
micromachines

Article

Reconfigurable Architecture and Dataflow for Memory Traffic
Minimization of CNNs Computation

Wei-Kai Cheng * , Xiang-Yi Liu, Hsin-Tzu Wu, Hsin-Yi Pai and Po-Yao Chung

����������
�������

Citation: Cheng, W.-K.; Liu, X.-Y.;

Wu, H.-T.; Pai, H.-Y.; Chung, P.-Y.

Reconfigurable Architecture and

Dataflow for Memory Traffic

Minimization of CNNs Computation.

Micromachines 2021, 12, 1365. https://

doi.org/10.3390/mi12111365

Academic Editor: Jung Ho Yoon

Received: 30 September 2021

Accepted: 3 November 2021

Published: 5 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information and Computer Engineering, Chung Yuan Christian University,
Taoyuan City 32023, Taiwan; g10777002@cycu.edu.tw (X.-Y.L.); g10977035@cycu.edu.tw (H.-T.W.);
g11077001@cycu.edu.tw (H.-Y.P.); g10977024@cycu.edu.tw (P.-Y.C.)
* Correspondence: wkcheng@cycu.edu.tw; Tel.: +886-3-265-4714

Abstract: Computation of convolutional neural network (CNN) requires a significant amount of
memory access, which leads to lots of energy consumption. As the increase of neural network scale,
this phenomenon is further obvious, the energy consumption of memory access and data migration
between on-chip buffer and off-chip DRAM is even much more than the computation energy on
processing element array (PE array). In order to reduce the energy consumption of memory access, a
better dataflow to maximize data reuse and minimize data migration between on-chip buffer and
external DRAM is important. Especially, the dimension of input feature map (ifmap) and filter weight
are much different for each layer of the neural network. Hardware resources may not be effectively
utilized if the array architecture and dataflow cannot be reconfigured layer by layer according to
their ifmap dimension and filter dimension, and result in a large quantity of data migration on
certain layers. However, a thorough exploration of all possible configurations is time consuming and
meaningless. In this paper, we propose a quick and efficient methodology to adapt the configuration
of PE array architecture, buffer assignment, dataflow and reuse methodology layer by layer with the
given CNN architecture and hardware resource. In addition, we make an exploration on the different
combinations of configuration issues to investigate their effectiveness and can be used as a guide to
speed up the thorough exploration process.

Keywords: CNN; DRAM; PE array; dataflow; data migration; data reuse

1. Introduction

With the rapid development of artificial intelligence, CNN is often used in various
applications of artificial intelligence, such as machine learning, computer vision, compu-
tational neuroscience, etc. Although the function of the convolutional neural network
is more and more powerful, it is accompanied by a large number of convolution opera-
tions, and a large amount of memory access and data migration is also required. As the
increasing number of layers of neural network, the memory access issue becomes more and
more important. Especially in the edge computation, a large amount of memory access is
often a bottleneck that affects the performance and energy consumption of hardware accel-
erators. Different from the memory access method of CPU or GPU architecture, processing
the transfer of data between neural operators in a dataflow method is a common way to
implement CNN hardware accelerators. In this spatial type of CNN hardware accelerator
architecture, ways to improve memory access efficiency and reduce energy consumption
include (1) increase the reusability of data in the neural computing cell network; (2) re-
duce the cost and energy consumption of data migration; (3) reduce access to the external
memory of the chip. Therefore, dataflow planning, processing elements (PE) and buffer
configuration are often used to reduce data migration and energy consumption of memory
in the hardware implementation.

There have been a lot of studies related to the PE architecture design, interconnect and
dataflow configuration of CNNs. Research [1] summarized well known dataflow include

Micromachines 2021, 12, 1365. https://doi.org/10.3390/mi12111365 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-2867-6200
https://doi.org/10.3390/mi12111365
https://doi.org/10.3390/mi12111365
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12111365
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12111365?type=check_update&version=1


Micromachines 2021, 12, 1365 2 of 18

input stationary, weight stationary, and output stationary. Research [2,3] proposed dataflow
enhancement techniques. Research [4–6] especially targeted their dataflow optimization
on the systolic array architecture. Research [7,8] addressed the hardware reconfiguration
problem. However, all the previous research uses a fixed PE array configuration through the
entire neural network computation, and does not take into account the configuration of PE
array structure, buffer assignment, and dataflow approach simultaneously. Furthermore,
the configuration and aspect ratio of ifmap dimension and filter dimension are much
different among all the CNN layers, but this issue is seldom considered in the previous
research. As the modern CNN architecture shown in Figure 1, the first layer has the largest
ifmap dimension and the smallest filter dimension; while in the latter layers the ifmap
dimension decreased and the filter dimension increased.

Micromachines 2021, 12, x FOR PEER REVIEW 2 of 20 
 

 

There have been a lot of studies related to the PE architecture design, interconnect 
and dataflow configuration of CNNs. Research [1] summarized well known dataflow in-
clude input stationary, weight stationary, and output stationary. Research [2,3] proposed 
dataflow enhancement techniques. Research [4–6] especially targeted their dataflow opti-
mization on the systolic array architecture. Research [7,8] addressed the hardware recon-
figuration problem. However, all the previous research uses a fixed PE array configura-
tion through the entire neural network computation, and does not take into account the 
configuration of PE array structure, buffer assignment, and dataflow approach simulta-
neously. Furthermore, the configuration and aspect ratio of ifmap dimension and filter 
dimension are much different among all the CNN layers, but this issue is seldom consid-
ered in the previous research. As the modern CNN architecture shown in Figure 1, the 
first layer has the largest ifmap dimension and the smallest filter dimension; while in the 
latter layers the ifmap dimension decreased and the filter dimension increased. 

 
Figure 1. Dimension shape of a CNN. 

In this paper, we propose a quick and efficient methodology to adapt the configura-
tion of PE array architecture, buffer assignment, dataflow and reuse methodology layer 
by layer with the given CNN architecture and hardware resource. In addition, we make 
an exploration on the different combination of configuration issues to investigate their 
effectiveness, and can be used as a guide to speed up the thorough exploration process. 
To the best of our knowledge and survey, we are the first ones to address the problem of 
adapting PE array architecture, buffer assignment, and dataflow approach simultane-
ously for CNNs. 

The rest of this paper is organized as follows. In Section 2, we introduce the back-
ground and motivation of our reconfiguration proposal for PE array architecture, buffer 
assignment and dataflow approach. Section 3 describes the platform and methodology for 
our configurable PE array architecture, buffer management, and dataflow with compound 
data reuse. Section 4 shows our evaluation methodology and experiment results. In Sec-
tion 5, we analyze and discuss the exploration results on different architecture configura-
tions. Finally, we draw the conclusions and future works in Section 6. 

2. Background and Motivation 
2.1. Preliminary 

The entire CNN dataflow starts from the input activations of the first layer to the 
output activations of the last layer, we can regard it as a data stream. The most basic op-
eration in CNN is multiply-and-accumulate (MAC), how to make MAC in the network 
can be calculated in parallel becomes an important issue in the design of CNN hardware 
accelerator, and it is also dedicated to both temporal architecture and spatial architecture. 

In temporal architectures such as CPU or GPU, common parallelization technologies 
include vector (SIMD) or parallel sequence (SIMT). A single core controller uniformly con-
trols all computing units in the CNN network. Data access and transmission are used with 
the hierarchical memory architecture of traditional computers, various computing units 

Figure 1. Dimension shape of a CNN.

In this paper, we propose a quick and efficient methodology to adapt the configuration
of PE array architecture, buffer assignment, dataflow and reuse methodology layer by
layer with the given CNN architecture and hardware resource. In addition, we make
an exploration on the different combination of configuration issues to investigate their
effectiveness, and can be used as a guide to speed up the thorough exploration process.
To the best of our knowledge and survey, we are the first ones to address the problem of
adapting PE array architecture, buffer assignment, and dataflow approach simultaneously
for CNNs.

The rest of this paper is organized as follows. In Section 2, we introduce the back-
ground and motivation of our reconfiguration proposal for PE array architecture, buffer
assignment and dataflow approach. Section 3 describes the platform and methodology
for our configurable PE array architecture, buffer management, and dataflow with com-
pound data reuse. Section 4 shows our evaluation methodology and experiment results. In
Section 5, we analyze and discuss the exploration results on different architecture configu-
rations. Finally, we draw the conclusions and future works in Section 6.

2. Background and Motivation
2.1. Preliminary

The entire CNN dataflow starts from the input activations of the first layer to the
output activations of the last layer, we can regard it as a data stream. The most basic
operation in CNN is multiply-and-accumulate (MAC), how to make MAC in the network
can be calculated in parallel becomes an important issue in the design of CNN hardware
accelerator, and it is also dedicated to both temporal architecture and spatial architecture.

