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Abstract

Pathogen spread between farms results from interaction between the epidemiological char-

acteristics of infectious agents, such as transmission route, and the contact structure

between holdings. The objective of our study was to design network models of pig move-

ments matching with epidemiological features of pathogens. Our first model represents the

transmission of infectious diseases between farms only through the introduction of animals

to holdings (Animal Introduction Model AIM), whereas the second one also accounts for

pathogen spread through intermediate transit of trucks through farms even without any ani-

mal unloading (i.e. indirect transmission–Transit Model TM). To take the pyramidal organi-

sation of pig production into consideration, these networks were studied at three different

scales: the whole network and two subnetworks containing only breeding or production

farms. The two models were applied to pig movement data recorded in France from June

2012 to December 2014. For each type of model, we calculated network descriptive statis-

tics, looked for weakly/strongly connected components (WCCs/SCCs) and communities,

and analysed temporal patterns. Whatever the model, the network exhibited scale-free and

small-world topologies. Differences in centrality values between the two models showed

that nucleus, multiplication and post-weaning farms played a key role in the spread of dis-

eases transmitted exclusively by the introduction of infected animals, whereas farrowing

and farrow-to-finish herds appeared more vulnerable to the introduction of infectious dis-

eases through indirect contacts. The second network was less fragmented than the first

one, a giant SCC being detected. The topology of network communities also varied with

modelling assumptions: in the first approach, a huge geographically dispersed community

was found, whereas the second model highlighted several small geographically clustered

communities. These results underline the relevance of developing network models corre-

sponding to pathogen features (e.g. their transmission route), and the need to target specific

types of holdings/areas for surveillance depending on the epidemiological context.
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1. Introduction

Swine infectious diseases have economic consequences for the pig industry and can affect pub-

lic health. They can be transmitted from farm to farm through animal trade, either because of

the introduction of infected animals, or only because of transit movements of contaminated

trucks acting as mechanical vectors [1]. Disease spread is closely linked to the movement net-

work topology [1, 2]; gaining insights into spatial and contact patterns of pig trade could there-

fore be a major lever to control the spread of swine infectious diseases. To do so, animal

movement data are increasingly modelled into networks and studied using social network

analysis (SNA) methods [2–22]. Animal trade networks are composed of nodes, which are

either farms or slaughterhouses, markets, trade operators, etc., and of links, which are ship-

ments of animals between these units. These networks are directed: animal movements along

the network links are considered directed paths for the spread of a disease from one farm to

another. Cattle, sheep, pig and poultry markets have already been modelled in several coun-

tries [2, 4–22], using either movements reported by farmers through questionnaires, or move-

ments systematically recorded in a harmonised database. Unlike cattle movements, a special

feature of swine trade data is that pig movements are reported at a batch scale, without the pos-

sibility of tracking animals individually. Moreover, the pig production sector is organised in a

pyramidal way, with movements going from the nucleus and multiplying farms at the top, to

the production farms at the bottom (from farrowers to finishers). This particular structure

affects the network topology and has to be accounted for [6]. Pig movements can exhibit intri-

cate patterns, for instance when trucks collect pigs at several farms before unloading all of

them at a single site (e.g. a slaughterhouse). To our knowledge, most of swine trade networks

published in the literature have simplified these complex trajectories going through several

farms by representing only direct operations from the loading locations to the unloading sites

[2, 7–10, 19, 23]. By doing so, intermediate transit movements of trucks in farms without any

animal unloading have been neglected. Yet these movements can contribute to the spread of

diseases for which indirect transmission through mechanical vectors occurs (e.g. African

Swine Fever—ASF, Porcine Epidemic Diarrhoea—PED, Foot and Mouth Disease–FMD, Por-

cine Reproductive and Respiratory Syndrome Virus—PRRSV) [24–26]. To fit as closely as pos-

sible with the pathogens’ epidemiological features, network models should take their various

transmission routes into account. To explore the role of trucks in indirect disease spread, some

research teams developed two-mode networks with trucks or rounds being considered as a

second class of nodes in addition to holdings [6, 21]. This method makes it possible to obtain

relevant data regarding the functioning of rounds, such as the number of rounds concerning a

given farm, or the number of holdings connected in a round. However, two-mode networks

are not easy to analyse: centrality measures cannot all be computed, contact chains are not cal-

culated, and communities and connected components are usually not looked for [6, 21]. Two-

mode networks are thus often altered in a one-mode network to be more deeply analysed [6].

The objective of our study was therefore to design two one-mode network models matching

with the transmission route of pathogens, and to analyse empirical data of French pig trade.

We focused our model analysis on the different levels of the pyramidal structure inherent to

the pig production system.

2. Materials and methods

2.1. Data

2.1.1. Database description. Since 2010, pig movements in France have been recorded

and stored in the National Swine Identification Database (BDporc). This database is managed
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by swine industry professionals and is recognised by the French Ministry for Agriculture. For

the present study, we analysed the data from June 2012 to December 2014. Two levels of infor-

mation were gathered in the dataset: the characteristics of swine production units and the

details of the animal movements between the different production sites. The main features of

all swine holdings in mainland France are included in the database: identification number,

type of holding (farm, slaughterhouse, rendering company, market, assembly centre, trading

company), type of farming activity (boar station BS, nucleus SEL, multiplication MU, farrow-

ing FA, farrowing-to-finishing FF, finishing FI, farrowing-post-weaning FPW, post-weaning

PW, post-weaning-finishing PWF, small producers SP), type of production (free-range or

not), and location (post code and GPS coordinates). Movements of pigs were reported at a

batch level: groups of animals were sent off the production sites (loadings, further denoted L)

and dispatched to either alternative production units or slaughterhouses (unloadings, further

denoted U). A single truck could load and unload animals at several production sites: one

round corresponds to a series of movements of a truck, from the first loading operation to the

last unloading event making the truck empty. Each loading and unloading operation was indi-

vidually reported for each round with several pieces of information: the farm and the round

IDs, the chronological sequence of the operations during the round, the batch size and the ani-

mal category (breeding animals, piglets, and growing pigs).

