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Purpose: CT-based perfusion and collateral imaging is increasingly used in the assessment
of patients with acute stroke.Time of stroke onset is a critical factor in determining eligibil-
ity for and benefit from thrombolysis. Animal studies predict that the volume of ischemic
penumbra decreases with time. Here, we evaluate if CT is able to detect a relationship
between perfusion or collateral status, as assessed by CT, and time since stroke onset.

Materials and methods: We studied 53 consecutive patients with proximal vessel occlu-
sions, mean (SD) age of 71.3 (14.9) years, at a mean (SD) of 125.2 (55.3) minutes from
onset, using whole-brain CT perfusion (CTp) imaging. Penumbra was defined using voxel-
based thresholds for cerebral blood flow (CBF) and mean transit time (MTT); core was
defined by cerebral blood volume (CBV). Normalized penumbra fraction was calculated as
Penumbra volume/(Penumbra volume+Core volume) for both CBF and MTT (PenCBF and
PenMTT, respectively). Collaterals were assessed on CT angiography (CTA). CTp ASPECTS
score was applied visually, lower scores indicating larger lesions. ASPECTS ratios were
calculated corresponding to penumbra fractions.

Results: Both PenCBF and PenMTT showed decremental trends with increasing time
since onset (Kendall’s tau-b=−0.196, p=0.055, and −0.187, p=0.068, respectively).The
CBF/CBV ASPECTS ratio, which showed a relationship to PenCBF (Kendall’s tau-b=0.190,
p=0.070), decreased with increasing time since onset (Kendall’s tau-b=−0.265,
p=0.006). Collateral response did not relate to time (Kendall’s tau-b=−0.039, p= 0.724).

Conclusion: Even within 4.5 h since stroke onset, a decremental relationship between
penumbra and time, but not between collateral status and time, may be detected using
perfusion CT imaging. The trends that we demonstrate merit evaluation in larger datasets
to confirm our results, which may have potential wider applications, e.g., in the setting of
strokes of unknown onset time.
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INTRODUCTION
CT-based perfusion and collateral imaging is increasingly used
in the assessment of patients with acute stroke (1–6). Thus, CT
perfusion (CTp) is used to identify core and penumbra by map-
ping cerebral blood flow (CBF), cerebral blood volume (CBV),
and mean transit time (MTT) (1, 7). CBF (2) and MTT (2, 8,
9) thresholds have been used to identify penumbral tissue, while
CBV (9) has been used for mapping the infarct core. While there
have been a number of studies demonstrating that CTp may be
used to identify these tissue compartments, there is some dis-
agreement in the literature about its utility in routine clinical
practice to guide early treatment decisions (10). However, its wider
availability, shorter scanning times, and lower costs (11) make it
potentially more attractive as a clinical tool than MRI which is an
expensive and time intensive resource, and may not be available

24 hours a day at many institutions for the assessment of acute
stroke.

Time of stroke onset is a critical factor in determining eligibility
for and benefit from thrombolysis (12). From a pathophysiolog-
ical perspective, ischemic penumbra is the therapeutic target for
acute stroke therapies (1, 13, 14). An important concept relating
to the penumbra remains that, unless salvaged, it gets recruited
to the ischemic core with time (15). While PET remains the gold
standard for penumbral imaging (14, 15), MRI, and CT-based
methods have been applied in clinical cohorts to study penumbral
tissue and relationship with clinical outcomes (16, 17). Pre-clinical
studies and few human imaging based studies report a falling fre-
quency of target mismatch as a surrogate for penumbral tissue with
increasing time from ictus (18). We hypothesized that within the
therapeutic window for thrombolysis, a decremental relationship
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of penumbra with time since stroke onset could be applied using
perfusion CT imaging in a clinical population. The further aim
of establishing such a relationship would be in the setting where
time of stroke onset is unknown, and physiological imaging may
have a role (1, 19). Physiological imaging also has potential for
extending the time window for early treatments beyond 4.5 h, and
some successful studies including patients up to 6 h have already
emerged (20, 21).

We studied a cohort of patients with whole head CTp imaging
within the currently licensed window for thrombolysis, namely
4.5 h. We examined voxel-based quantitative tissue fractions
against time since onset. CTp thresholds have been shown to
be robust in that, they are not time dependent within this win-
dow and potentially up to 15 h from ictus (22); and can thus
be reliably applied in this early time window. Given the hemo-
dynamic changes after an acute vascular occlusion, i.e., falling
CBF and subsequently CBV (15), these two parameters along-
side MTT were applied to quantitatively describe the penumbra.
To further explore a clinically translatable index, visually assessed
ASPECTS score for CTp maps, as previously described in the lit-
erature (23, 24), was examined against quantitative fractions and
further, against time since onset.

We aimed to show that CTp is a reasonable imaging modal-
ity to capture these expected tissue changes, given the current
uncertainties regarding its utility, as outlined above. Relationship
of penumbra and time has been studied previously in physiolog-
ical imaging studies (16, 18) and we aimed to demonstrate that
CTp imaging may be applied in a clinical population to confirm
these expected relationships. In addition,given the potential role of
collateral status in maintaining the penumbra (25–27), collateral
circulation was also examined against time. This is an important
area of current research and such a relationship has not, to our
knowledge, been previously assessed.