In temporal architectures such as CPU or GPU, common parallelization technologies
include vector (SIMD) or parallel sequence (SIMT). A single core controller uniformly
controls all computing units in the CNN network. Data access and transmission are used
with the hierarchical memory architecture of traditional computers, various computing
units cannot directly communicate and transmit information. In addition to parallelization
technology, because CNN requires a large number of matrix multiplication calculations,
how to map these matrix calculations to convolution or fully connected network archi-



Micromachines 2021, 12, 1365 3 of 18

tecture, and use Fast Fourier Transform (FFT) [9] or other conversion methods [10,11] to
reduce the number of matrix calculations, and select the appropriate conversion algorithm
according to the shape and size of the matrix [12,13], which are the main techniques of
temporal architecture to improve the performance of CNN operations.

In contrast, spatial architecture increases parallelism by means of dataflow. The
computing units in the CNN network form data links. Data is directly transmitted between
the computing units in accordance with the designed flow direction. At the same time,
each computing unit has independent logic control circuit and local memory. This spatial
architecture oriented by considering dataflow is mainly implemented in ASIC, FPGA-based,
and applied to the design of CNN hardware accelerators for edge devices. Therefore, how
to increase the data reusability of the local memory of each computing unit to reduce the
energy consumption of data migration and correspondence is the focus of the energy-saving
technology of spatial architecture in CNN network computing.

In the spatial architecture, dataflow strategy is one of the most important issues
to reduce external memory traffic. The most common dataflow strategy includes input
stationary, weight stationary, output stationary, and row stationary. Input stationary, weight
stationary, and output stationary are single data resident. With dataflow and memory
mapping, input stationary, weight stationary, and output stationary respectively enable
ifmap, weight, and partial sum to reside in the high-speed register of each processing
element. In contrast, row stationary is the permanent residence of composite data. After
a three-step process, it comprehensively maximizes the data reusability of input weight,
pixel, and partial sum.

In addition to dataflow strategy, how to increase the reusability of data to reduce data
migration is another important consideration in the design of CNN hardware accelerators.
CNN operations can have three forms of data reuse: convolutional reuse, feature map
reuse, and filter reuse. In convolutional reuse, the same activations and filter weights are in
the same channel, and are reused in different combinations to produce different calculation
results. In feature map reuse, multiple groups of filter weights are applied to the same
feature map, so a feature map activations will be repeatedly calculated by different filters.
In filter reuse, a set of filter weights are applied to different feature maps, so a set of filter
weights will be repeatedly calculated with different feature maps.

2.2. Related Works

The core point of weight stationary technology is to increase the reusability of the data
in the local memory when reading the filter weight, and reduce the number of reads and
writes because of the need for off-chip DRAM. Therefore, through the arrangement and
optimization of the dataflow, the filter weight is permanently resident in the local memory.
The ifmap activation is transmitted to each arithmetic unit by broadcasting, and the partial
sum relies on the dataflow between the arithmetic units for the accumulation operation.
The CNN related documents that apply this weight stationary dataflow technology include
neuFlow et al. [14–19].

Compared with weight stationary, the core point of output stationary technology
is to increase the resident of partial sum belonging to the same output activation in the
local memory during the accumulation process. In order to achieve this goal, basically,
when the dataflow is arranged and optimized, the input activation is passed between
the computing units along with the dataflow, and the filter weight is transmitted to each
computing unit by broadcasting. With the changes of different channel processing methods,
related CNN documents that apply this output stationary data stream technology include
ShiDianNao et al. [20,21].

Unlike weight stationary and output stationary that only consider the filter weight or
partial sum of the data resident, the core point of row stationary technology is to increase
the overall resident of all data types in the local memory to achieve the maximum memory
energy saving effect. Therefore, row stationary is more complicated than the previous



Micromachines 2021, 12, 1365 4 of 18

data streaming technologies in hardware implementation. The CNN related literature that
applies this row stationary data stream technology includes Eyeiss et al. [22–24].

Some other research further enhanced the techniques on dataflow and data reuse,
these methods include memory-centric design flow to optimize on-chip memory size
and data reuse [2], fused-layer dataflow to fuse the processing of adjacent CNN layers
by a multilayer sliding window [3,25], block convolution methodology to eliminate data
dependencies between adjacent tiles [26], and a hierarchical exploration strategy on the
dataflow configurations [27]. These studies show that the effects of the memory bottleneck
can be reduced by a flexible memory hierarchy that supports the complex data access
patterns in CNN workload, and the efficiency of the on-chip memories is maximized by
their scheduler that uses tiling to optimize data locality.

As the dataflow of the systolic array is efficient for CNN computation, some dataflow
optimization techniques specially targeted on the systolic array architecture [4–6]. In
this research, adaptive layer partitioning and scheduling schemes were proposed to min-
imize off-chip memory access, they can adaptively switch among different data reuse
schemes and the corresponding tiling factor settings to dynamically match different
convolutional layers.

Except for configuration techniques on dataflow to increase data reuse, some other
research addressed the problem of hardware reconfiguration and the corresponding com-
piler optimization techniques [6,7,28–30]. They proposed to build a set of modular and
configurable building blocks, reconfigure the microarchitecture parameters of the acceler-
ator dynamically, and introduced a set of data-centric directives to concisely specify the
CNN dataflow space in a compiler friendly form.

Finally, since FPGA is a promising platform for running CNN algorithm, research [31]
proposed a scheduling algorithm and data reuse system to optimize on-chip memory usage
for on-board FPGA. Because of limited FPGA storage capability and memory bandwidth,
different configurations allow either to minimize on-chip memory usage or maximize
memory bandwidth.

In summary, there have been many studies on the reconfiguration and optimization
methodologies for dataflow and hardware architecture of CNN, respectively. However,
to the best of our knowledge and survey, we are the first ones to propose a thorough
exploration of the reconfiguration of systolic architecture, internal buffer, dataflow and
reuse techniques. In the next subsection, we present a data analysis to show the motivation
why we address this problem.

2.3. Motivation

As shown in Figure 1, the first layer has the largest ifmap dimension and the smallest
filter dimension, and in latter layers their ifmap dimension decreased and filter dimension
increased. Therefore, aspect ratio of ifmap dimension and filter dimension are much
different among CNN layers. Figure 2 shows the data size distribution of HarDNet39 [32],
we see that data size of ifmap is much larger than data size of filter in former layers, and
vice versa in latter layers.

As described above, because the data size of ifmap dimension and filter dimension
are much different among CNN layers, a single dataflow and data reuse method cannot fit
well for both ifmap dimension and filter dimension in all layers. Figure 3 shows the DRAM
access of the first twenty-five layers of HarDNet39 from the SCALE-Sim [33] simulator.
The configuration parameters of this evaluation is 16 × 16 PE array, 50 kB buffer for both
ifmap and filter, and the applied dataflow is output stationary with convolutional reuse.
As the dimension of ifmap is much larger than the dimension of filter weights in the first
twenty-five layers of HarDNet39, and the reuse methodology is convolutional reuse which
does not benefit either ifmap reuse or filter reuse, we see that only a little data migration
of filter weight in these layers, but there is a large quantity of data migration of ifmap.
Therefore, since data dimension of ifmap is much larger than filter in these layers, increase
data reuse of filter weight is not a good choice to reduce total DRAM access. In contrast,



Micromachines 2021, 12, 1365 5 of 18

if we use ifmap reuse methodology for these layers, although it will increase a little data
migration of filter weight, but we can reduce further much more data migration of ifmap,
and hence reduce the total DRAM access.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Data size distribution of HarDNet39. 

As described above, because the data size of ifmap dimension and filter dimension 
are much different among CNN layers, a single dataflow and data reuse method cannot 
fit well for both ifmap dimension and filter dimension in all layers. Figure 3 shows the 
DRAM access of the first twenty-five layers of HarDNet39 from the SCALE-Sim [33] sim-
ulator. The configuration parameters of this evaluation is 16 × 16 PE array, 50 kB buffer 
for both ifmap and filter, and the applied dataflow is output stationary with convolutional 
reuse. As the dimension of ifmap is much larger than the dimension of filter weights in 
the first twenty-five layers of HarDNet39, and the reuse methodology is convolutional 
reuse which does not benefit either ifmap reuse or filter reuse, we see that only a little data 
migration of filter weight in these layers, but there is a large quantity of data migration of 
ifmap. Therefore, since data dimension of ifmap is much larger than filter in these layers, 
increase data reuse of filter weight is not a good choice to reduce total DRAM access. In 
contrast, if we use ifmap reuse methodology for these layers, although it will increase a 
little data migration of filter weight, but we can reduce further much more data migration 
of ifmap, and hence reduce the total DRAM access. 