2.1.2 Data cleaning and pre-processing. Data included both movements occurring

within France and movements from/to foreign countries. However, imports and exports of

animals were recorded at the country level, with a lower data resolution than movements

occurring within France. Therefore, movements from/to foreign countries were considered

separately to have a global overview of international trade movements, when a thorough analy-

sis of within-France data was performed.

A series of cleaning processes were performed on the dataset, discarding records for which

the principal pieces of information were unavailable (e.g. round or herd identification num-

bers, animal category). Farms were categorised into 11 groups according to their major activ-

ity; markets, assembly centres and trading companies were gathered into the single “trade

operators” category. Direct movements to slaughterhouses and rendering plants were excluded

from the analysis as they do not play a major role in pathogen spread. When these movements

were part of longer rounds collecting pigs from several herds before going to the slaughter-

house/rendering plant, only the last movement (from the last farm to the slaughterhouse) was

excluded. Considering the absence of any seasonality in pig trade shown in previous studies [2,

7, 23, 27, 28], movement data were aggregated on a six-month basis.

2.2. Model design

One-mode directed networks were built: holdings were considered as nodes, movements

between two nodes were considered as links. All movements between two given holdings dur-

ing the time period were aggregated into a single link. We designed two types of network to

model a round (Fig 1A) in two different ways depending on the route of transmission of the

considered pathogen. (i) In the first network model, called hereafter the Animal Introduction

Model (AIM) (Fig 1B), links between holdings represented movements of animals being

unloaded at farms. In-between movements forming a round were replaced by direct move-

ments between holdings, i.e. intermediate transit movements of a truck through a farm with-

out unloading any animal were excluded. All sites corresponding to unloading operations

were assumed to be linked to all prior loading sites of the same round. For example, assuming

successive loadings at sites L1 and L2 followed by an unloading operation at site U4, then hold-

ing U4 was linked to L1 and L2. This model is relevant for pathogens that spread between
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holdings only through the introduction of animals to farms (i.e. diseases that spread via

physical contact and for which the indirect transmission route is negligible). (ii) In the second

network model, further denoted Transit Model (TM) (Fig 1C.), links between holdings repre-

sented both movements of animals and truck transit through a farm without any animal

unloading. In a given round, each holding was therefore linked to all upstream and down-

stream farms (incoming and outgoing links, respectively). In other words, each round was

modelled as a full graph. This model could be used for pathogens that spread not only because

of the introduction of animals to farms but also through the transit of trucks through farms

even without any animal introduction (i.e. diseases for which indirect transmission occurs,

with trucks acting as mechanical vectors).

2.3. Network analysis

Considering the pyramidal structure of the pig production sector, all analyses presented below

were performed at three different scales: the whole network, the breeding farm subnetwork

(boar stations, nucleus/multiplication farms) and the production farm subnetwork. Network

analysis was performed on within-France movements only.

2.3.1. Network descriptive indicators. Several descriptive statistics of the network char-

acteristics were calculated for each network model and for each semester to analyse changes in

network properties over the study period. The first semester was running from January 1st to

June 30th, the second one from July 1st to December 31st. The classical metrics that were com-

puted were: the size (number of active nodes and links), the average degree (mean of the total

number of ingoing and outgoing links for each node), the average path length (the average num-

ber of links along the shortest paths–or geodesics–between all pairs of nodes), the diameter (the

longest geodesic), and the density (ratio of the number of links and the number of possible links

for active nodes). We also calculated the clustering coefficient (proportion of neighbours of a

node that are linked to each other), the Jaccard similarity coefficient (the JSC of two nodes being

the number of common neighbours divided by the number of neighbours of each of the two

nodes considered), the assortativity degree (Pearson correlation coefficient between the degrees

of linked nodes), and the reciprocity ratio (proportion of mutual connections, in a directed

Fig 1. Types of network models built to represent pig movements. Nodes L and U correspond to holdings

where loading and unloading operations occurred, respectively. The number corresponds to the chronology of

animal collection by a truck in one round. Fig 1.a describes the actual round of a given truck, whereas Fig 1.b

and Fig 1.c describes how the links between holdings were modelled, depending on the transmission route of

the pathogen considered. In the Animal Introduction Model—AIM (Fig 1.b), movements forming a round were

replaced with direct movements between holdings, i.e. intermediate transit movements of a truck through a farm

without unloading any animal were neglected. This network accounts for the transmission of a disease only

through the introduction of animals into farms. In the Transit Model—TM (Fig 1.c), each holding was assumed to

be linked to every other upstream and downstream farm in a given round through incoming and outgoing links,

respectively. This type of network can be used to explore the spread of a pathogen both through the introduction

of animals to farms and through the indirect route.

https://doi.org/10.1371/journal.pone.0185858.g001
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graph). The distributions of the four main centrality measurements were computed for each

holding type: degree, in-degree (number of different holdings from which a holding receives ani-

mals), out-degree (number of links going from a node), closeness (number of steps required to

access every other node from a given node) and betweenness centralities (number of geodesics

going through a node). For each network model, a power-law distribution defined as p(x)*xα

was fitted to the observed degree distribution. We used a maximum-likelihood estimator to esti-

mate scaling parameter (α) and the Kolmogorov–Smirnov (KS) goodness-of-fit statistic to test

power law fit of the data as described by Clauset et al. [29].

