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BACKGROUND: Hypergonadotropic hypogonadism is a burdensome complication of classic galactosemia (CG), an inborn error of galac-
tose metabolism that invariably affects female patients. Since its recognition in 1979, data have become available regarding the clinical spec-
trum, and the impact on fertility. Many women have been counseled for infertility and the majority never try to conceive, yet spontaneous
pregnancies can occur. Onset and mechanism of damage have not been elucidated, yet new insights at the molecular level are becoming
available that might greatly benefit our understanding. Fertility preservation options have expanded, and treatments to mitigate this compli-
cation either by directly rescuing the metabolic defect or by influencing the cascade of events are being explored.

OBJECTIVE AND RATIONALE: The aims are to review: the clinical picture and the need to revisit the counseling paradigm; insights
into the onset and mechanism of damage at the molecular level; and current treatments to mitigate ovarian damage.

SEARCH METHODS: In addition to the work on this topic by the authors, the PubMed database has been used to search for peer-
reviewed articles and reviews using the following terms: ‘classic galactosemia’, ‘gonadal damage’, ‘primary ovarian insufficiency’, ‘fertility’,
‘animal models’ and ‘fertility preservation’ in combination with other keywords related to the subject area. All relevant publications until
August 2022 have been critically evaluated and reviewed.

OUTCOMES: A diagnosis of premature ovarian insufficiency (POI) results in a significant psychological burden with a high incidence of de-
pression and anxiety that urges adequate counseling at an early stage, appropriate treatment and timely discussion of fertility preservation
options. The cause of POI in CG is unknown, but evidence exists of dysregulation in pathways crucial for folliculogenesis such as phosphati-
dylinositol 3-kinase/protein kinase B, inositol pathway, mitogen-activated protein kinase, insulin-like growth factor-1 and transforming
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Elucidation of molecular pathways underlying premature ovarian insufficiency in classic galactosemia can greatly advance insight
into the pathogenesis and open new treatment avenues. ER, endoplasmic reticulum; IGF-1, insulin-like growth factor-1; ISR, integrated
stress response; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; PI3K/AKT, phosphatidylinositol 3-kinase/protein
kinase B signaling growth/survival pathway; TGF-b, transforming growth factor-beta.
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growth factor-beta signaling. Recent findings from the GalT gene-trapped (GalTKO) mouse model suggest that early molecular changes in
1-month-old ovaries elicit an accelerated growth activation and burnout of primordial follicles, resembling the progressive ovarian failure
seen in patients. Although data on safety and efficacy outcomes are still limited, ovarian tissue cryopreservation can be a fertility preserva-
tion option. Treatments to overcome the genetic defect, for example nucleic acid therapy such as mRNA or gene therapy, or that influ-
ence the cascade of events are being explored at the (pre-)clinical level.

WIDER IMPLICATIONS: Elucidation of the molecular pathways underlying POI of any origin can greatly advance our insight into the
pathogenesis and open new treatment avenues. Alterations in these molecular pathways might serve as markers of disease progression
and efficiency of new treatment options.

Key words: classic galactosemia / galactosemia type 1 / galactose-1-phosphate uridylyltransferase / GALT deficiency / premature ovarian
insufficiency / subfertility / fertility preservation / folliculogenesis signaling pathways / pregnancy / hypergonadotropic hypogonadism

Introduction
From its discovery in an infant who died with severe liver disease
(Reuss, 1908) until the 1970s classic galactosemia (CG) was consid-
ered a disease affecting the eyes, liver and brain, the latter resulting in
developmental delay and later intellectual disability. Even with the in-
troduction of a diet consisting of lactose elimination, which enabled
many of those born with galactosemia to survive death from neonatal
liver disease, little attention was given to other organ systems.
Attention in those who survived through childhood to reach the age
of puberty and continued into adult years was primarily directed to
the intellectual deficits (Donnell et al., 1980).

In 1979, however, Kaufman and colleagues at Children’s Hospital of
Los Angeles reported a 17-year-old female with galactosemia, who
lacked secondary sexual development and had primary amenorrhea.
Studies revealed that she had hypergonadotropic hypogonadism. This
prompted them to measure the gonadotrophins in additional adoles-
cent females with galactosemia and they found that almost all had
hypergonadotropic hypogonadism with primary or secondary amenor-
rhea (Kaufman et al., 1979). This brief letter was quickly followed by
two additional letters in The Lancet reporting galactosemic females
with hypergonadotropic hypogonadism (Hoefnagel et al., 1979;
Komrower, 1979). Subsequently, Kaufman and colleagues published
more comprehensive data in which they also described diminished or
absent ovarian tissue in these female patients. Notably, in eight male
patients with galactosemia pubertal development and gonadotrophin
levels were normal (Kaufman et al., 1981). Since then, premature ovar-
ian insufficiency (POI) with infertility has been widely recognized as a
very frequent complication of galactosemia, affecting 80% of females,
increasing up to 85% in women over 35 years of age (Berry, 2008;
Fridovich-Keil et al., 2011). The cause of this very troubling complica-
tion is unknown. Numerous theories of pathogenesis have been sug-
gested but so far none has been authenticated (Fridovich-Keil et al.,
2011). It is clear that newborn screening, with even very early diagno-
sis and dietary therapy of galactosemia, while largely preventing or re-
versing liver disease and improving outcome of the cerebral
manifestations, does not prevent the ovarian insufficiency.