 
Figure 3. DRAM access distribution of HarDNet39. 

In summary, a fixed configuration of architecture and dataflow cannot fit well for all 
CNN layers. However, a thorough exploration on all possible configurations is time con-
suming and meaningless. Therefore, we propose a quick and efficient methodology to 
adapt the configuration of PE array architecture, buffer assignment, dataflow and reuse 

Figure 2. Data size distribution of HarDNet39.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Data size distribution of HarDNet39. 

As described above, because the data size of ifmap dimension and filter dimension 
are much different among CNN layers, a single dataflow and data reuse method cannot 
fit well for both ifmap dimension and filter dimension in all layers. Figure 3 shows the 
DRAM access of the first twenty-five layers of HarDNet39 from the SCALE-Sim [33] sim-
ulator. The configuration parameters of this evaluation is 16 × 16 PE array, 50 kB buffer 
for both ifmap and filter, and the applied dataflow is output stationary with convolutional 
reuse. As the dimension of ifmap is much larger than the dimension of filter weights in 
the first twenty-five layers of HarDNet39, and the reuse methodology is convolutional 
reuse which does not benefit either ifmap reuse or filter reuse, we see that only a little data 
migration of filter weight in these layers, but there is a large quantity of data migration of 
ifmap. Therefore, since data dimension of ifmap is much larger than filter in these layers, 
increase data reuse of filter weight is not a good choice to reduce total DRAM access. In 
contrast, if we use ifmap reuse methodology for these layers, although it will increase a 
little data migration of filter weight, but we can reduce further much more data migration 
of ifmap, and hence reduce the total DRAM access. 

 
Figure 3. DRAM access distribution of HarDNet39. 

In summary, a fixed configuration of architecture and dataflow cannot fit well for all 
CNN layers. However, a thorough exploration on all possible configurations is time con-
suming and meaningless. Therefore, we propose a quick and efficient methodology to 
adapt the configuration of PE array architecture, buffer assignment, dataflow and reuse 

Figure 3. DRAM access distribution of HarDNet39.

In summary, a fixed configuration of architecture and dataflow cannot fit well for
all CNN layers. However, a thorough exploration on all possible configurations is time
consuming and meaningless. Therefore, we propose a quick and efficient methodology to
adapt the configuration of PE array architecture, buffer assignment, dataflow and reuse
methodology layer by layer with the given CNN architecture and hardware resource. In
addition, we make an exploration on the different combination of configuration issues
to investigate their effectiveness, and can be used as a guide to speed up the thorough
exploration process.

3. Methodology

In this section, different from SCALE-Sim [33] that cannot configure architecture
and dataflow layer by layer, we introduce our exploration platform and configuration
methodology for layer by layer configuration. As shown in Figure 4, input to the platform
includes a configuration file and a topology file, the configuration file specifies the total
number of PE and total buffer size of ifmap and filter, and the topology file specifies the
topology of ifmap and filter of each CNN layer. After configuration, our platform report



Micromachines 2021, 12, 1365 6 of 18

the configuration result of each CNN layer, and based on the trace simulation we can report
memory access and PE utilization of each layer and the summation of total layers.

Micromachines 2021, 12, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 4. The proposed exploration platform. 

3.1. PE Array Configuration 
Principle of our PE array configuration method is defined as below: Under the total 

PE number k (k is index of 2), we determine the PE array configuration of each layer based 
on their aspect ratio of ifmap dimension and filter dimension, such that for each layer, m 
* n = k, m, n, k ∈ 2i, i ≥ 1, i ∈ Z, where m and n denote the row number and column 
number of PE array configuration. 

Figure 5 illustrates the concept of our methodology for PE array configuration, ifmap 
is passed in from left to right in the horizontal direction, and filter weight is passed in 
from top to bottom in the vertical direction to perform MAC (multiply and accumulate) 
operations in order. For the layer with ifmap greater than filter * t1, we set array configu-
ration m > n as shown in Figure 5a. In contrast, for the layer with filter greater than ifmap 
* t2, we set array configuration m < n as shown in Figure 5b. Finally, for others that do not 
belong to the above two, we set array configuration m = n as shown in Figure 5c. The 
parameter value t1 and t2 can be different for different PE number k. 

 
Figure 5. Concept of PE array configuration (a) ifmap > filter (b) ifmap < filter (c) ifmap ≒ filter. 

To realize the proposed concept of PE array configuration in Figure 5, we propose a 
cluster-based array architecture. For the example of total 256 PE number, the possible con-
figuration can be 128 × 2, 64 × 4, 32 × 8, 16 × 16, 8 × 32, 4 × 64, and 2 × 128. After layer by 
layer configuration of a CNN, if the selected configurations are 128 × 2, 64 × 4, 32 × 8, and 

Figure 4. The proposed exploration platform.

There are three types of configuration in this platform, PE array configuration, buffer
assignment of ifmap and filter, configuration of dataflow and data reuse methodology. The
three configuration items can be selected in any combination, if no configuration item is se-
lected then all CNN layers will have the same fixed architecture and dataflow configuration.
In the fixed configuration style, the input configuration file can specify PE array dimension,
individual buffer size of ifmap and filter. However, the dataflow in the fixed configuration
style is fixed to output stationary with convolution reuse since it needs no extra output
buffer to store partial sum, and as the experiment results shown in SCALE-Sim [33] that it
also has minimal off-chip data migration during convolutional computation.

In contrast, when the layer by layer item of dataflow configuration is selected, although
we also fix to the output stationary dataflow, but we can configure ifmap reuse or filter
reuse methodology layer by layer. Another reason why we didn’t make input station and
weight stationary dataflow as the candidate of layer by layer configuration is because that
change of dataflow between, output stationary, input stationary and weight stationary will
increase the design complexity and control overhead of PE architecture, but with almost no
benefit on reducing external memory access. While for our methodology that fix to output
stationary dataflow but changes the data reuse technique as necessary will not increase the
design complexity of PE architecture, and also will have the least control overhead.

Finally, when the layer by layer configuration item is selected for total PE array or total
ifmap/filter buffer, our platform also configure the PE array dimension and ifmap/filter
buffer assignment layer by layer. Detailed methodology for the three types of configuration
in our platform is described in the following subsections.

3.1. PE Array Configuration

Principle of our PE array configuration method is defined as below: Under the total
PE number k (k is index of 2), we determine the PE array configuration of each layer based
on their aspect ratio of ifmap dimension and filter dimension, such that for each layer,
m * n = k, m, n, k ∈ 2i, i ≥ 1, i ∈ Z, where m and n denote the row number and column
number of PE array configuration.

Figure 5 illustrates the concept of our methodology for PE array configuration, ifmap is
passed in from left to right in the horizontal direction, and filter weight is passed in from top
to bottom in the vertical direction to perform MAC (multiply and accumulate) operations



Micromachines 2021, 12, 1365 7 of 18

in order. For the layer with ifmap greater than filter * t1, we set array configuration m > n
as shown in Figure 5a. In contrast, for the layer with filter greater than ifmap * t2, we set
array configuration m < n as shown in Figure 5b. Finally, for others that do not belong to
the above two, we set array configuration m = n as shown in Figure 5c. The parameter
value t1 and t2 can be different for different PE number k.

Micromachines 2021, 12, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 4. The proposed exploration platform. 

3.1. PE Array Configuration 
Principle of our PE array configuration method is defined as below: Under the total 

PE number k (k is index of 2), we determine the PE array configuration of each layer based 
on their aspect ratio of ifmap dimension and filter dimension, such that for each layer, m 
* n = k, m, n, k ∈ 2i, i ≥ 1, i ∈ Z, where m and n denote the row number and column 
number of PE array configuration. 

Figure 5 illustrates the concept of our methodology for PE array configuration, ifmap 
is passed in from left to right in the horizontal direction, and filter weight is passed in 
from top to bottom in the vertical direction to perform MAC (multiply and accumulate) 
operations in order. For the layer with ifmap greater than filter * t1, we set array configu-
ration m > n as shown in Figure 5a. In contrast, for the layer with filter greater than ifmap 
* t2, we set array configuration m < n as shown in Figure 5b. Finally, for others that do not 
belong to the above two, we set array configuration m = n as shown in Figure 5c. The 
parameter value t1 and t2 can be different for different PE number k. 

 
Figure 5. Concept of PE array configuration (a) ifmap > filter (b) ifmap < filter (c) ifmap ≒ filter. 