2.3.2. Detection of connected components and communities. Connected components.

Weakly connected components (WCCs) are sections of the network where every holding can be

reached from every other holding whatever the link direction. Based on this definition, no con-

nection exists between two WCCs and they can be considered as independent subnetworks.

Strongly connected components (SCCs) are subgraphs in which every node can be reached from

every other node via one or several directed paths. The number of WCCs and SCCs and the

size of the largest WCCs and SCCs were determined with the two network models AIM and

TM, and for the whole population as well as separately for the breeding farm and production

farm subpopulations.

Communities. Detection of network communities, defined as subsets of nodes in which

there are significantly more links than expected by chance, i.e. groups of highly connected

farms, was performed using the Infomap algorithm [30]. Briefly, the hierarchical map equation

measures the per-step average code length necessary to describe a random walker’s movement

on a network, given a hierarchical network partition, and looks for the community structure

that minimises the expected description length of the random walker trajectory. In the core

algorithm, each node is first assigned to its own module. Then, in random sequential order,

each node is moved to the neighbouring module that results in the largest decrease of the map

equation. When adding movements does not result in a decrease of the map equation, the

node stays in its original module. This procedure is repeated, each time in a new random

sequential order, until no move generates a decrease of the map equation. The network is then

rebuilt, with the modules of the last level forming the nodes at this level, and, exactly as at the

previous level, the nodes are joined into modules. This hierarchical rebuilding of the network

is repeated until the map equation cannot be reduced further. The Infomap algorithm is the

only one that can be applied on directed networks and it is considered to have the best perfor-

mance [31]. We ran the algorithm with 1,000 trials, on the two network models AIM and TM.

Like for the connected component detection, we looked for communities in the whole graph

and in the two subgraphs (breeding/production farms). We also calculated the percentages of

links connecting two different communities (i.e. bridges, or crossing links).

2.3.3. Temporal network analysis. Link and node preservation. We counted the number

of nodes remaining active from one semester to another, as well as the number of links being

preserved from one semester to another.

Node loyalty. In order to explore the nodes’ tendency to re-establish connections with the

same herds or to change trade partners over time, the node loyalty was computed for each kind

of model. The loyalty measures the fraction of preserved links of a node for a pair of two conse-

cutive network configurations in time, the time window in our case being a semester. It

involves values between 0 and 1, a loyalty value of zero indicating that all connections were dif-

ferent between the two time windows, a loyalty of one indicating that exactly the same set of

links was preserved. We computed the loyalty on the incoming contacts of nodes, thus quanti-

fying the tendency of a farmer to purchase animals from the same sellers.

Outgoing and ingoing contact chains. The outgoing and ingoing contact chains (OCC and

ICC, respectively) were computed for each type of holding over a one-month period. These
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measures capture the sequence of contacts through direct and indirect movements, taking into

account the order in which movements happen during a fixed time-period. The OCC is the

number of nodes in contact with a certain node, the root, through movements of animals leav-

ing the root. In other words, the set of influence of the root corresponds to the set of nodes that

can be reached from the root through time-respecting paths within the observation window.

Similar to the OCC, the ICC is the number of nodes in contact with the root holding through

movements reaching the root. The source set of the root is defined as the set of nodes that can

reach the root through time-respecting paths within the observation window. These two mea-

sures reflect the potential epidemic size of a disease in the network [32].

Network analyses were performed using the Igraph package in R software [33].

3. Results

3.1. Swine trade description

3.1.1. Within-France movements. A total of 21,446 sites were recorded in the BDporc

database, among them 97.9% were farms, 1.5% slaughterhouses and rendering plants, and

0.6% trade operators (Table 1). The number of farms decreased by 2.9% between June 2012

and December 2014.

The database contained 2,382,510 movement records, from which 9% were discarded after

the cleaning process (16, 44, and 40% due to missing or incomplete round, foreign movements

or missing herd identification numbers, and animal mortality or missing animal category,

respectively). A total of 838,777 rounds occurred between June 2012 and December 2014.

They were composed of several loading and unloading operations: rounds between farms

implied on average 2.5 holdings (range: 2–32), whereas rounds going to slaughterhouses were

on average composed of a single movement. The leading destination of movements was

slaughterhouses/rendering plants (75.2% of unloading operations), followed by farms (22.8%)

and trade operators (2.0%). Growing pigs were the main animal category involved in move-

ments (67% of unloaded animals), followed by piglets (31%) and breeding pigs (2%). The aver-

age number of animals transported in a given round varied with the destination site: in the

second half of 2014, a round going to farms transported on average 188 animals, whereas those

going to slaughterhouses and trade operators transported on average 84 and 25 pigs, respec-

tively. The number of animals transported in a single round increased by 4%, 1.6% and 24.8%

over the study period for rounds going to farms, slaughterhouses and trade operators, respec-

tively. The number of rounds decreased by 4% over the same period, leading to an overall

decrease of 0.6% in the total number of unloaded animals. The decline in exchanges mainly

affected breeding pigs and trade operators. These data are detailed in S1 Table.

The distribution of distances travelled by pigs in a round varied with the animal category.

Excluding movements to slaughterhouses, rendering plants and trade operators from distance

calculations, breeding pigs travelled on average 270 km (median: 200, range: 0–1,000), whereas

growing pigs travelled on average 74 km (median: 42, range: 0–999).

3.1.2. Movements from/to foreign countries. A total of 12,065 rounds came from or

went abroad over the study period, corresponding to 1.4% of the total number of rounds

recorded in the whole database. Animals sent abroad were mostly growing pigs (59.4% of ani-

mals unloaded abroad), culled sows and boars (28.7%) and breeding pigs (9.6%). Outgoing

shipments mainly went to Belgium and Germany (48.6% and 32.1%, respectively—mainly pigs

and culled sows/boars to slaughterhouse), Italy (7.0%—mainly pigs to slaughterhouses) and

Spain (7.2%—mainly pigs to slaughterhouses and breeding pigs). Animals imported from

abroad were growing pigs, piglets and breeding pigs (43.6%, 38.0% and 18.1%, respectively).