Methods
This review focuses on: the clinical picture and the need to revisit the
counseling paradigm; insights into the onset and mechanism of damage

at the molecular level; and current treatments to mitigate ovarian
damage.

Search methods
In addition to the work on this topic by the review authors, the
PubMed database has been used to search for peer-reviewed articles
and reviews using the following terms: ‘classic galactosemia’, ‘gonadal
damage’, ‘primary ovarian insufficiency’, ‘fertility’, ‘animal models’ and
‘fertility preservation’ in combination with other keywords related to
the subject area. All relevant publications until August 2022 have been
critically evaluated and reviewed.

Galactose metabolism
Almost all mammals feed their newborns with breastmilk and use lac-
tose as the primary fuel source. The amount of lactose in human milk
is 6.9% (Muehlhoff et al., 2013; Verduci et al., 2019). This disaccharide
is composed of the monosaccharides glucose and galactose. Upon
consumption, lactose is hydrolyzed into glucose and galactose by the
lactase enzyme in the brush border of the small intestine. Galactose
and glucose are then transported into enterocytes by sodium-glucose
transport proteins 1, and then are released into the extracellular space
following transport by glucose transporter 2 (GLUT2) present in the
basolateral membrane (Leturque et al., 2009; Augustin, 2010).
Galactose is actively transported into hepatocytes using the GLUT2
transporter. It then undergoes metabolic transformation in the cyto-
plasm utilizing the enzymes of the Leloir pathway (Frey, 1996).
Through the four enzymes of this pathway, galactose is converted into
glucose-1-phosphate (Glc-1-P), which then can enter glycolysis. It is
well known that galactose can be converted from a straight-chain con-
figuration to a cyclic form that may be in an a or a b conformation
and back again in a water solution. However, nature has seen fit to ac-
celerate this transformation into the a-D-galactopyranose conforma-
tion that is absolutely essential for the enzymatic conversion to
galactose-1-phosphate (Gal-1-P). In some cells, this conversion of b-
D-galactose to a-D-galactose is catalyzed by galactose mutarotase
(Holden et al., 2003; Thoden et al., 2003). The galactokinase 1 enzyme
(GALK1) rapidly phosphorylates a-D-galactose in an ATP-dependent
manner. The product of this reaction, Gal-1-P, is the co-substrate of
the enzyme galactose-1-phosphate uridylyltransferase (GALT) along
with uridine diphosphate glucose (UDP-glucose) and in a reversible
reaction generates Glc-1-P and uridine diphosphate galactose
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(UDP-galactose). Glc-1-P can be converted to glucose-6-phosphate
(Glc-6-P) to enter the glycolytic pathway or be employed to synthesize
glycogen. UDP-glucose is regenerated through the final step of the
Leloir pathway by the reversible UDP-galactose 4-epimerase enzyme
(GALE) that also employs NAD. This enzyme is not only capable of
converting UDP-galactose into UDP-glucose but also converts UDP-
N-acetylgalactosamine to UDP-N-acetylglucosamine. The activity of
the Leloir pathway may be at its peak in the newborn period when ga-
lactose intake is highest in life, per body weight. Genetic abnormalities
associated with defects of each of the Leloir pathway enzymes have
been identified (Berry, 1993-2021; Saudubray et al., 2016; Demirbas
et al., 2018). The most prevalent of these genetic hypergalactosemias
is CG due to absent or barely detectable GALT activity. When the
normal metabolism of galactose is hampered through a defect in the
Leloir pathway, galactose accumulates and can be converted to a clus-
ter of metabolites by alternate pathways (Fridovich-Keil, 2014). One
such pathway utilizes the aldose reductase enzyme and NADP to con-
vert excess galactose into galactitol (Quan-Ma et al., 1966). Another
alternate route is the oxidation of galactose to galactonate by galactose
dehydrogenase. In the defects downstream of the galactokinase step,
Gal-1-P accumulation is observed. In addition to Gal-1-P, these other
compounds that accumulate in excess may be a source of toxicity or
rescue in the hypergalactosemic state. To the best of our knowledge,
the only other way in humans that Gal-1-P may be converted to
UDP-galactose is via the UDP-glucose pyrophoshorylase enzyme.
However, the affinity of this enzyme for the substrate Gal-1-P is much
less than for the natural substrate Glc-1-P. The normal reaction is to
convert Glc-1-P and UTP into UDP-glucose and pyrophosphate.