To realize the proposed concept of PE array configuration in Figure 5, we propose a 
cluster-based array architecture. For the example of total 256 PE number, the possible con-
figuration can be 128 × 2, 64 × 4, 32 × 8, 16 × 16, 8 × 32, 4 × 64, and 2 × 128. After layer by 
layer configuration of a CNN, if the selected configurations are 128 × 2, 64 × 4, 32 × 8, and 

Figure 5. Concept of PE array configuration (a) ifmap > filter (b) ifmap < filter (c) ifmap ; filter.

To realize the proposed concept of PE array configuration in Figure 5, we propose
a cluster-based array architecture. For the example of total 256 PE number, the possible
configuration can be 128 × 2, 64 × 4, 32 × 8, 16 × 16, 8 × 32, 4 × 64, and 2 × 128. After
layer by layer configuration of a CNN, if the selected configurations are 128 × 2, 64 × 4,
32 × 8, and 16 × 16, then we will make a PE cluster by 16 × 2 sub-array as shown in
Figure 6. By different cluster connection, we can support all the four selected PE array
configurations in different layers as their need. Figure 6 is an example of 32 × 8 PE array
implement with 16 × 2 cluster-based architecture. We can adjust the cluster connection
to easily implement the 128 × 2, 64 × 4, and 16 × 16 PE array architecture with the same
16 × 2 PE cluster, and the overhead of control logic is quite small in comparison with the
PE architecture and circuit design.

Micromachines 2021, 12, x FOR PEER REVIEW 8 of 20 
 

 

16 × 16, then we will make a PE cluster by 16 × 2 sub-array as shown in Figure 6. By dif-
ferent cluster connection, we can support all the four selected PE array configurations in 
different layers as their need. Figure 6 is an example of 32 × 8 PE array implement with 16 
× 2 cluster-based architecture. We can adjust the cluster connection to easily implement 
the 128 × 2, 64 × 4, and 16 × 16 PE array architecture with the same 16 × 2 PE cluster, and 
the overhead of control logic is quite small in comparison with the PE architecture and 
circuit design. 

 
Figure 6. Cluster-based PE array configuration. 

In summary, our configuration method allows each layer of CNN to have its own PE 
array configuration based on the dimension of ifmap and filter. As it is not limited to a 
fixed configuration all through the entire network, thereby can improve the overall PE 
utilization and reduce the external memory traffic. 

3.2. Buffer Configuration 
If we can make use of buffer reconfiguration in the accelerator design to maximize 

data reuse, we can avoid rereading data from external DRAM and speedup the overall 
CNN computation. Therefore, under the given of total global buffer size, we then cut the 
input buffer and filter buffer according to the dimension of the PE array configuration. In 
our method, the buffer configuration is adjustable layer by layer as shown in Figure 7a. In 
addition, because the output feature map calculated for each layer will be written back to 
the external DRAM through the output buffer, our output buffer will be set to a fixed size, 
and the output buffer will not be dynamically configured.  

For each layer, the principle of our buffer configuration is described as below. In the 
case that the data size of ifmap is much larger than that of filter, the input buffer size will 
be configured to be larger than the filter buffer size as shown in Figure 7b. On the other 
hand, the input buffer size will be configured to be smaller than the filter buffer size as 
shown in Figure 7c. Finally, when the difference of data size is small, the input buffer size 
will be configured to be the same with the filter buffer size. 

Figure 6. Cluster-based PE array configuration.



Micromachines 2021, 12, 1365 8 of 18

In summary, our configuration method allows each layer of CNN to have its own
PE array configuration based on the dimension of ifmap and filter. As it is not limited to
a fixed configuration all through the entire network, thereby can improve the overall PE
utilization and reduce the external memory traffic.

3.2. Buffer Configuration

If we can make use of buffer reconfiguration in the accelerator design to maximize
data reuse, we can avoid rereading data from external DRAM and speedup the overall
CNN computation. Therefore, under the given of total global buffer size, we then cut the
input buffer and filter buffer according to the dimension of the PE array configuration. In
our method, the buffer configuration is adjustable layer by layer as shown in Figure 7a. In
addition, because the output feature map calculated for each layer will be written back to
the external DRAM through the output buffer, our output buffer will be set to a fixed size,
and the output buffer will not be dynamically configured.

Micromachines 2021, 12, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 7. Concept of adjustable buffer configuration (a) adjustable buffer (b) buffer configuration 
for ifmap > filter (c) buffer configuration for ifmap < filter. 

For the illustration example, if the given total PE number is 256, the possible PE array 
configurations can be 128 × 2, 64 × 4, 32 × 8, 16 × 16, 8 × 32, 4 × 64, and 2 × 128. Under 100 
KB of total buffer size for ifmap and filter, our configuration of (ifmap buffer, filter buffer) 
can be (87.5 KB, 12.5 KB), (75 KB, 25 KB), (62.5 KB, 37.5 KB), (50 KB, 50 KB), (37.5 KB, 62.5 
KB), (25 KB, 75 KB), and (12.5 KB, 87.5 KB), total seven configurations to match with the 
PE array configurations. In this way, not all layers are assigned to a fixed equal buffer 
configuration, which can avoid unnecessary external data access for layers that have much 
different ifmap dimension and filter dimension. 

3.3. Dataflow and Data Reuse Configuration 
Output stationary technique has the minimal data migration of partial sum, and 

hence has less total memory access in comparison with input stationary and weight sta-
tionary techniques. Therefore, output stationary is selected as the dataflow strategy for 
most of the CNN networks, Figure 8 shows the scheme of output stationary. In terms of 
data reuse technique, the output stationary dataflow can further be divided into convolu-
tional reuse, ifmap reuse and filter reuse, and almost all previous works on output sta-
tionary dataflow use convolutional reuse technique only all through the entire CNN since 
it is a compromise between ifmap reuse and filter reuse. 

 
Figure 8. The output stationary dataflow. 

Figure 7. Concept of adjustable buffer configuration (a) adjustable buffer (b) buffer configuration for
ifmap > filter (c) buffer configuration for ifmap < filter.

For each layer, the principle of our buffer configuration is described as below. In the
case that the data size of ifmap is much larger than that of filter, the input buffer size will
be configured to be larger than the filter buffer size as shown in Figure 7b. On the other
hand, the input buffer size will be configured to be smaller than the filter buffer size as
shown in Figure 7c. Finally, when the difference of data size is small, the input buffer size
will be configured to be the same with the filter buffer size.

For the illustration example, if the given total PE number is 256, the possible PE
array configurations can be 128 × 2, 64 × 4, 32 × 8, 16 × 16, 8 × 32, 4 × 64, and 2 × 128.
Under 100 KB of total buffer size for ifmap and filter, our configuration of (ifmap buffer,
filter buffer) can be (87.5 KB, 12.5 KB), (75 KB, 25 KB), (62.5 KB, 37.5 KB), (50 KB, 50 KB),
(37.5 KB, 62.5 KB), (25 KB, 75 KB), and (12.5 KB, 87.5 KB), total seven configurations to
match with the PE array configurations. In this way, not all layers are assigned to a fixed
equal buffer configuration, which can avoid unnecessary external data access for layers
that have much different ifmap dimension and filter dimension.

3.3. Dataflow and Data Reuse Configuration

Output stationary technique has the minimal data migration of partial sum, and hence
has less total memory access in comparison with input stationary and weight stationary
techniques. Therefore, output stationary is selected as the dataflow strategy for most of the
CNN networks, Figure 8 shows the scheme of output stationary. In terms of data reuse
technique, the output stationary dataflow can further be divided into convolutional reuse,
ifmap reuse and filter reuse, and almost all previous works on output stationary dataflow
use convolutional reuse technique only all through the entire CNN since it is a compromise
between ifmap reuse and filter reuse.



Micromachines 2021, 12, 1365 9 of 18

Micromachines 2021, 12, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 7. Concept of adjustable buffer configuration (a) adjustable buffer (b) buffer configuration 
for ifmap > filter (c) buffer configuration for ifmap < filter. 

For the illustration example, if the given total PE number is 256, the possible PE array 
configurations can be 128 × 2, 64 × 4, 32 × 8, 16 × 16, 8 × 32, 4 × 64, and 2 × 128. Under 100 
KB of total buffer size for ifmap and filter, our configuration of (ifmap buffer, filter buffer) 
can be (87.5 KB, 12.5 KB), (75 KB, 25 KB), (62.5 KB, 37.5 KB), (50 KB, 50 KB), (37.5 KB, 62.5 
KB), (25 KB, 75 KB), and (12.5 KB, 87.5 KB), total seven configurations to match with the 
PE array configurations. In this way, not all layers are assigned to a fixed equal buffer 
configuration, which can avoid unnecessary external data access for layers that have much 
different ifmap dimension and filter dimension. 