Incoming shipments came primarily from Spain (47.3%—mainly pigs to slaughterhouses),
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Belgium (33.3%—mainly piglets) and Denmark (11.5%—mainly breeding pigs). Shipments to

and from non-EU countries represented only 0.5% and 0.4% of foreign movements,

respectively.

3.2. Network description

3.2.1. Network mapping. The density of active holdings and movements varied with

regions, e.g. the network in north-western France was much denser than in south-eastern

France (Fig 2.1). Breeding farms were mostly located in the upper left diagonal part (Fig 2.2).

The network appeared denser using the TM than the AIM. Node degree was higher in the TM

approach than in the AIM, especially for farrowing and farrow-to-finish farms, and particu-

larly in the centre of France (Fig 2.3.B). Network maps were similar over the five semesters

(data not shown).

3.2.2. Network descriptive indicators. Whole network. Network descriptive statistics are

summarised in Table 2.

In the second half of 2014 for example, the network contained 11,013 and 13,784 active

holdings when using the AIM and the TM, respectively. The number of links per semester was

around six times higher in the TM than in the AIM (132,677 and 21,691 links, respectively).

Regarding link multiplicity, 51% of links between two holdings happened only once per semes-

ter in the AIM versus 68% in the TM. A holding exchanged animals on average with four dif-

ferent farms in the AIM, while a holding was in contact with 19 other farms on average in the

TM (average degree). Fig 3 shows the degree distributions of holdings on a log–log scale for

the AIM and the TM. Whatever the model, the distribution appeared similar in the five semes-

ters (data not shown) and showed power-law-like behaviour (power-law exponent alpha val-

ues being equal to 2.78 and 5.82 with p-values of the KS test being 0.29 and 0.78 for the AIM

and the TM, respectively), suggesting a scale-free structure of the network.

Distance indicators varied with the model used: a given pair of connected nodes was sepa-

rated by approximately two animal movements in the AIM versus six movements in the TM

(average path length). The average path length was shorter in the AIM and similar in the TM

Table 1. Number and proportion of sites categorised according to their major activity.

Abbreviation Type Number Percentage

Breeding farms BS Boar Station 73 0.35

SEL Nucleus 117 0.56

MU Multiplier 343 1.63

Production farms PW Post-weaning 162 0.77

PWF Post-weaning—Finishing 2,273 10.83

FA Farrowing 465 2.21

FF Farrowing-to-Finishing 5,064 24.12

FPW Farrowing—Post-weaning 288 1.37

FI Finishing 4,414 21.02

SP* Small Production 7,457 35.51

WB Wild-boar 342 1.63

Total no. of farms 20,998 100

TR Trade operators 117

SR Slaughterhouses / Rendering plants 331

As expected given the pyramidal structure inherent to the pig production system, PWF, FF, FPW, FI and SP are the most represented farm types in France.

* Small Production farms were defined as farms rearing fewer than 80 animals.

https://doi.org/10.1371/journal.pone.0185858.t001
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Fig 2. Mapping of the pig movement network in France (second half of 2014) applying the two

different models (Animal Introduction Model [AIM] and Transit Model [TM]) to the whole network, the

breeding farm subnetwork and the production farm subnetwork. The points are active holdings only (i.e.

farms having had at least one movement over the semester). Their size is proportional to their degree. Direct
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to in a random graph of the same size. The diameter also increased from 10 links in the AIM

to 20 links in the TM. The network modelled with the TM was four times denser than the AIM

one. The clustering coefficients of the network were low, but ten times higher in the TM than

in the AIM, suggesting that nodes tended to gather when considering the TM. Moreover, the

clustering coefficient was higher in the AIM and the TM than in a random graph of the same

size. Whatever the model, the Jaccard similarity coefficient was equal to zero for almost all

pairs of nodes, showing the dissimilarity of nodes. The assortativity of the AIM network was

negative (i.e. the network was disassortative). On the contrary, the assortativity degree of the

TM network was positive, indicating that nodes were more often linked to nodes with similar

degrees. Whatever the model, the reciprocity ratio was low, reflecting that links were rarely

bidirectional. All these indicators were globally stable over time, at a semester scale.

Specificities of breeding/production farms. The modelling approach was found to affect

more the indicators of the production farm subnetwork than the ones of the breeding farm

subnetwork (Table 2). For example, comparing the TM and AIM approaches, the number of

links in the production farm subnetwork was increased by a factor of eight, while it was only

three-times higher in the breeding farm subnetwork. Centrality values within farm type were

highly heterogeneous (Fig 4): for example, degree centrality ranged from 1 to 121 (median: 17)

for multiplication farms in the AIM. For the two types of models, there were significant differ-

ences in the centrality values (degree, closeness and betweenness) between types of pig farms

(Kruskal-Wallis test: p-value< 0.0001). In the AIM, nucleus, multiplication and post-weaning

farms had higher values for degree and betweenness centrality, whereas farrowing and farrow-

to-finish herds presented higher values for in-degree centrality in the TM (Fig 4).