Folliculogenesis—the process of
follicle development
Human females are born with 1–2 million primordial follicles, which
consist of an oocyte surrounded by somatic cells called pre-granulosa
cells (Strauss and Williams, 2019). Primordial follicles can mature
through a process named folliculogenesis to eventually ovulate an oo-
cyte (Fig. 1). The number of primordial follicles is considered the ovar-
ian reserve and POI develops with the early loss of primordial follicles
(Ford et al., 2020). Gonadotrophins become involved at puberty/sex-
ual maturity, which allow selected follicles to mature to ovulate an oo-
cyte (Ford et al., 2020). However, most follicles will not achieve
ovulation but will perish, a process termed atresia (Liu et al., 2006;
Adhikari and Liu, 2009). In women with CG, it is unknown whether
follicles have accelerated growth activation and then increased atresia,
or arrested growth and then atresia.

Clinical picture of ovarian
damage
POI refers to the clinical diagnosis of amenorrhea for at least 4 months
in a woman younger than 40 years of age. The diagnosis is often
accompanied by two consecutive serum elevations of FSH (FSH
30–40 mIU/l) (Nelson, 2009). Patients can present with symptoms
similar to those observed in menopausal women such as oligomenorrhea

and dysfunctional bleeding as well as vasomotor symptoms (Nelson,
2009). POI is the most common long-term complication in female
patients with CG (Rubio-Gozalbo et al., 2019). The clinical picture
varies from primary amenorrhea to normal pubertal development in
young adolescents, to irregular or absent menses later in life.

Normally, puberty is initiated when the hypothalamus releases
GnRH in a pulsatile manner. Increasing levels of GnRH stimulate the
anterior pituitary to release LH and FSH. Rising levels of FSH and LH
stimulate the ovaries to produce estrogen and to initiate ovulation, re-
spectively (Breehl and Caban, 2022). Women with CG often show el-
evated levels of FSH, hypoestrogenism and/or normal or increased
levels of LH. Elevated FSH levels have already been described from a
very young age in patients (Rubio-Gozalbo et al., 2006; Sanders et al.,
2009; Thakur et al., 2018; Hagen-Lillevik et al., 2021).

In addition to elevations of FSH and LH, anti-Müllerian hormone
(AMH) levels are decreased in female CG patients compared to age-
matched healthy controls (Sanders et al., 2009), even in very young
patients (<1 year). AMH is produced by the granulosa cells of early
developing follicles and has a key function in the regulation of follicular
growth and development. AMH levels provide important information
about the quantity and quality of the ovarian follicles. Therefore, low
levels of AMH reflects decreased ovarian reserve (La Marca and
Volpe, 2006) and proposes that POI may be evident at birth (Sanders
et al., 2009).

Ovarian radiological imaging shows findings observed in menopausal
women, such as a thin endometrial lining (<4 mm), small ovarian vol-
umes (0.8–2.6cm3) and low antral follicle count (AFC< 5) (Gubbels
et al., 2013; Moreira and Spritzer, 2016; Torrealday et al., 2017). The
Galactosemia Network (GalNet, www.galactosemianetwork.org)
(Rubio-Gozalbo et al., 2017) has made recommendations for monitor-
ing the gonadal function in affected girls and women (Welling et al.,
2017).

Spontaneous pregnancies
In women diagnosed with POI of any cause, the chance to conceive
naturally is 5–10%. Infertility/subfertility is the most burdensome issue
for women with CG contemplating pregnancy. Healthy couples trying
to conceive have a pregnancy chance of maximally 30% per cycle
(Zinaman et al., 1996). Eighty percent of healthy couples’ pregnancies
result in the birth of a healthy child (van Kasteren and Schoemaker,
1999). The pregnancy rate in women with CG might be higher com-
pared to women with POI of any other cause. Limited data that need
to be interpreted with caution show a pregnancy rate of 42.9% (9/21)
in women with CG (van Erven et al., 2017). Most women do not even
try to conceive or do not attempt for a period longer than 1 year, be-
cause the majority consider spontaneous pregnancies to be highly un-
likely (van Erven et al., 2017). This is in line with the mainly negative
counseling by healthcare providers in the past, which discourages
women with CG from trying to conceive. In recent years, reports on
spontaneous pregnancies in women with CG and POI have shifted the
counseling paradigm, and at present, the possibility of a spontaneous
pregnancy, albeit low, is discussed with the patients and families.

