text classification: a
comprehensive review. ACM Comput Surveys (CSUR) 54(3):1–
40

17. Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, Xu B (2016)
Attention-based bidirectional long short-term memory networks
for relation classification. In: Proceedings of the 54th annual
meeting of the association for computational linguistics, pp 207–
212

18. Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E (2016)
Hierarchical attention networks for document classification. In:
Proceedings of the 2016 conference of the north american chapter
of the association for computational linguistics: human language
technologies, pp 1480–1489

19. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L, Polosukhin I (2017) Attention is all you need.
CoRR arXiv:1706.03762

20. Luong M-T, Pham H, Manning CD (2015) Effective
approaches to attention-based neural machine translation. CoRR
arXiv:1508.04025

21. Wang Y, Huang M, Zhu X, Li Z (2016) Attention-based lstm for
aspect-level sentiment classification. In: Proceedings of the 2016
conference on empirical method+s in natural language processing,
pp 606–615

22. Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolu-
tional neural network for modelling sentences. In: Proceedings
of the 52nd annual meeting of the association for computational
linguistics, pp 655–665

23. Kim Y (2014) Convolutional neural networks for sentence
classification. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp 1746–1751

24. Liu J, Chang W-C, Wu Y, Yang Y (2017) Deep learning
for extreme multi-label text classification. In: Proceedings of
the 40th international ACM SIGIR conference on research and
development in information retrieval, pp 115–124

25. Effective use of word order for text categorization with
convolutional neural networks (2015) In: Proceedings of the 2015
conference of the north american chapter of the association for
computational linguistics: human language technologies, pp 103–
112

26. Johnson R, Zhang T (2017) Deep pyramid convolutional neural
networks for text categorization. In: Proceedings of the 55th
annual meeting of the association for computational linguistics
(vol 1: long papers), pp 562–570

27. Simonyan K, Zisserman A (2015) Very deep convolutional
networks for large-scale image recognition. In: Proceedings of
3rd international conference on learning representations ICLR,
pp 1–14

28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 770–778

29. Conneau A, Schwenk H, Cun YL, Barrault L (2017) Very deep
convolutional networks for text classification. In: Proceedings of
the 15th conference of the european chapter of the association
for computational linguistics, vol 1, long papers. Association for
computational linguistics, pp 1107–1116

30. Le H, Cerisara C, Denis A (2018) Do convolutional networks
need to be deep for text classification? In: Proceedings of
the Workshops at the 32nd AAAI Conference on Artificial
Intelligence, pp. 1–8.

31. Huang G, Liu Z, Maaten LVD, Weinberger KQ (2017) Densely
connected convolutional networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 4700–
4708

32. Liu Y, Li P, Hu X (2022) Combining context-relevant features
with multi-stage attention network for short text classification.
Comput Speech Language 71:101268

33. Liu J, Ma H, Xie X, Cheng J (2022) Short text classification for
faults information of secondary equipment based on convolutional
neural networks. Energies 15(7):2400

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1508.04025

S. Soni et al.

34. Akhter MP, Jiangbin Z, Naqvi IR, Abdelmajeed M, Fayyaz
M (2022) Exploring deep learning approaches for urdu text
classification in product manufacturing. Enterprise Inform Syst
16(2):223–248

35. Alsaleh D, Larabi-Marie-Sainte S (2021) Arabic text classification
using convolutional neural network and genetic algorithms. IEEE
Access 9:91670–91685

36. Ibrahim MA, Khan MUG, Mehmood F, Asim MN, Mahmood
W (2021) Ghs-net a generic hybridized shallow neural network
for multi-label biomedical text classification. J Biomed Inform
116:103699

37. Yang DU, Kim B, Lee SH, Ahn YH, Kim HY (2022) Autodefect
defect text classification in residential buildings using a multi-task
channel attention network. Sustainable Cities Soc, p 103803

38. Choudhary M, Chouhan SS, Pilli ES, Vipparthi SK (2021) Bercon-
vonet: a deep learning framework for fake news classification.
Appl Soft Comput 110:107614

39. Jacovi A, Shalom OS, Goldberg Y (2018) Understanding convo-
lutional neural networks for text classification. In: Proceedings
of the 2018 EMNLP workshop blackboxNLP: analyzing and
interpreting neural networks for NLP, pp 56–65

40. Wang Y, Sohn S, Liu S, Shen F, Wang L, Atkinson EJ, Amin S,
Liu H (2019) A clinical text classification paradigm using weak
supervision and deep representation. BMC medical informatics
and decision making 19(1):1