3.2.3 Detection of connected components and communities. Connected components.

In both models, few weakly connected components (WCCs) were detected, the largest one

gathering around 90% of holdings (Table 3). In the whole network, the number of WCCs

increased by four times between the AIM and the TM, whereas it decreased by a factor of 1.5

in the breeding farm subnetwork, and increased by a factor of 14 in the production farm sub-

network. In the AIM, a high number of strongly connected components (SCCs) was found,

the largest one containing less than 1% of farms. On the contrary, the TM network was less

fragmented, with a lower number of SCCs and the detection of a giant SCC (GSCC) contain-

ing more than 70% of pig herds. The TM production farm network was more cohesive than

the TM breeding farm one. Removing all farrow-to-finish herds from the production farm net-

work led to a decrease in the size of the GSCC from 70% to 30% of the nodes contained in the

GSCC. All connected components were globally stable over time, at a semester scale.

Communities. The topology of network communities varied with the modelling assump-

tions. In the AIM approach, a huge geographically dispersed community was found in the

whole network, whereas the TM highlighted several small geographically clustered communi-

ties (Fig 5).

In the breeding farm subnetwork, a similar number of communities was detected using the

two different models, but breeding pig communities were geographically more dispersed and

contained approximately four times more holdings in the AIM than in the TM (Table 4). In

the production farm subnetwork, more communities were detected in the AIM than in the

TM, and they gathered twice more farms. Communities were found to be permeable, since at

movements to slaughterhouses are excluded. BS: boar station, SEL: nucleus, MU: multiplication, FA:

farrowing, FF: farrowing-to-finishing, FI: finishing, FPW: farrowing-post-weaning, PW: post-weaning, PWF:

post-weaning-finishing, SP: small producers.

https://doi.org/10.1371/journal.pone.0185858.g002
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Fig 3. Distribution of pig farm degrees (log scale) using the two different network models (Animal

Introduction Model [AIM] and Transit Model [TM]) and in three different considered populations

(whole network, breeding farm subnetwork, production farm subnetwork) (second half of 2014).

https://doi.org/10.1371/journal.pone.0185858.g003
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Fig 4. Distribution of degree, betweenness and closeness centralities of pig holdings in France

according to different farm categories (second half of 2014) using the two different network models

(Animal Introduction Model [AIM] and Transit Model [TM]). BS: boar station, SEL: nucleus, MU: multiplication,

FA: farrowing, FF: farrowing-to-finishing, FI: finishing, FPW: farrowing-post-weaning, PW: post-weaning, PWF:

post-weaning-finishing, SP: small producers.

https://doi.org/10.1371/journal.pone.0185858.g004
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least 25% of links connected two communities (Table 4). Communities were also found to be

stable over the five semesters (maps not shown).

3.2.4. Temporal network analysis. Link and node preservation. More than 98% and

77% of nodes remained active during two consecutive semesters in the AIM and in the TM,

respectively. Most holdings that were not active from one semester to another were small pro-

ducers. Only 51% and 36% of links were preserved from one semester to another in the AIM

and in the TM, respectively.

Node loyalty. The distribution of loyalty values computed in the AIM showed two peaks in

0 and 1, whereas the TM loyalty distribution was skewed to the right (Fig 6). In both cases, the

distributions reflected a diverse range of patterns between establishing new connections versus

repeating existing ones. The distributions of loyalty values did not exhibit variation moving

along consecutive time windows (data not shown). The 0 and 1 loyalty values corresponded to

low degree nodes for which few loyalty values are available, given the loyalty definition. Node

degree and node loyalty were found to be correlated in both network models (Pearson correla-

tion coefficient p-value< 0.001).

Table 3. Connected components in the pig movement network in France (2012–2014) using the two

different network models (Animal Introduction Model [AIM] and Transit Model [TM]) and in three dif-

ferent considered populations (whole network, breeding farm subnetwork, production farm

subnetwork).

Whole network

Semester Weakly connected components (WCCs) Strongly connected components (SCCs)

No. of

WCCs

Size of largest WCC

(% of active nodes)

No. of SCCs Size of largest SCC

(% of active nodes)

AIM TM AIM TM AIM TM AIM TM

2012–2 226 995 10,885 (94.2%) 13,063 (92.2%) 11,436 4,006 18 (0.2%) 10,075 (71.1%)

2013–1 227 1,091 10,703 (93.7%) 12,970 (91.6%) 11,290 4,087 19 (0.2%) 9,954 (70.3%)

2013–2 211 1,113 10,510 (93.7%) 12,629 (91.4%) 11,089 3,990 24 (0.2%) 9,700 (70.2%)

2014–1 232 1,207 10,261 (93.2%) 12,511 (90.8%) 10,871 4,092 17 (0.2%) 9,542 (69.2%)

2014–2 220 1,045 10,156 (93.4%) 12,182 (91.2%) 10,746 3,851 22 (0.2%) 9,381 (70.2%)

Breeding farm subnetwork

Semester Weakly connected components (WCCs) Strongly connected components (SCCs)

No. of

WCCs

Size of largest WCC

(% of active nodes)

No. of SCCs Size of largest SCC

(% of active nodes)

AIM TM AIM TM AIM TM AIM TM

2012–2 9 6 387 (95.8%) 439 (96.9%) 396 170 3 (0.7%) 254 (56.1%)

2013–1 7 3 382 (96.5%) 441 (98.9%) 393 197 2 (0.5%) 223 (50.0%)

2013–2 14 5 360 (91.14%) 444 (98.2%) 385 174 6 (1.5%) 255 (56.4%)

2014–1 12 5 375 (93.5%) 445 (98.0%) 394 174 3 (0.7%) 242 (53.3%)

2014–2 20 6 321 (81.9%) 435 (97.8%) 388 216 2 (0.5%) 178 (40.0%)

Production farm subnetwork

Semester Weakly connected components (WCCs) Strongly connected components (SCCs)

No. of

WCCs

Size of largest WCC

(% of active nodes)

No. of SCCs Size of largest SCC

(% of active nodes)