Risk factors for the development of POI in women with CG are ho-
mozygosity for NM_000155.4:c.563A>G (p.Gln188Arg) (the genetic
variant with a high prevalence in the Caucasian population), highly

Premature ovarian insufficiency in classic galactosemia 249

http://www.galactosemianetwork.org


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..elevated levels of Gal-1-P when on a galactose-restricted diet, and se-
verely impaired whole body galactose oxidation (Guerrero et al.,
2000). However, a survey by Gubbels et al. (2008) showed that
women who are homozygous for NM_000155.4:c.563A>G
(p.Gln188Arg) or other pathogenic variants associated with CG can
undergo pregnancy and successful delivery. Nowadays, the counseling
paradigm has shifted from counseling for infertility to counseling for
subfertility. The predictive role of spontaneous menarche as a favor-
able prognostic factor for spontaneous pregnancy has been studied for
several years, and this hypothesis has both been supported (Gubbels
et al., 2008; Flechtner et al., 2021) and undermined by different studies
(van Erven et al., 2017).

In addition, Spencer et al. (2013) demonstrated three other clinical
modifiers for the severity of ovarian dysfunction in CG, namely low

levels of AMH, elevated levels of FSH and a low AFC. However, a spon-
taneous pregnancy in a woman with CG and a prediction of no ovarian
reserve and undetectable AMH levels has been reported (Gubbels
et al., 2009; Kruszewska et al., 2022). Elevated levels of FSH and low
levels of AMH indicate POI and significantly impaired ovarian reserve,
but do not rule out the possibility of scattered small, quiescent follicles.

Pregnant women with CG continue their galactose-restricted diet
during pregnancy. The woman reported with undetectable AMH
showed increasing levels of galactose in plasma and urinary galactitol
until delivery, with a decline to acceptable levels after birth (Gubbels
et al., 2009). Moreover, these metabolite changes seem not to be
influenced by breast-feeding, which is in line with Schadewaldt et al.
(2009) who reported no significant metabolite changes during preg-
nancy, delivery and lactation.

Case rerr port of 15-yeyy ar oldgirl withCG
Diaggnosis: NBS with total galactose >100 mg/dL, Gal-1-P-- 16 mg/dL, absent GAGG LTLL activity and homozygosity for
p.Gln188Arg.
Newborn pperiod: clinically normal and breastfeeding(at day 4). AfAA ter diagnosiswas established,breastfeedingwas
discontinuedand lactose-f-- ree diet was initiated.
General follow-u-- pp:
● 4 years of age: start showingsigns of mild intellectual delay and speechde cit
● Third grade:poor school performanceand required special help. IQwas 87

Sexual developpment: at 15 years of age her sexual development was at TaTT nner stage 1. FSH and LH were elevated
(46.8 IU/mL and 52.3 IU/mL respectively) and estradiol reduced (17 pg/mL). POI was diagnosed. Pelvic
ultrasonography revealed streak ovaries. She began on estrogen therapy. When she was last seen at age 26, she
had breasts,but remainedamenorrheicand was infertile.

Primordial germ cells

Primordial follicle

Primary follicle
Secondary follicle

Preantral follicle

Early antral follicle

Graa an follicle

Corpus luteumCorpus albicans

A

PI3K/KK AKTKK

ERstress

mTOR
TGF-ß

IGF-1

Inositol pathway

OxOO idative stress

ISRactivity

FSH signaling

MAPK
B

Altered signaling
pathways in CG

Figure 1. Hypergonadotropic hypogonadism and altered signaling pathways in classic galactosemia. (A) A typical case report of a
15-year-old girl with classic galactosemia and premature ovarian insufficiency. (B) Perturbed signaling pathways in animal and cellular models for clas-
sic galactosemia, according to the literature. Figure created with BioRender.com. CG, classic galactosemia; ER, endoplasmic reticulum; Gal-1-P, galac-
tose-1-phosphate; GALT, galactose-1-phosphate uridylyltransferase; IGF-1, insulin-like growth factor-1; ISR, integrated stress response; MAPK,
mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NBS, newborn screening; PI3K/AKT, phosphatidylinositol 3-kinase/
Protein kinase B signaling growth/survival pathway; POI, premature ovarian insufficiency; TGF-b, transforming growth factor-beta.
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Commonly, women with CG give birth to healthy babies. Gubbels

et al. (2008) reviewed a series of pregnancies and concluded that no
harmful effects are observed in the fetuses of mothers with CG.
Although no systematic follow-up of the long-term effects has been
performed, no anecdotal evidence of adverse effects for the child of a
CG mother have been reported so far.

Women who are carriers of pathogenic GALT variants and who are
expecting a child with CG (Berry, 1993-2021) are not advised to fol-
low a diet. Dietary galactose restriction of the mother does not influ-
ence the accumulation of galactitol in the amniotic fluid (Jakobs et al.,
1988) or the accumulation of Gal-1-P in cord blood erythrocytes
(Irons et al., 1985).