41. Kim H, Jeong Y-S (2019) Sentiment classification using
convolutional neural networks. Appl Sci 9(11):2347

42. Akhter MP, Jiangbin Z, Naqvi IR, Abdelmajeed M, Mehmood A,
Sadiq MT (2020) Document-level text classification using single-
layer multisize filters convolutional neural network. IEEE Access
8:42689–42707

43. Merdivan E, Vafeiadis A, Kalatzis D, Hanke S, Kroph J, Votis
K, Giakoumis D, Tzovaras D, Chen L, Hamzaoui R et al (2019)
Image-based text classification using 2d convolutional neural
networks. In: 2019 IEEE smartworld, ubiquitous intelligence &
computing, advanced & trusted computing, scalable computing &
communications, cloud & big data computing, internet of people
and smart city innovation, pp 144–149

44. Diener MJ (2010) Cohen’s d. The Corsini encyclopedia of
psychology, 1–1. Wiley Online Library

45. Murphy KP et al (2006) Naive bayes classifiers. Univ British
Columbia, vol 18(60)

46. Rasoul Safavian S, Landgrebe D (1991) A survey of decision tree
classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–
674

47. Liaw A, Wiener M et al (2002) Classification and regression by
randomforest. R news 2(3):18–22

48. Sathiya Keerthi S, Shevade SK, Bhattacharyya C, Murthy KRK
(2000) A fast iterative nearest point algorithm for support vector
machine classifier design. IEEE Trans Neural Netw 11(1):124–
136

49. Friedman JH (2001) Greedy function approximation: a gradient
boosting machine. Annals Stat, pp 1189–1232

50. Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k
for knn classification. ACM Trans Intell Syst Technol (TIST)
8(3):1–19

51. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H
et al (2015) Xgboost: extreme gradient boosting. R Package
Ver 1(4):0.4–2

52. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Computat 9(8):1735–1780

53. Kenton JDM-WC, Toutanova LK (2019) Bert: pre-training of
deep bidirectional transformers for language understanding. In:
Proceedings of NAACL-HLT, pp 4171–4186

54. Li E (2021) Densely connected bidirectional lstm with max-
pooling of cnn network for text classification. In: Advanced data
mining and applications: 16th international conference, ADMA
2020, Foshan, China, 12–14 November 2020, Proceedings.
Springer Nature, vol 12447, p 98

55. Deng J, Cheng L, Wang Z (2021) Attention-based bilstm fused cnn
with gating mechanism model for chinese long text classification.
Comput Speech Language 68:101182

56. Wan C-X, Li B (2022) Financial causal sentence recognition
based on bert-cnn text classification. J Supercomput 78(5):6503–
6527

57. Huang L, Ma D, Li S, Zhang X, Wang H (2019) Text level graph
neural network for text classification. In: Proceedings of the 2019
conference on empirical methods in natural language processing
and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp 3444–3450

58. Ke Z, Huang L, Song R, Shen Q, Xu H (2021) A sequential
graph neural network for short text classification. Algorithms
14(12):352

59. Yan L, Zheng Y, Cao J (2018) Few-shot learning for short text
classification. Multimed Tools Appl 77(22):29799–29810

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this
article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such
publishing agreement and applicable law.

	TextConvoNet: a convolutional neural network...
	Abstract
	Introduction
	Contributions

	Literature review
	Proposed TextConvoNet architecture
	Text classification using existing CNN models (background)
	Sentence modelling

	Proposed TextConvoNet architecture
	Input representation
	Convolution layer
	ReLu activation layer
	Classification
	Loss function

	Analysis of TextConvoNet
	Variants of TextConvoNet

	Experimental setup and analysis
	Used datasets
	Performance evaluation measures
	Machine learning and deep learning models used for comparison
	Kim's CNN model kim2014
	Long short term memory (LSTM) hochreiter1997long,adhikari2019rethinking
	Very deep convolutional neural networks (VDCNN) simonyan2014very
	Attention+BiLSTM model zhou2016attention
	BERT model devlin2018bert
	Hierarchical attention networks (HAN) model yang2016hierarchical
	BERT+CNN choudhary2021berconvonet
	CNN+BiLSTM li2021densely,deng2021attention
	Graph neural network based models huang2019text,zhao2021sequential

	Implementation details

	Results and analysis
	Results of TextConvoNet architecture
	Comparison of the TextConvoNet with recent attention-based models, BERT model and graph based models
	Effect of different parameter values on the performance of the TextConvoNet
	Optimum value of number of sentences in a paragraph (m)

	Performance evaluation of TextConvoNet for fewshot learning
	Statistical test results

	Discussion
	Conclusion and future work
	Appendix A A
	 B: Used performance evaluation measures
	Appendix B B: Used performance evaluation measures
	Declarations
	References