AIM TM AIM TM AIM TM AIM TM

2012–2 810 59 7,222 (74.2%) 12,450 (98.4%) 9,623 3,086 18 (0.2%) 9,475 (74.9%)

2013–1 817 65 6,888 (72.0%) 12,385 (98.6%) 9,443 3,040 19 (0.2%) 9,398 (74.8%)

2013–2 844 60 6,546 (70.1%) 12,046 (98.8%) 9,224 2,930 24 (0.3%) 9,130 (74.9%)

2014–1 861 61 6,199 (67.9%) 11,912 (98.8%) 9,008 2,902 17 (0.2%) 9,001 (74.7%)

2014–2 839 80 6,120 (68.3%) 11,593 (98.1%) 8,838 2,869 22 (0.2%) 8,826 (74.7%)

https://doi.org/10.1371/journal.pone.0185858.t003
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Fig 5. Mapping of the eight largest communities in the pig movement network in France (second half

of 2014) using the two different network models (Animal Introduction Model [AIM] and Transit Model

[TM]) and in three different considered populations (whole network, breeding farm subnetwork,

production farm subnetwork).

https://doi.org/10.1371/journal.pone.0185858.g005
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Ingoing and outgoing contact chains. Ingoing and outgoing contact chains computed

over a one-month period exhibited different distributions depending on the network model

and the farm type (Fig 7). The TM contact chain figures were much higher than the AIM ones.

In the AIM and in the TM, nucleus and multiplication farms showed a larger OCC than other

farm types. In the TM, the ICC was found to be higher for production farms than for the other

holding types. The contact chain distributions computed over one-month periods were stable

over time (data not shown).

4. Discussion

Exploring the topology of animal movements provides insights into disease epidemiology and

gives the opportunity to implement targeted surveillance strategies and control measures. The

primary interest of our study lies in building pig movement network models adapted to the

epidemiological features of pathogens, in particular to their transmission route. To our knowl-

edge, most studies in the literature only took into account direct movements of animal intro-

duction or built two-mode networks that cannot be explored as deeply as one-mode ones [2, 6,

8, 9, 21, 27]. Only a few studies mentioned the role of trucks, material, visitors or staff as poten-

tial indirect vectors, or explored the issue of shared trucks [19, 21]. Truck transit movements

may nevertheless play a central role in the transmission of highly contagious diseases such as

Table 4. Communities in the pig movement network in France (2012–2014) using the two different net-

work models (Animal Introduction Model [AIM] and Transit Model [TM]) and in three different con-

cerned populations (whole network, breeding farm subnetwork, production farm subnetwork).

Whole network

Semester No. of

communities

Size of largest community

(% of active nodes)

No. of crossing links

(% of total no. of links)

AIM TM AIM TM AIM TM

2012–2 1,673 1,816 3,079 (26.6%) 417 (2.9%) 9,541 (40.6%) 47,143 (34.3%)

2013–1 1,653 1,937 3,283 (28.8%) 384 (2.7%) 9,249 (40.3%) 45,980 (34.1%)

2013–2 1,573 1,957 3,344 (29.8%) 393 (2.8%) 8,758 (39.2%) 45,241 (33.2%)

2014–1 1,553 2,073 3,326 (30.2%) 363 (2.6%) 8,511 (39.2%) 43,628 (32.9%)

2014–2 1,523 1,874 3,338 (30.7%) 351 (2.6%) 8,013 (38.4%) 43,289 (33.5%)

Breeding farm subnetwork

Semester No. of

communities

Size of largest community

(% of active nodes)

No. of crossing links

(% of total no. of links)

AIM TM AIM TM AIM TM

2012–2 73 70 81 (20.0%) 21 (4.6%) 303 (43.1%) 857 (46.9%)

2013–1 60 72 162 (40.9%) 32 (7.2%) 311 (43.4%) 831 (44.2%)

2013–2 66 71 152 (38.5%) 37 (8.2%) 236 (36.4%) 682 (38.0%)

2014–1 66 71 174 (43.4%) 21 (4.6%) 239 (36.5%) 739 (40.9%)

2014–2 75 66 66 (16.8%) 31 (7.0%) 254 (41.2%) 645 (36.8%)

Production farm subnetwork

Semester No. of

communities

Size of largest community

(% of active nodes)

No. of crossing links

(% of total no. of links)

AIM TM AIM TM AIM TM

2012–2 1,802 825 123 (1.3%) 407 (3.2%) 3,999 (28.1%) 38,452 (32.1%)

2013–1 1,787 863 178 (1.9%) 388 (3.1%) 3,655 (26.6%) 37,007 (31.7%)

2013–2 1,705 848 175 (1.9%) 337 (2.8%) 3,420 (25.3%) 37,181 (31.4%)

2014–1 1,684 872 136 (1.5%) 351 (2.9%) 3,335 (25.9%) 35,625 (30.9%)

2014–2 1,653 874 181 (2.0%) 335 (2.8%) 3,217 (25.4%) 34,996 (31.3%)

https://doi.org/10.1371/journal.pone.0185858.t004
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Fig 6. Node loyalty distributions in the pig movement network in France (second half of 2012 / first

half of 2013) using the two different network models (Animal Introduction Model [AIM] and Transit

Model [TM]).

https://doi.org/10.1371/journal.pone.0185858.g006
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Fig 7. Distribution of ingoing and outgoing contact chains of pig holdings in France according to different

farm categories (1 to 31 December 2014) using the two different network models (Animal Introduction

Model [AIM] and Transit Model [TM]). BS: boar station, SEL: nucleus, MU: multiplication, FA: farrowing, FF:

farrowing-to-finishing, FI: finishing, FPW: farrowing-post-weaning, PW: post-weaning, PWF: post-weaning-

finishing, SP: small producers.