Onset and mechanism of
damage including potential
signaling pathway alterations

Onset of POI in CG
Relatively little is known about the onset of POI in CG; however, evi-
dence suggests that young females with CG can have typical ovarian
morphology and a normal number of primordial follicles as neonates
until 5 years old, but show diminished follicles by early adolescence
(Levy et al., 1984; Levy, 1996; Mamsen et al., 2018). One case report
saw ovaries of typical appearance at the age of 7 years, but hypoplastic
ovaries in the same female at the age of 17 years (Kaufman et al.,
1981). Ovarian histology from several patients with CG revealed nor-
mal histology in two neonates, whereas at ages ranging from 16 to
26 years, there was either none or only a few primordial follicles with
the absence of mature follicles, suggesting a maturation arrest
(Beauvais and Guilhaume, 1984; Levy et al., 1984; Robinson et al.,
1984; Morrow et al., 1985; Fraser et al., 1986; Schwarz et al., 1986;
Sauer et al., 1991; Levy, 1996; Rubio-Gozalbo et al., 2010).

Additionally, alterations in the levels of gonadotrophins, such as ele-
vated FSH, and low AMH and estradiol (E2) throughout childhood and
into adolescence in females with CG reflect the development of ovar-
ian failure as females reach early and post-puberty; the loss of follicles
to eventual hypoplastic ovaries suggest a progressive insult as the fe-
male ages.

Animal models of POI in CG
The GalTKO mice
Various animal models have been employed to elucidate the timing of
follicle loss and ovarian failure in CG. In the GalT gene-trapped
(GalTKO) mouse model developed by Tang et al. (2014), mutant ova-
ries from adult animals at 6 months of age had significantly fewer pri-
mordial follicles and more corpus luteum tissue than their wildtype
counterparts. Recently, evidence of accelerated primordial follicle acti-
vation and antral follicle arrest was presented in the GalTKO mouse
ovaries at 1 month of age by an increased number of primary follicles
and fewer growing secondary follicles compared to their wildtype
counterparts (Hagen-Lillevik et al., 2022b). The GalTKO mouse model
thus suggests early molecular changes (i.e. impaired integrated stress
response (ISR)) that elicit an accelerated growth activation early in life

with ‘burnout’ of primordial follicles, resembling the progressive ovar-
ian failure seen in patients (Hagen-Lillevik et al., 2022a).

Experimental hypergalactosemia
One of the proposed cellular mechanisms for POI in CG is based on
the accumulation of galactose and its toxic metabolites (Gal-1-P and
galactitol) in the ovary, although the affected downstream cellular path-
ways are unknown. Indeed, excessive galactose intake can give rise to
POI in animal models, as comprehensively reviewed by Rostami
Dovom et al. (2019). Both prenatal and postnatal galactose exposure
can induce hypergonadotropic hypogonadism in rodent models and
can elicit delayed puberty (Bandyopadhyay et al., 2003; Banerjee et al.,
2012; Rostami Dovom et al., 2019). While high levels of galactose ad-
ministration clearly illustrate toxicity to the ovary in these rodent mod-
els, the mechanisms may not be entirely relevant to CG as most
patients follow a galactose-restricted diet following diagnosis in the
neonatal period, and the animals have a fully functioning GALT enzyme
(pseudo-deficiency).

Perturbed signaling pathways related to
ovarian development in patient and animal
studies
Crosstalk between MAPK, IGF-1 and PI3K/AKT signaling growth/
survival pathways
Several signaling pathways are involved in normal folliculogenesis, and
thus implicated in the development of POI in CG. The canonical phos-
phatidylinositol 3-kinase/protein kinase B/mammalian target of rapa-
mycin (mTOR) signaling growth/survival pathway (PI3K/AKT) is
perhaps the most well studied and central signaling pathway in primor-
dial follicle growth activation (Zhou et al., 2017). Human and animal
studies have identified several regulators of PI3K/AKT signaling in-
volved in primordial follicle activation and folliculogenesis, with dysre-
gulation resulting in POI (John et al., 2008; Jagarlamudi et al., 2009;
Reddy et al., 2009; Adhikari et al., 2010). Also, crosstalk with mitogen-
activated protein kinase (MAPK) and insulin-like growth factor-1
(IGF-1) signaling pathways appears to be connected to PI3K/AKT sig-
naling in the ovary and is crucial for primordial follicle activation (Jia
et al., 2011; Du et al., 2012; Pan et al., 2014; Zhao et al., 2018).
MAPK signaling is involved in the pathogenesis of POI, with inhibition
of this pathway leading to improved ovarian outcomes (Liu et al.,
2021). IGF-1 is a follicular survival protein that can activate several
pathways, including MAPK and PI3K/AKT signaling, and is protective
against apoptosis in the ovary (Quirk et al., 2000, 2004). In addition,
growth differentiation factor-9 (GDF-9), an oocyte-specific member of
the transforming growth factor-beta (TGF-beta) family, is deemed criti-
cal for folliculogenesis and mutations in the TGF-beta superfamily and
GDF9 gene have been implicated in POI pathology (Di Pasquale et al.,
2004; Dixit et al., 2006; Qin et al., 2011, 2015; França et al., 2018).