3.3. Dataflow and Data Reuse Configuration 
Output stationary technique has the minimal data migration of partial sum, and 

hence has less total memory access in comparison with input stationary and weight sta-
tionary techniques. Therefore, output stationary is selected as the dataflow strategy for 
most of the CNN networks, Figure 8 shows the scheme of output stationary. In terms of 
data reuse technique, the output stationary dataflow can further be divided into convolu-
tional reuse, ifmap reuse and filter reuse, and almost all previous works on output sta-
tionary dataflow use convolutional reuse technique only all through the entire CNN since 
it is a compromise between ifmap reuse and filter reuse. 

 
Figure 8. The output stationary dataflow. Figure 8. The output stationary dataflow.

However, for layers with an extreme large ifmap aspect ratio, the use of convolutional
reuse dataflow will lead to a large quantity of ifmap data migration between external memory
and internal buffer, and vice versa for layers with an extreme large filter aspect ratio. Therefore,
in addition to convolutional reuse, we also integrate the other two reuse techniques in our
output stationary dataflow. According to the PE array configuration of each layer, when the
configuration is ifmap row >> filter column, we will use ifmap reuse technique, let ifmap
fixing and replacing filters to reduce memory traffic of ifmap, and vice versa to use filter reuse
technique when the PE array configuration is ifmap row << filter column.

Figure 9 illustrates the filter reuse technique. In the case that the size of PE array is
m × n and the number of filter is r, let x, y, and c to be the length, width, and channel of the
filter respectively. We read m sets of ifmap in order in the horizontal direction, and read
n sets of filter in order in the vertical direction, such as in Figure 9A. After each round of
convolution operation is completed, the n sets of filter are not replaced but replace the next
batch of m sets of ifmap. This replacing procedure continues until the entire ifmap of this
layer complete convolution operation, as shown in Figure 9B. Then we read the next n sets
of filter, and repeat the steps in Figure 9 until all r sets of filter complete the convolution
operation. For layers with large filter aspect ratio, we will adopt the filter reuse technique
to replace convolutional reuse technique.

In contrast to filter reuse technique, Figure 10 illustrates the ifmap reuse technique. We
read m sets of ifmap in order in the horizontal direction, and read n sets of filter in order in
the vertical direction, such as in Figure 10A. After each round of convolution operation is
completed, the m sets of ifmap are not replaced but replace the next batch of n sets of filter.
This filter replacing procedure continues until the all r sets of filter of this layer complete
the convolution operation, as shown in Figure 10B. Then we read the next m sets of ifmap,
and repeat the steps in Figure 10 until the entire ifmap complete the convolution operation.
For layers with large ifmap aspect ratio, we will adopt the ifmap reuse technique to replace
convolutional reuse technique.



Micromachines 2021, 12, 1365 10 of 18

Micromachines 2021, 12, x FOR PEER REVIEW 10 of 20 
 

 

However, for layers with an extreme large ifmap aspect ratio, the use of convolu-
tional reuse dataflow will lead to a large quantity of ifmap data migration between exter-
nal memory and internal buffer, and vice versa for layers with an extreme large filter as-
pect ratio. Therefore, in addition to convolutional reuse, we also integrate the other two 
reuse techniques in our output stationary dataflow. According to the PE array configura-
tion of each layer, when the configuration is ifmap row >> filter column, we will use ifmap 
reuse technique, let ifmap fixing and replacing filters to reduce memory traffic of ifmap, 
and vice versa to use filter reuse technique when the PE array configuration is ifmap row 
<< filter column. 

Figure 9 illustrates the filter reuse technique. In the case that the size of PE array is m 
× n and the number of filter is r, let x, y, and c to be the length, width, and channel of the 
filter respectively. We read m sets of ifmap in order in the horizontal direction, and read 
n sets of filter in order in the vertical direction, such as in Figure 9A. After each round of 
convolution operation is completed, the n sets of filter are not replaced but replace the 
next batch of m sets of ifmap. This replacing procedure continues until the entire ifmap of 
this layer complete convolution operation, as shown in Figure 9B. Then we read the next 
n sets of filter, and repeat the steps in Figure 9 until all r sets of filter complete the convo-
lution operation. For layers with large filter aspect ratio, we will adopt the filter reuse 
technique to replace convolutional reuse technique. 

 
Figure 9. Procedure of filter reuse (A) the first iteration (B) the successive iterations. 

In contrast to filter reuse technique, Figure 10 illustrates the ifmap reuse technique. 
We read m sets of ifmap in order in the horizontal direction, and read n sets of filter in 
order in the vertical direction, such as in Figure 10A. After each round of convolution 
operation is completed, the m sets of ifmap are not replaced but replace the next batch of 
n sets of filter. This filter replacing procedure continues until the all r sets of filter of this 
layer complete the convolution operation, as shown in Figure 10B. Then we read the next 
m sets of ifmap, and repeat the steps in Figure 10 until the entire ifmap complete the con-
volution operation. For layers with large ifmap aspect ratio, we will adopt the ifmap reuse 
technique to replace convolutional reuse technique. 

Figure 9. Procedure of filter reuse (A) the first iteration (B) the successive iterations.

Micromachines 2021, 12, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 10. Procedure of ifmap reuse (A) the first iteration (B) the successive iterations. 

4. Experiment Results 
We modify SCALE-Sim [33] to evaluate our methodology on HarDNet39 [32] and 

DenseNet121 [34]. Table 1 shows the four target architecture configurations of the fixed 
dataflow and our proposed reconfigurable methods. In the fixed dataflow, all configura-
tions are fixed in all layers, size of PE array are 16 × 16 and 32 × 32, respectively; input 
buffer and filter buffer are equally partitioned, total buffer size are 128 KB and 256 KB, 
respectively; dataflow is fixed to output stationary with convolutional reuse. While for 
our methodologies, architecture and dataflow are reconfigurable layer by layer based on 
the given total PE number and total buffer size of input and filter, dataflow is also fixed 
to output stationary but the reuse technique is configured based on aspect ratio of input 
dimension and filter dimension in each layer. 

Table 1. Target architecture configurations. 

 
Fixed Reconfigurable 

PE Array 
Buffer 
Size 

Dataflow, 
Data Reuse 

PE 
Array 

Buffer 
Size 

Dataflow, 
Data Reuse 

Architecture1 16 × 16 Input: 64 KB 
Filter: 64 KB 

Output Stationary, 
Convolutional 256 Total 128 KB Total 

Output Stationary, 
Convolutional + 

Input + Filter 

Architecture2 32 × 32 Input:128 KB 
Filter:128 KB 

Output Stationary, 
Convolutional 1024 Total 256 KB Total 

Output Stationary, 
Convolutional + 

Input + Filter 

Architecture3 16 × 16 
Input:128 KB 
Filter:128 KB 

Output Stationary, 
Convolutional 256 Total 256 KB Total 

Output Stationary, 
Convolutional + 

Input + Filter 

Architecture4 32 × 32 
Input: 64 KB 
Filter: 64 KB 

Output Stationary, 
Convolutional 1024 Total 128 KB Total 

Output Stationary, 
Convolutional + 

Input + Filter 

Table 2 shows the definition of configuration items and all possible exploration com-
binations in our platform. Since there are three configuration items: PE array, buffer size, 
dataflow and data reuse technique, totally there are eight combinations in our exploration 

Figure 10. Procedure of ifmap reuse (A) the first iteration (B) the successive iterations.

4. Experiment Results

We modify SCALE-Sim [33] to evaluate our methodology on HarDNet39 [32] and
DenseNet121 [34]. Table 1 shows the four target architecture configurations of the fixed
dataflow and our proposed reconfigurable methods. In the fixed dataflow, all configura-
tions are fixed in all layers, size of PE array are 16 × 16 and 32 × 32, respectively; input
buffer and filter buffer are equally partitioned, total buffer size are 128 KB and 256 KB,
respectively; dataflow is fixed to output stationary with convolutional reuse. While for
our methodologies, architecture and dataflow are reconfigurable layer by layer based on
the given total PE number and total buffer size of input and filter, dataflow is also fixed
to output stationary but the reuse technique is configured based on aspect ratio of input
dimension and filter dimension in each layer.



Micromachines 2021, 12, 1365 11 of 18

Table 1. Target architecture configurations.