https://doi.org/10.1371/journal.pone.0185858.g007
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ASF, PED, and FMD. The pig production sector is organised in a pyramidal way: at the top,

nucleus farms provide purebred sows and boars to multiplication farms, which produce cross-

bred pigs and gilts to supply production farms, producing pigs for slaughter. Assuming that

this specific structure leads to a particular topology of the movement network, we performed a

multi-scale analysis suiting the pyramidal organisation: we analysed both the whole network

and two subnetworks containing (1) only the breeding farms (nucleus, multipliers, and boar

stations); and (2) only the production farms (from farrowers to finishers). Our network analy-

sis did not account for movements to slaughterhouses, as they are considered as an epidemio-

logical dead-end. Because several studies have proven that trade in the pig production sector

does not show any seasonal pattern in France [2, 7, 23, 27, 28], we analysed the network at a

semester scale. This temporal scale was considered appropriate to reflect the global trade

behaviour of farms while making it possible to observe evolutions over the study period. Our

two models were applied to all movement data recorded in France from June 2012 to Decem-

ber 2014 in the National Swine Identification Database (BDporc). The information provided

by this database is managed by swine industry professionals, is recognised by the French Min-

istry for Agriculture, and can therefore be considered trustworthy. Moreover, a thorough

cleaning stage was carried out to manage incorrect or incomplete data. This kind of electronic

data is also more accurate than movements reported in questionnaires [34]. An even more

accurate alternative would be to use GPS (Global Positioning System) to geographically locate

trucks and precisely track their movements, but this would require the approval of transporta-

tion operators to share this kind of data, as well as advanced analytical methods to manage

such data. In contrast with other studies that were limited to a single region or a sample of vol-

untary farms or to a short period of time [6, 9, 21], we used recent data from the whole country

and covering a long period of time. Finally, the quality of data–in terms of accuracy, reliability,

and comprehensiveness–guarantees the robustness of our results.

The analysis of movements over the study period showed a decline in the number of

rounds, while the number of animals moved per round increased, leading to an overall slight

decrease in animal trade movements, which was also reported in other European studies [8].

This is consistent with the intensification of the pig production industry (that is to say a

decrease in the number of pig farms balanced by an increase in the number of animals reared),

resulting in the observation of fewer movements involving larger pig batches. The level of

round complexity was highly heterogeneous, the average number of holdings implied in a

round being 2.5 but reaching 32. This is consistent with the distance travelled by pigs in a

round (excluding foreign movements), ranging from 0 to 1,000 km. The distances reported in

our study are longer than in other European countries such as Belgium or England/Wales [8,

19], in accordance with the results of the comparative study conducted by Relun et al. [23].

The longest and most complex rounds implied culled boar/sows and breeding pigs. They were

mainly located in central and south-western France where the production is less intensive and

rounds are thus composed of several movements of small batches. Movements from/to foreign

countries represent a small fraction of the pig trade in France and are linked to specific mar-

kets, but they are nevertheless important to take into consideration in order to prevent the

introduction of a disease that is absent from France (e.g. FMD, ASF, PED).

Whatever the modelling approach, network structure properties exhibited overall stability

over the study period: (i) at a semester scale, active nodes globally remained the same from one

semester to another, except for small production farms; (ii) network metrics were similar from

one semester to another; and (iii) connected components and communities were also stable

over the study period. This stability of the pig production network has already been described

in several papers [8, 23, 27] and enables us to generalise the findings of our study to the current

swine trade network. However, loyalty distributions showed relative volatility of farms’ trade
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partners, indicating that future links may be difficult to predict. The same trend has already

been described in a cattle movement network [35].

Our two network models exhibited two classical patterns of connectivity described in other

studies [2, 6, 8, 9, 21, 23, 28], known as (i) small-world, and (ii) scale-free topologies. (i) What-

ever the model, our networks had higher clustering coefficients and shorter or similar average

path length than random graphs of the same size (corresponding to a small-world topology)

[36, 37]. This means that most nodes are not directly connected to each other but can be

reached through a small number of connections. This allows diseases to spread quickly within

clusters but also to reach other clusters in the network by crossing a few links. This topology

facilitates persistent infection in the pig population but the size of an epidemic in a small-

world network tends to be smaller when compared to a random network. (ii) The holdings’

degree in both networks showed power-law-like behaviour (heavy tailed distribution), mean-

ing that many of the nodes had few connections while a few nodes had many connections (cor-

responding to a scale-free structure) [38]. This indicates the presence of highly connected

nodes, i.e. of hubs, that are of central importance with regard to disease spread (also called

super-spreaders). Epidemics can therefore spread faster in scale-free networks than in random

ones. Scale-free networks can withstand random attacks but are highly vulnerable to targeted

attacks towards the hubs [11, 39, 40].

Size, degree and distance metrics (average path length, diameter, density) observed in the

AIM are consistent with the literature data, especially for the pig movement networks in

France [23, 41]. As expected, given the model assumptions, these values increased when

switching from the AIM to the TM. The differential modelling approach affected more pro-

duction farms than breeding farms, suggesting that production farms may play a key role in

the spread of indirectly transmitted diseases. The assortativity degree of the AIM was negative,

in accordance with the results of previous studies [6, 7, 10]. However, the TM network was

found to be assortative. According to [42], disassortative networks are particularly sensitive to

the removal of high-degree farms since they are dispersed over the whole network. Thus, fewer

holdings have to be removed to destroy the largest component compared to a network with

positive assortativity degree. Like in Thakur et al. [21], the reciprocity ratio was very low,

reflecting the pyramidal structure of the pig production sector with unidirectional links going

from the top breeding farms to the bottom production farms. Similarly, the Jaccard similarity

coefficient was zero for almost all pairs of nodes, showing that movements occurred mainly

between different farm types.