Evidence of perturbed signaling pathways in patients and animal
models of CG
PI3K/AKT signaling was downregulated in older GalTKO mouse ovaries
and fibroblasts at 6 months of life (Balakrishnan et al., 2016, 2017).
Coss et al. (2014b) found significant dysregulation of genes in the phos-
phatidylinositol signaling pathway in lymphocytes from patients with ga-
lactosemia. Downstream of PI3K/AKT signaling, Coman et al. (2010)
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found that MAPK signaling was upregulated in lymphocytes from
patients with CG.

Furthermore, there are multiple lines of evidence indicating that
IGF-1 signaling is impaired in galactosemia. First, Gal-1-P was able to
downregulate IGF-1 gene expression in fibroblast cultures from 3- to
8-day-old healthy neonates (Dhaunsi and Al-Essa, 2016). In addition,
chronic Gal-1-P administration, with lipofectamine as a cellular perme-
ating agent, decreased IGF-1 receptor expression in fibroblasts (Al-
Essa and Dhaunsi, 2020). Moreover, Balakrishnan et al. (2016) showed
that GalTKO fibroblasts had downregulated PI3K/AKT signaling and
decreases in the IGF-1 receptor. Lastly, it has been proposed that
galactose-induced stress activates the expression of the micro-RNA
miR-223 (El Bakly et al., 2020), which could then impede cell prolifera-
tion, partly by targeting the IGF-1 receptor and inhibiting its down-
stream PI3K/AKT pathway (Jia et al., 2011; Pan et al., 2014).

The integrated stress response/unfolded protein response pathway
Besides PI3K/AKT, MAPK, IGF-1 and GDF-9 signaling, other promi-
nent molecular signaling mechanisms studied in the context of the
ovary and galactosemia are the ISR/unfolded protein response (UPR)
(Balakrishnan et al., 2019; Llerena Cari et al., 2021), glycosylation
defects (Forges et al., 2006), and oxidative stress (Thakur et al., 2018),
all resulting in apoptosis and/or autophagy.

Galactose-toxicity, depleted cellular inositol and concomitant Gal-1-
P accumulation can elicit endoplasmic reticulum stress (ER stress)
(Slepak et al., 2007; Deranieh and Greenberg, 2009; De-Souza et al.,
2014), which is one activator of the ISR/UPR through the phosphory-
lation of eukaryotic transcription initiation factor alpha (PeIF2a), which
has been reviewed in the context of the ovary and CG by Hagen-
Lillevik et al. (2021). Key ER stress protein levels were increased in
fibroblasts and whole ovary tissues of adult GalTKO mice compared to
wildtype (Balakrishnan et al., 2019). However, the administration of an
ER stress modulator, Salubrinal, which acts to keep eIF2a phosphory-
lated, in young mice rescued fertility and increased the number of pri-
mordial follicles (Balakrishnan et al., 2019). In contrast to older adult
GalTKO whole ovaries, Llerena Cari et al. (2021) showed decreased
global immunofluorescent staining for PeIF2a in younger GalTKO ova-
ries compared to wildtype. Additionally, the ISR and ER stress can dys-
regulate PI3K/AKT signaling by decreasing the abundance of AKT and
its substrate specificity (Yung et al., 2011; Balakrishnan et al., 2017).
After administration of Salubrinal to GalTKO mice, PI3K/AKT signaling
was also restored in addition to increases in the number of primordial
follicles in the ovary (Balakrishnan et al., 2017). The MAPK signaling
pathway also plays a role in the ER stress response and has various
points of crosstalk with the ISR/UPR (Darling and Cook, 2014).

Aberrant glycosylation and oxidative stress
Altered glycosylation is known to be present in patients with CG
(Coss et al., 2014a,b; Babayev et al., 2016; Colhoun et al., 2018). N-
glycan assembly defects in neonates and N-glycan processing defects in
treated young children and adults are identified in serum IgG, suggest-
ing the presence of systematic glycosylation defects in CG (Coss et al.,
2012, 2014a; Stockmann et al., 2015; Maratha et al., 2016; Treacy
et al., 2021).

In humans, FSH and FSH-receptors are glycosylated proteins and
alterations in these have been explored as a possible mechanism of
POI in CG (Banerjee et al., 2021). Indeed, female patients with

congenital disorders of glycosylation can show a similar hypergonado-
tropic hypogonadic phenotype as CG patients (Kristiansson et al.,
1995). It has been hypothesized that aberrant glycosylation could im-
pact the normal function of FSH and the interaction between FSH and
its receptor. Prestoz et al. (1997) observed altered FSH isoforms in fe-
male patients with CG compared to healthy controls, indicating hypo-
glycosylation. However, results from Gubbels et al. (2011) did not
support the hypothesis of FSH dysfunction due to hypoglycosylation,
while Sanders et al. (2009) have demonstrated that the bioactivity of
FSH in female patients with CG does not differ compared to healthy
controls. Thus, to date, FSH studies in females with CG have yielded
varying results, suggesting the mechanism of dysfunction may actually
lie in reduced availability of antral follicles to respond to circulating
FSH, and not problems with its glycosylation (Gubbels et al., 2011).