Fixed Reconfigurable

PE Array Buffer
Size

Dataflow,
Data Reuse

PE
Array

Buffer
Size

Dataflow,
Data Reuse

Architecture1 16 × 16 Input: 64 KB
Filter: 64 KB

Output
Stationary,

Convolutional
256 Total 128 KB Total

Output Stationary,
Convolutional +

Input + Filter

Architecture2 32 × 32 Input:128 KB
Filter:128 KB

Output
Stationary,

Convolutional
1024 Total 256 KB Total

Output Stationary,
Convolutional +

Input + Filter

Architecture3 16 × 16 Input:128 KB
Filter:128 KB

Output
Stationary,

Convolutional
256 Total 256 KB Total

Output Stationary,
Convolutional +

Input + Filter

Architecture4 32 × 32 Input: 64 KB
Filter: 64 KB

Output
Stationary,

Convolutional
1024 Total 128 KB Total

Output Stationary,
Convolutional +

Input + Filter

Table 2 shows the definition of configuration items and all possible exploration com-
binations in our platform. Since there are three configuration items: PE array, buffer
size, dataflow and data reuse technique, totally there are eight combinations in our explo-
ration platform. In this section, we will evaluate our methodology on HarDNet39 and
DenseNet121 target to architectures list in Table 1. In the next section, we analyze and
discuss these exploration results in terms of external memory access to show the effect of
our configuration techniques.

Table 2. Definition of configurations.

FFF RFF FRF FFR RRF RFR FRR RRR

PE Array Fixed Configure Fixed Fixed Configure Configure Fixed Configure

Buffer Size Fixed Fixed Configure Fixed Configure Fixed Configure Configure

Dataflow Fixed Fixed Fixed Configure Fixed Configure Configure Configure

Figures 11–14 show the exploration results of different configurations in terms of
external memory access for HarDNet39 on the four target architectures. The “Optimize”
item represents the result of adopting the best one of the eight configurations in each layer
to get the total memory access, and hence has the best result in comparison with the eight
configurations in our exploration platform. For the first target architecture, Figure 11 shows
that the “FFF” configuration has the worst result. The second target architecture and the
third target architecture have the similar configuration results, Figures 12 and 13 show that
the “RFF” and “RRF” configurations have even worse results than the “FFF” configuration.
The fourth target architecture is an extreme case, Figure 14 shows that it has much different
configuration results in comparison with the previous two target architectures. Detailed
analysis and discussion will be given in the discussion section.

Figures 15–18 show the exploration results of different configurations in terms of
external memory access for DenseNet121 on the four target architectures. The feature of
DenseNet is much less external memory access in comparison with other CNNs, therefore
we select it as a benchmark to test our reconfiguration methodology. Figures 16 and 17
show that the second target architecture and the third target architecture also have similar
configuration effects as in the case of HarDNet. In contrast, Figures 15 and 18 show
that HarDNet and DenseNet have much different configuration effects on the first target
architecture and the fourth target architecture. Detailed analysis and discussion will be
given in the discussion section.



Micromachines 2021, 12, 1365 12 of 18

Micromachines 2021, 12, x FOR PEER REVIEW 12 of 20 
 

 

platform. In this section, we will evaluate our methodology on HarDNet39 and Dense-
Net121 target to architectures list in Table 1. In the next section, we analyze and discuss 
these exploration results in terms of external memory access to show the effect of our con-
figuration techniques. 

Table 2. Definition of configurations. 

 FFF RFF FRF FFR RRF RFR FRR RRR 
PE Array Fixed Configure Fixed Fixed Configure Configure Fixed Configure 

Buffer Size Fixed Fixed Configure Fixed Configure Fixed Configure Configure 
Dataflow Fixed Fixed Fixed Configure Fixed Configure Configure Configure 

Figures 11–14 show the exploration results of different configurations in terms of ex-
ternal memory access for HarDNet39 on the four target architectures. The “Optimize” 
item represents the result of adopting the best one of the eight configurations in each layer 
to get the total memory access, and hence has the best result in comparison with the eight 
configurations in our exploration platform. For the first target architecture, Figure 11 
shows that the “FFF” configuration has the worst result. The second target architecture 
and the third target architecture have the similar configuration results, Figures 12 and 13 
show that the “RFF” and “RRF” configurations have even worse results than the “FFF” 
configuration. The fourth target architecture is an extreme case, Figure 14 shows that it 
has much different configuration results in comparison with the previous two target ar-
chitectures. Detailed analysis and discussion will be given in the discussion section. 

 
Figure 11. Total DRAM access—HarDNet39 (256 PE/128 KB Buffer). 

Figure 11. Total DRAM access—HarDNet39 (256 PE/128 KB Buffer).

Micromachines 2021, 12, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 12. Total DRAM access—HarDNet39 (1024 PE/256 KB Buffer). 

 
Figure 13. Total DRAM access—HarDNet39 (256 PE/256 KB Buffer). 

Figure 12. Total DRAM access—HarDNet39 (1024 PE/256 KB Buffer).

Micromachines 2021, 12, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 12. Total DRAM access—HarDNet39 (1024 PE/256 KB Buffer). 

 
Figure 13. Total DRAM access—HarDNet39 (256 PE/256 KB Buffer). 

Figure 13. Total DRAM access—HarDNet39 (256 PE/256 KB Buffer).



Micromachines 2021, 12, 1365 13 of 18Micromachines 2021, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 14. Total DRAM access—HarDNet39 (1024 PE/128 KB Buffer). 

Figures 15–18 show the exploration results of different configurations in terms of ex-
ternal memory access for DenseNet121 on the four target architectures. The feature of 
DenseNet is much less external memory access in comparison with other CNNs, therefore 
we select it as a benchmark to test our reconfiguration methodology. Figures 16 and 17 
show that the second target architecture and the third target architecture also have similar 
configuration effects as in the case of HarDNet. In contrast, Figures 15 and 18 show that 
HarDNet and DenseNet have much different configuration effects on the first target ar-
chitecture and the fourth target architecture. Detailed analysis and discussion will be 
given in the discussion section. 

 
Figure 15. Total DRAM access—DenseNet121 (256 PE/128 KB Buffer). 

Figure 14. Total DRAM access—HarDNet39 (1024 PE/128 KB Buffer).

Micromachines 2021, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 14. Total DRAM access—HarDNet39 (1024 PE/128 KB Buffer). 

Figures 15–18 show the exploration results of different configurations in terms of ex-
ternal memory access for DenseNet121 on the four target architectures. The feature of 
DenseNet is much less external memory access in comparison with other CNNs, therefore 
we select it as a benchmark to test our reconfiguration methodology. Figures 16 and 17 
show that the second target architecture and the third target architecture also have similar 
configuration effects as in the case of HarDNet. In contrast, Figures 15 and 18 show that 
HarDNet and DenseNet have much different configuration effects on the first target ar-
chitecture and the fourth target architecture. Detailed analysis and discussion will be 
given in the discussion section. 

 
Figure 15. Total DRAM access—DenseNet121 (256 PE/128 KB Buffer). 

Figure 15. Total DRAM access—DenseNet121 (256 PE/128 KB Buffer).

Micromachines 2021, 12, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 16. Total DRAM access—DenseNet121 (1024 PE/256 KB Buffer). 

 
Figure 17. Total DRAM access—DenseNet121 (256 PE/256 KB Buffer). 

Figure 16. Total DRAM access—DenseNet121 (1024 PE/256 KB Buffer).



Micromachines 2021, 12, 1365 14 of 18

Micromachines 2021, 12, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 16. Total DRAM access—DenseNet121 (1024 PE/256 KB Buffer). 

 
Figure 17. Total DRAM access—DenseNet121 (256 PE/256 KB Buffer). 

Figure 17. Total DRAM access—DenseNet121 (256 PE/256 KB Buffer).

Micromachines 2021, 12, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 18. Total DRAM access—DenseNet121 (1024 PE/128 KB Buffer). 

In addition to the evaluation of external memory access, our platform can also eval-
uate the PE utilization during the CNN computation. A low utilization rate means more 
bottleneck of CNN computation, and will damage the CNN performance. Figures 19 and 
20 show the utilization rate layer by layer of HarDNet39 and DenseNet121 on the first 
target architecture, respectively. We can see that in the front layers of HarDNet39 which 
have a much higher aspect ratio of ifmap dimension, the PE array configuration item can 
enhance the overall PE utilization effectively. While for DenseNet121, the PE array con-
figuration item is only a little worse on PE utilization in the front layers, but is still quite 
closed to fully utilization. As for either HarDNet39 or DenseNet121, all the other three 
target architectures have almost the same PE utilization in comparison with the first target 
architecture, we do not show these similar results again. 

 
Figure 19. Average PE utilization—HarDNet39 (256 PE/128 KB Buffer). 