Centrality values within a farm type were highly heterogeneous (except for closeness cen-

trality, see below). In the AIM network, the high out-degree distributions observed for breed-

ing farms compared with production farms is in accordance with previously published papers

[6, 10, 21] and with the pyramidal structure of pig production. It shows their potential key role

in disease spread to the whole network in case of introduction of the disease to this kind of

farm. Their high betweenness score also proves that disease surveillance should be primarily

directed towards these units. Indeed, holdings with a high betweenness centrality could build

so-called bridges between different network components. Removing these specific holdings

would fragment the network. In the TM network, farrow and farrow-to-finish farms exhibited

high in-degree distribution, whereas post-weaners had the highest in-degree values in the

AIM. This results in a similar total degree for farrow, farrow-to-finish, nucleus and multiplica-

tion farms in the TM. This could be explained by the fact that farrow and farrow-to-finish

farms were part of more complex rounds involving more truck transit movements. It shows

that farrow and farrow-to-finish farms are more vulnerable to the introduction of diseases for

which indirect transmission can occur, and that surveillance measures specific to these diseases

should target these farm categories. In the AIM, post-weaning and post-weaning—finishing
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farms exhibited the highest median ingoing closeness, which is consistent with the literature

[10]. A high value for ingoing closeness centrality implies that the trade partners of a specific

holding can reach the node in only a few movements. In the AIM, nucleus and multiplication

farms had the highest median outgoing closeness [10]. High outgoing closeness means that a

seller reaches its client in only a few steps. Thus, holdings with high outgoing closeness central-

ity can spread a pathogen in the production network faster. The distributions of the ingoing

and outgoing closeness centralities were not highly informative in the TM because their range

was too small. As explained in [43], the small range of closeness values implies that slight

changes in the network structure greatly affect the ranking of farms according to the closeness

centrality. Being used as additional information to the more powerful centrality parameters

(see above) [10], closeness centrality is therefore not considered as the most appropriate mea-

sure for the detection of central holdings in a trade network, especially in terms of animal dis-

ease control and risk-based surveillance.

In both models, few WCCs were observed, the largest one containing around 90% of farms.

This is consistent with the literature [6, 21, 27]. Like in previously published papers [6, 28], the

AIM exhibited a high number of small SCCs, the largest one containing only 1% of farms. On

the contrary, the TM network was less fragmented, with a low number of SCCs and the pres-

ence of a giant SCC joining 70% of farms. This is consistent with the clustering coefficient

being ten times higher in the TM than in the AIM, reflecting a gathering trend. The GSCC dis-

appeared when removing farrow and farrow-to-finish farms, showing their central role in TM

network cohesion.

Community structures in networks are densely connected subgroups of nodes. Identifica-

tion of communities in a trade network shows which holdings are preferentially linked. We

looked for communities in both models of the swine trade network thanks to the Infomap

algorithm. To our knowledge, this method has never been used in previous papers studying

animal movements, although it is the only one applicable to directed networks and considered

one of the best in terms of performance [30, 31]. The topology of the detected communities

varied with the modelling approach: in the AIM, we detected one huge geographically dis-

persed community, while the TM exhibited several small geographically clustered communi-

ties. The topology of communities detected in the AIM is rather consistent with the literature,

reporting communities forming spatial clusters and tending to cover quite large areas [6, 8,

23]. When considering the two subnetworks, the AIM breeding farm subnetwork presented

larger communities than the TM one, whereas the AIM production farm subnetwork con-

tained smaller communities than the TM one. Although these communities are permeable and

crossing links can act as potential bridges for disease spread from one community to another,

community borders could be used to define geographical compartments. Compartmentalisa-

tion can be an effective strategy for controlling disease epidemics while minimising disruption

to trade business [8, 23]. Stopping disease spread within a community would reduce the proba-

bility of pathogen transfer to a connected community. Our results show that geographical

compartmentalisation would be easier to limit the introduction of a disease transmitted

through the indirect route than for a disease transmitted through animal introduction.

Timely movement tracking is of major interest to understand the origin of the pathogen

introduction and the potential spread through downstream contacts. This is the reason why

ingoing and outgoing contact chains were computed. The choice of a one-month duration

period reflects the time needed to detect the occurrence of a disease and has been discussed in

several papers [21, 27]. As expected, the ICC and OCC values were much higher in the TM

than in the AIM, showing that the potential epidemic size would be larger for an indirectly

transmitted disease than for a directly transmitted pathogen. Moreover, the AIM OCC was

higher for breeding farms than for production ones, in line with their key role in the spread of
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a directly transmitted disease. In the TM, the ICC was higher for production farms, showing

their vulnerability to indirectly transmitted disease. These results are in accordance with the

other centrality measures (see above) and, for the AIM, with previously published papers [21,

27].

5. Conclusion

The primary interest of our study lies in developing, analysing and comparing two one-mode

pig trade network models matching the transmission route of pathogens. From a modelling

point of view, our data could be used to parametrise other models, such as exponential random

graph models (ERGMs) aiming at explaining network structure [23, 44]. Our network models

could also be coupled with epidemiological models of pathogen transmission within herds,

this combination resulting in a between-herd epidemiological model. This kind of model

would be particularly useful to understand or to assess the persistence and/or spread of a dis-

ease in a production sector. From a more operational perspective, our network models have

produced useful outputs that can help to design risk-based disease surveillance and control

programmes adapted to disease characteristics. They bring to light the relevance of accounting

for transit movements to understand the indirect transmission of diseases. Depending on the

epidemiological context, the potential epidemic size and the pathogen spread pattern would

differ, as do the type of farming units that have to be targeted and the scale at which control

measures should be implemented.
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