Reduced galactosylation of IgG can result in immune activation (de
Jong et al., 2016). The interplay between glycosylation defects and in-
flammation is supported by the correlation between expression of the
glycan assembly gene alpha-1,2-mannosyltransferase (ALG9) and
inflammation-related genes intercellular adhesion molecule 1 (ICAM1)
and annexin A1 (ANXA1) in lymphocytes of females with CG
(Colhoun et al., 2018). Pro-inflammatory conditions can alter ovarian
follicular dynamics, impair folliculogenesis and may contribute to infer-
tility (Boots and Jungheim, 2015). Increased oxidative stress and dysre-
gulated inflammatory signaling are also associated with the Drosophila
melanogaster fruit fly model of CG (which was ameliorated with the
supplementation of antioxidants) (Jumbo-Lucioni et al., 2013, 2014)
and in white blood cells of humans with CG (Colhoun et al., 2018).

Apoptosis and autophagy
Another suspected mechanism of POI in CG is increased apoptosis/
autophagy of follicles, leading to accelerated atresia. Dysregulation of
molecular signaling pathways, impaired glycosylation and increased oxi-
dative stress can all result in apoptosis/atresia and are implicated in
ovarian development (Agarwal et al., 2012; Menezo et al., 2016; Yang
et al., 2017; Banerjee et al., 2021). There is abundant evidence of in-
creased apoptosis markers, p53 expression and downregulation of sur-
vival factors in the ovarian follicles of galactose intoxicated rodent
models (Lai et al., 2003; Quirk et al., 2004; Tsai-Turton and Luderer,
2006; Banerjee et al., 2012). Autophagy is also implicated in follicular
development and atresia and, unsurprisingly, autophagy and apoptosis
have many signaling molecules and pathways in common. The interplay
between these processes has been reviewed by Zhou et al. (2019).
The previously mentioned IGF-1 receptor is one of the most impor-
tant mediators of autophagy and it is possible that the IGF-1 signaling
impairments can promote excessive atresia in galactosemia (Feng
et al., 2005; Crighton et al., 2006; Zhou et al., 2019). Problems in the
ISR/UPR have also been shown to increase markers of apoptosis in
the mouse GalTKO ovary (Balakrishnan et al., 2017).

In summary, animal models and human data from patients with CG
suggest progressively impaired folliculogenesis beginning at young ages,
leading to decreased ovarian function and severe POI. Evidence of dys-
regulation in several molecular signaling pathways crucial for normal
folliculogenesis exists in models of galactose-induced POI, including
PI3K/AKT, MAPK, IGF-1 and TGF-beta signaling, as well as increased
oxidative stress, ER stress, and altered ISR activity. While the exact
mechanism(s) of developing POI with GALT-deficiency is unknown,
aberrant metabolites, such as Gal-1-P and galactitol, and early
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molecular changes eliciting ‘burnout’ of primordial follicles seem to be
involved in the pathogenesis of POI in CG. Elucidation of the molecu-
lar pathways underlying POI of any origin can greatly advance our in-
sight into its pathogenesis and open new treatment avenues. These
molecular alterations might serve as markers of disease progression
and the efficiency of new treatment options.

Psychological burden,
counseling and fertility
preservation in CG
POI is a life-changing diagnosis associated with a high psychological bur-
den. Groff et al. (2005) studied the emotional impact of women diag-
nosed with POI and showed that receiving the diagnosis can be
traumatic. In 2022, Randall et al. (2022) studied the impact of CG on
daily life from the patient and caregiver perspectives. Diminished fertility
potential was associated with a tremendous emotional burden from
both the patient and caregiver perspectives. Female patients reported
feelings of depression and anxiety. In addition, caregivers with a desire
to have grandchildren struggled with the loss of next-generation repro-
duction. Clinicians should be aware of the high psychological burden this
condition entails and adjust their management to the individual’s needs.

It is important that physicians emphasize the occurrence of sponta-
neous pregnancies in women with CG and therefore a time-window
of 1 year for attempting to conceive naturally should be advised.
Engagement of a multidisciplinary team, including specialists in genetic
metabolic diseases, reproductive endocrinology, fertility and psychol-
ogy, at least at two points in the process needs to be implemented:
around the time of the parental decision to preserve their daughter’s
ovarian tissue and when the patient wishes to use the preserved tis-
sue. This is crucial, as the decision process might be challenged by the
patient’s degree of intellectual disability and psychological burden that
is not yet clear at the time of cryopreservation (van Erven et al.,
2013). Currently, available fertility preservation options in young
women with CG are ovarian tissue cryopreservation (OTC) and oo-
cyte donation. Oocyte cryopreservation is a process where ovarian
stimulation is achieved through injecting gonadotrophins, and mature
oocytes are then retrieved and cryopreserved using the vitrification
method. This approach requires a baseline ovarian reserve and might
not be the best option for patients with POI and CG.