Figure 18. Total DRAM access—DenseNet121 (1024 PE/128 KB Buffer).

In addition to the evaluation of external memory access, our platform can also evaluate
the PE utilization during the CNN computation. A low utilization rate means more bot-
tleneck of CNN computation, and will damage the CNN performance. Figures 19 and 20
show the utilization rate layer by layer of HarDNet39 and DenseNet121 on the first target
architecture, respectively. We can see that in the front layers of HarDNet39 which have a
much higher aspect ratio of ifmap dimension, the PE array configuration item can enhance
the overall PE utilization effectively. While for DenseNet121, the PE array configuration
item is only a little worse on PE utilization in the front layers, but is still quite closed to fully
utilization. As for either HarDNet39 or DenseNet121, all the other three target architectures
have almost the same PE utilization in comparison with the first target architecture, we do
not show these similar results again.

Finally, we synthesis the RTL code of the reconfigurable architecture generated by
our platform (Figure 4), and compare our reconfigurable architecture (Figure 6) with the
fixed architecture on the area overhead of extra control circuit to show the feasibility of
our methodology. In this experiment, each PE includes one 8 bit MAC and one 24 bit
accumulation register, the synthesis tool used is Synopsys Design Compiler, and synthesis
library used is CBDK_TSMC40_Arm_f2.0 (40 nm). Table 3 shows the comparison result of
the four target architecture.



Micromachines 2021, 12, 1365 15 of 18

Micromachines 2021, 12, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 18. Total DRAM access—DenseNet121 (1024 PE/128 KB Buffer). 

In addition to the evaluation of external memory access, our platform can also eval-
uate the PE utilization during the CNN computation. A low utilization rate means more 
bottleneck of CNN computation, and will damage the CNN performance. Figures 19 and 
20 show the utilization rate layer by layer of HarDNet39 and DenseNet121 on the first 
target architecture, respectively. We can see that in the front layers of HarDNet39 which 
have a much higher aspect ratio of ifmap dimension, the PE array configuration item can 
enhance the overall PE utilization effectively. While for DenseNet121, the PE array con-
figuration item is only a little worse on PE utilization in the front layers, but is still quite 
closed to fully utilization. As for either HarDNet39 or DenseNet121, all the other three 
target architectures have almost the same PE utilization in comparison with the first target 
architecture, we do not show these similar results again. 

 
Figure 19. Average PE utilization—HarDNet39 (256 PE/128 KB Buffer). Figure 19. Average PE utilization—HarDNet39 (256 PE/128 KB Buffer).

Micromachines 2021, 12, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 20. Average PE utilization—DenseNet121 (256 PE/128 KB Buffer). 

Finally, we synthesis the RTL code of the reconfigurable architecture generated by 
our platform (Figure 4), and compare our reconfigurable architecture (Figure 6) with the 
fixed architecture on the area overhead of extra control circuit to show the feasibility of 
our methodology. In this experiment, each PE includes one 8 bit MAC and one 24 bit ac-
cumulation register, the synthesis tool used is Synopsys Design Compiler, and synthesis 
library used is CBDK_TSMC40_Arm_f2.0 (40 nm). Table 3 shows the comparison result of 
the four target architecture. 

Table 3. Overhead of reconfigurable architecture. 

 Fixed Reconfigurable Overhead 
Architecture1 39,481.34 μm2 40,841.39 μm2 3.44% 
Architecture2 161,263.71 μm2 170,336.73 μm2 5.63% 
Architecture3 40,152.52 μm2 41,808.79 μm2 4.12% 
Architecture4 157,946.82 μm2 165,562.65 μm2 4.82% 

5. Discussions 
In this section, we analyze and discuss the exploration results in the previous section. 

For the HarDNet39, we see that either increasing memory capacity or increasing PE array 
size is effective in reducing external memory access. Compared to the first target architec-
ture, Figure 13 shows that when increasing memory capacity only, all configurations have 
a significant improvement on reducing DRAM access, although the “RFF” and “RRF” 
configurations have even worse results than the “FFF” configuration. While when increas-
ing PE array size only, Figure 14 shows that although all configurations still reducing 
DRAM access, except that the “RFF” and “RRF” configurations have even worse results 
than the “FFF” configuration, the “FFR”, “RFR”, “FRR” and “RRR” configurations get 
much worse results than when increasing memory capacity only. Finally, when increasing 
both memory capacity and PE array size, Figure 12 shows that the “RFF” and “RRF” con-
figurations still have much worse results than the “FFF” configuration, and this target 
architecture only get a little improvement for all configurations in comparison with the 
third target architecture that increasing memory capacity only (Figure 13).  

In summary for HarDNet39, among all the configurations, only PE array configura-
tion but without data reuse configuration (“RFF” and “RRF”) get the worst results, inte-
grating both PE array configuration and data reuse configuration (“RFR” and “RRR”) get 
the best results when increasing memory capacity, and the effect of data reuse configura-
tion (“FFR”, “RFR”, “FRR” and “RRR”) will be much degraded when increasing PE array 
size only in comparison with when increasing memory capacity only. Among the four 
target architectures, the third one (increasing memory capacity only) will be the best since 
it has only a little worse DRAM access in comparison with the fourth target architecture 

Figure 20. Average PE utilization—DenseNet121 (256 PE/128 KB Buffer).

Table 3. Overhead of reconfigurable architecture.

Fixed Reconfigurable Overhead

Architecture1 39,481.34 µm2 40,841.39 µm2 3.44%

Architecture2 161,263.71 µm2 170,336.73 µm2 5.63%

Architecture3 40,152.52 µm2 41,808.79 µm2 4.12%

Architecture4 157,946.82 µm2 165,562.65 µm2 4.82%

5. Discussions

In this section, we analyze and discuss the exploration results in the previous section.
For the HarDNet39, we see that either increasing memory capacity or increasing PE
array size is effective in reducing external memory access. Compared to the first target
architecture, Figure 13 shows that when increasing memory capacity only, all configurations
have a significant improvement on reducing DRAM access, although the “RFF” and
“RRF” configurations have even worse results than the “FFF” configuration. While when
increasing PE array size only, Figure 14 shows that although all configurations still reducing
DRAM access, except that the “RFF” and “RRF” configurations have even worse results
than the “FFF” configuration, the “FFR”, “RFR”, “FRR” and “RRR” configurations get
much worse results than when increasing memory capacity only. Finally, when increasing
both memory capacity and PE array size, Figure 12 shows that the “RFF” and “RRF”
configurations still have much worse results than the “FFF” configuration, and this target



Micromachines 2021, 12, 1365 16 of 18

architecture only get a little improvement for all configurations in comparison with the
third target architecture that increasing memory capacity only (Figure 13).

In summary for HarDNet39, among all the configurations, only PE array configuration
but without data reuse configuration (“RFF” and “RRF”) get the worst results, integrating
both PE array configuration and data reuse configuration (“RFR” and “RRR”) get the
best results when increasing memory capacity, and the effect of data reuse configuration
(“FFR”, “RFR”, “FRR” and “RRR”) will be much degraded when increasing PE array size
only in comparison with when increasing memory capacity only. Among the four target
architectures, the third one (increasing memory capacity only) will be the best since it
has only a little worse DRAM access in comparison with the fourth target architecture
(increasing both memory capacity and PE array size) for all configurations, but it needs
only one fourth of the PE array size.

For DenseNet121 which is a neural network with much less external memory access in
comparison with other CNNs, only PE array configuration but without data reuse configu-
ration (“RFF” and “RRF”) also get the worst results on all the four target architectures. For
the effect of different configurations on DenseNet121, we see that for target architectures
with the same memory capacity but different PE array size, Figures 16 and 17 (target
architectures 2, 3) show that they have similar configuration effects, and this is the same
for Figures 15 and 18 (target architectures 1, 4). While on the effect of memory capacity and
PE array size, Figure 18 shows that increasing PE array size only has less DRAM access in
comparison with increasing memory capacity only (Figure 17) for all configurations. That
is, for a neural network which is featuring on less external memory access, increasing PE
array size is a better choice to further reduce DRAM access.

In summary, our platform makes an exploration on the different combinations of
configuration issues to investigate their effectiveness, and can be used as a guide to speed
up the thorough exploration process on different target architectures.

6. Conclusions

In this paper, we propose a reconfigurable architecture and data reuse methodology
layer by layer for external memory traffic minimization and PE utilization enhancement
of CNNs, and is shown to be effective on the edge device which has limited hardware
resources. Especially, the additional control and hardware cost for these configurations is
reasonable and executable. The proposed exploration platform can evaluate the effect of
different configurations efficiently on different target architectures for different CNNs, and
therefore is convenient to evaluate and select approximate CNN and edge devices for the
target application.