OTC is now a clinical option available for patients who desire fertil-
ity preservation. During this process the ovarian tissue is retrieved sur-
gically, the ovarian cortex is isolated, dissected into fragments and
then cryopreserved (Mamsen et al., 2018). In general, the data on
safety, efficacy and outcomes on OTC are still limited (American
Society for Reproductive Medicine, 2002). However, emerging re-
search studies are showing a more routine use of this technique.
Owing to the progressive course of follicle loss, the timing of OTC in
CG for many patients will be in the first decade of life (Mamsen et al.,
2018) and OTC for young prepubertal girls at the moment is the pro-
cedure of choice. The occurrence of spontaneous pregnancies in
some patients with CG despite POI makes a well-weighted decision to
undergo fertility preservation necessary.

Oocyte donation can be an option for women of advanced repro-
ductive age with CG and POI in whom OTC is not feasible (American

Society for Reproductive Medicine, 2002). Haskovic et al. (2018) stud-
ied intrafamilial oocyte donation (mother-to-daughter and sister-to-
sister) and highlighted the important ethical aspects to be discussed, in-
cluding family relations, medical impact, patients’ cognitive level, agree-
ments to be made in advance and organization of counseling,
disclosure to the child and the need for follow-up.

As we are moving fast toward a great variety of treatment possibili-
ties, we need to focus our research on ascertaining the best timing for
postnatal fertility preservation, which might vary per individual, from
early childhood to the pre-pubertal period.

Future potential treatments
In addition to the current possibilities for treatment, advances in our
understanding of the pathophysiology and the availability of new tech-
nologies might in the near future change the landscape of treatment
significantly. Currently, different therapeutic approaches are undergoing
preclinical examination, aiming at: restoration of GALT activity
(Haskovic et al., 2020; Delnoy et al., 2021; Brophy et al., 2022;
Fridovich-Keil and Berry, 2022); and influencing the cascade of events
(Timson, 2020; Delnoy et al., 2021). Effective therapeutic approaches
for CG could prevent the development, or arrest the progression, of
long-term complications such as POI.

The ISR is a prominent molecular signaling mechanism studied in the
context of ovary and galactose intoxication. Modulation of ISR might be
beneficial in CG as shown in animal mouse models (Balakrishnan et al.,
2016). Salubrinal is an ER stress modulator, which acts by enhancing
eIF2a phosphorylation and subsequently upregulating the cellular stress
responses (Boyce et al., 2005). The administration of Salubrinal restored
PI3K/AKT signaling and increased the number of primordial follicles in
treated young mice (Balakrishnan et al., 2017, 2019). Recently, positive
results were observed with the administration of two safe supple-
ments—purple sweet potato color (PSPC) and myo-inositol (MI)—in a
GalTKO mouse model (Hagen-Lillevik et al., 2022b). Supplementation
with PSPC targeted the ISR and oxidative stress, resulting in improved
fertility and ovarian function. Supplementation with MI also supported
ovarian function but showed a greater positive effect on cerebellar mor-
phology (Hagen-Lillevik et al., 2022b).

Artificial gametes or in vitro gametogenesis—although still experi-
mental—seem to be promising avenues for the near future.
Gametogenesis generated from induced pluripotent stem cell, extra
embryonic stem cells and germline stem cells have been studied in ani-
mal models, with successful live births. Saitou’s research group have
shown that mouse embryonic ovarian somatic cells have the germline
potential to differentiate progressively into cells closely resembling hu-
man oogonia during a long-term in vitro culture of �4 months
(Yamashiro et al., 2018; Murase et al., 2020). This research shows
promising results in terms of the generation of human germ cells as
potential treatment solutions for diseases associated with infertility.

Conclusion
A diagnosis of POI results in a significant psychological burden with a
high incidence of depression and anxiety that urges adequate counseling
at an early stage, appropriate treatment and timely discussion of fertility
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preservation options. The exact etiology of POI in CG is unknown, but
the evidence suggests a dysregulation in pathways that are crucial for fol-
liculogenesis such as PI3K/AKT, inositol pathway, MAPK, IGF-1 and
TGF-beta signaling. Recent findings using the GalTKO mouse model sug-
gest that molecular changes in 1-month-old mouse ovaries elicit an ac-
celerated growth activation and burnout of primordial follicles,
resembling the progressive ovarian failure seen in patients. OTC, al-
though data on safety and efficacy outcomes are still limited, may be an
option. Treatments to overcome the metabolic defect, for example nu-
cleic acid therapy such as mRNA or gene therapy, or that influence the
cascade of events are being explored at the pre-clinical or clinical level.
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