In the future, making the different configuration items integrate more precisely is the
first work to do. In addition, extending the exploration platform for more evaluation items
is also ongoing work. After all, implementing the proposed reconfigurable architecture on a
promising platform like FPGA will be the most important work to do. Due to limited FPGA
storage capability and memory bandwidth as described in research [31], more complex
and efficient architecture design, dataflow and data reuse techniques will still be the focus
of this future work.

Author Contributions: W.-K.C. designed the algorithm, supervised the work, and wrote the paper;
X.-Y.L. and H.-T.W. designed and performed the experiments; H.-Y.P. and P.-Y.C. analyzed the data.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Ministry of Science and Technology, Taiwan, under
grant number MOST 110-2218-E-033-004.

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2021, 12, 1365 17 of 18

References
1. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,

105, 2295–2329. [CrossRef]
2. Peemen, M.; Setio, A.A.A.; Mesman, B.; Corporral, H. Memory-Centric Accelerator Design for Convolutional Neural Networks. In

Proceedings of the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October 2013.
3. Alwani, M.; Chen, H.; Ferdman, M.; Milder, P. Fused-Layer CNN Accelerators. In Proceedings of the 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (Micro), Taipei, Taiwan, 15–19 October 2016.
4. Li, Y.; Ma, S.; Guo, Y.; Chen, G.; Xu, R. Single-Channel Dataflow for Convolutional Neural Network Accelerator. In Proceed-

ings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China,
14–16 December 2018.

5. Li, J.; Yan, G.; Lu, W.; Jiang, S.; Gong, S.; Wu, J.; Li, X. SmartShuttle: Optimizing Off-Chip Memory Accesses for Deep Learning
Accelerators. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 19–23 March 2018.

6. Das, S.; Roy, A.; Chandrasekharan, K.K.; Deshwal, A.; Lee, S. A Systolic Dataflow Based Accelerator for CNNs. In Proceedings of
the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 10–21 October 2020.

7. Kwon, H.; Samajdar, A.; Krishna, T. MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects. In Proceedings of the 23rd ACM Architectutal Support for Programming Languages and Operating Systems
(ASPLOS), Williamsburg, VA, USA, 24–28 March 2018.

8. Kwon, H.; Chatarasi, P.; Pellauer, M.; Parashar, A.; Sarkar, V.; Krishna, T. Understanding Reuse, Performance, and Hardware Cost
of DNN Dataflows: A Data-Centric Approach. In Proceedings of the 2019 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Micro), Columbus, OH, USA, 12–16 October 2019.

9. Dubout, C.; Fleuret, F. Exact Acceleration of Linear Object Detectors. In Proceedings of the 12th European Conference on
Computer Vision (ECCV), Firenze, Italy, 7–13 October 2012.

10. Cong, J.; Xiao, B. Minimizing Computation in Convolutional Neural Networks. In Proceedings of the 24th International
Conference on Artificial Neural Networks (ICANN), Hamburg, Germany, 15–19 September 2014.

11. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer
Vision and Patten Recognition (CVPR), Las Vegas, NV, USA, 26–30 June 2016.

12. Intel Math Kernel Library. Available online: https://software.intel.com/en-us/mkl (accessed on 1 June 2020).
13. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cuDNN: Efficient Primitives for Deep

Learning. arXiv 2014, arXiv:1410.0759.
14. Sankaradas, M.; Jakkula, V.; Cadambi, S.; Chakradhar, S.; Durdanovic, I.; Cosatto, E.; Graf, H.P. A Massively Parallel Coprocessor

for Convolutional Neural Networks. In Proceedings of the 2009 20th IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), Boston, MA, USA, 7–9 July 2009.

15. Sriram, V.; Cox, D.; Tsoi, K.H.; Luk, W. Towards an embedded biologically-inspired machine vision processor. In Proceedings of
the 2010 International Conference on Field-Programmable Technology (FPT), Beijing, China, 8–10 December 2010.

16. Chakradhar, S.; Sankaradas, M.; Jakkula, V.; Cadambi, S. A Dynamically Configurable Coprocessor for Convolutional Neural
Networks. In Proceedings of the 37th ACM/IEEE International Symposium on Computer Architecture (ISCA), Saint-Malo,
France, 19–23 June 2010.

17. Gokhale, V.; Jin, J.; Dundar, A.; Martini, B.; Culurciello, E. A240G-ops/s Mobile Coprocessor for Deep Neural Networks. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Patten Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

18. Park, S.; Bong, K.; Shin, D.; Lee, J.; Choi, S.; Yoo, H.J. A 1.93TOPS/W Scalable Deep Learning/Inference Processor with
Tetra-Parallel MIMD Architecture for Big-Data Applications. In Proceedings of the 2015 IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, USA, 22–26 February 2015.

19. Cavigelli, L.; Gschwend, D.; Mayer, C.; Willi, S.; Muheim, B.; Benini, L. Origami: A Convolutional Network Accelerator. In
Proceedings of the 25th edition on Great Lakes Symposium on VLSI (GLVLSI), Pittsburgh, PA, USA, 20–22 May 2015.

20. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision. In Proceedings of
the International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015.

21. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting Vision Processing
Closer to the Sensor. In Proceedings of the 42nd ACM/IEEE International Symposium on Computer Architecture (ISCA),
Portland, OR, USA, 13–17 June 2015.

22. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In
Proceedings of the 43rd ACM/IEEE International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016.

23. Chen, Y.-H.; Krishna, T.; Emer, J.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA,
1–4 February 2016.

24. Sze, V.; Budagavi, M.; Sullivan, G.J. High Efficiency Video Coding (HEVC): Algorithms and Architectures. In Integrated Circuit
and Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–375.

25. Wu, H.N.; Huang, C.T. Data Locality Optimization of Depthwise Separable Convolutions for CNN Inference Accelerators. In
Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019.

http://doi.org/10.1109/JPROC.2017.2761740
https://software.intel.com/en-us/mkl


Micromachines 2021, 12, 1365 18 of 18

26. Li, G.; Li, F.; Zhao, T.; Cheng, J. Block Convolution: Towards Memory Efficient Inference of Large-Scale CNNs on FPGA. In Proceedings
of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018.

27. Sun, Q.; Chen, T.; Miao, J.; Yu, B. Power-Driven DNN Dataflow Optimization on FPGA. In Proceedings of the 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 4–7 November 2019.

28. Putic, M.; Venkataramani, S.; Eldridge, S.; Buyuktosunoglu, A.; Bose, P.; Stan, M. DyHard-DNN: Even More DNN Acceler-
ation with Dynamic Hardware Reconfiguration. In Proceedings of the 55th Annual Design Automation Conference (DAC),
San Francisco, CA, USA, 24–29 June 2018.

29. Lin, X.; Yin, S.; Tu, F.; Liu, L.; Li, X.; Wei, S. LCP: A Layer Clusters Paralleling mapping method for accelerating Inception and
Residual networks on FPGA. In Proceedings of the 55th Annual Design Automation Conference (DAC), San Francisco, CA, USA,
24–29 June 2018.

30. Zhang, Y.; Zhang, N.; Zhao, T.; Vilim, M.; Shahbaz, M.; Olukotun, K. SARA: Scaling a Reconfigurable Dataflow Accelerator. In
Proceedings of the 48th ACM/IEEE International Symposium on Computer Architecture (ISCA), Valencia, Spain, 14–19 June 2021.

31. Dinelli, G.; Meoni, G.; Rapuano, E.; Pacini, T.; Fanucci, L. MEM-OPT: A Scheduling and Data Re-Use System to Optimize On-Chip
Memory Usage for CNNs On-Board FPGAs. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 335–347. [CrossRef]

32. Chao, P.; Kao, C.Y.; Ruan, Y.S.; Huang, C.H.; Lin, Y.L. HarDNet: A Low Memory Traffic Network. In Proceedings of the 2019
International Conference on Computer Vision (ICCV), Seoul, Korea, 27–31 October 2019.

33. Samajdar, A.; Zhu, Y.; Whatmough, P.; Mattina, M.; Krishna, T. SCALE-Sim: Systolic CNN Accelerator Simulator. arXiv 2018,
arXiv:1811.02883.

34. Huang, G.; Liu, Z.; Maaten, L.v.d.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

http://doi.org/10.1109/JETCAS.2020.3015294

	Introduction 
	Background and Motivation 
	Preliminary 
	Related Works 
	Motivation 

	Methodology 
	PE Array Configuration 
	Buffer Configuration 
	Dataflow and Data Reuse Configuration 

	Experiment Results 
	Discussions 
	Conclusions 
	References