MATERIALS AND METHODS
APPROVALS
We recruited patients from the Cambridge Acute Stroke Database.
Ethical approval was granted by the South East Research Ethics
Committee and the National Information Governance Board
(NIGB, UK). Patients or next of kin provided written informed
consent. When consent was unavailable, approval was in place for
retrieval of clinical and imaging data.

PATIENT RECRUITMENT
A cohort of consecutive anterior circulation stroke patients
(n= 53) with proximal arterial occlusions, i.e., the intracranial
internal carotid artery (ICA) or proximal middle cerebral artery
(MCA) (M1), confirmed on CTA, was recruited between Decem-
ber 2009 and February 2013. We selected proximal occlusions
to avoid including patients where recanalization had already
occurred; thus, penumbral tissue could be reliably studied. All
patients had presented within 4.5 h of clearly known onset of
symptoms, were being assessed for thrombolysis and underwent
CTp as part of the acute stroke imaging protocol at our institu-
tion. All patients had presented with their first clinical stroke and
had a clear defect on CTp. Lacunar strokes were excluded because
penumbral tissue characterization is unclear in these cases (28).
Baseline clinical data were recorded prospectively.

WHOLE-BRAIN CT PERFUSION IMAGING ACQUISITION AND ANALYSIS
Plain CT and CTp were acquired in succession using Siemens®
Somatom Definition Flash Scanner. Perfusion images were
acquired after a 4 s delay following an injection of 50 ml of
Niopam-300 with a PSI injector at a rate of 5 ml/s and a saline
chaser bolus, via a 16–18 gage intravenous cannula. Z -axis cov-
erage was 70–100 mm, with acquisition parameters of 80 kV and
240–250 mA, rotation time of 0.28–1 s, and reconstructed slice
thickness of 10 mm with 4–6 mm overlap.

Raw perfusion data were analyzed on a Siemens® worksta-
tion using Syngo® VPCT Neuro software. Brain parenchyma
was isolated by skull bone contour findings; CSF and calcifi-
cations were removed by automatic thresholding. The arterial
input function (AIF) and venous outflow function were semi-
automatically selected from the anterior cerebral artery (ACA)
and superior sagittal sinus respectively. In two cases, the MCA
was used to derive AIF. Major vessels were removed by applying
relative thresholding to the maximal voxel enhancement. Adap-
tive spatial filtering was performed that did not smooth over
edges and vessel borders. Subsequently, quantitative maps of rel-
ative CBF, CBV, and MTT were obtained using a deconvolution
algorithm.

Quantitative maps were transferred to a Windows® PC and
segmented using voxel-based thresholds to define at-risk tissue or
“penumbra”and irreversibly damaged tissue or“core”(3). This was
performed using in-house software (3, 17) in Matlab® (R2007b,
The MathWorks Inc.) run using SPM8 (Wellcome Trust Centre
for Imaging Neuroscience, London, UK).

PENUMBRA FRACTION DEFINITIONS
Penumbra was defined using a previously validated, voxel-based
quantitative threshold based for CBF [volume of tissue where each
voxel had a CBF ratio of affected to unaffected hemisphere (A/U)
≤0.50 outside the core] based on large clinical series (2). For fur-
ther substantiation, we also applied a threshold based on MTT (9,
29, 30) (volume of tissue where each voxel had an MTT ratio of
A/U ≥1.45 outside the core). Ischemic core was defined using a
CBV threshold [volume of tissue where each voxel had a CBV ratio
of A/U ≤0.65 (9, 31)].

Normalized penumbra fractions, i.e., PenCBF and PenMTT

were subsequently calculated as Penumbra volume/(Penumbra
volume+Core volume).

COLLATERAL SCORES
Collateral scores were independently assessed, without access to
clinical information, by a senior neuroradiologist (DJS) with over
10 years of experience in evaluating CTp and CT angiography.

The collateral score used in this study is based on descrip-
tion of angiographic appearance of collateral vessels (32) and
applied to CTA maximum intensity projections previously (3, 33–
35). We used reconstructed 20 mm axial CTA maximum intensity
projections (MIP’s) and assigned collateral scores as follows:

0=Absent collaterals
1=Collaterals filling ≤50% of the occluded arterial territory
2=Collaterals filling >50% but <100% of the occluded arterial
territory
3=Collaterals filling 100% of the arterial territory.
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ASPECTS SCORING
Two assessors (Tomasz Matys and Smriti Agarwal) independently
scored the unthresholded perfusion maps (Figures 1A–C) for each
subject. Briefly, ASPECTS score was assigned on a scale of 0–10 for
each of the three perfusion maps, a lower score indicating a more
extensive perfusion deficit within the stroke lesion. The unaffected
hemisphere was used as a reference. While evaluating the maps,
raters did not have access to clinical information except for side of
the lesion. Individual parameters for each subject were scored on
a different calendar day to avoid systematic bias. ASPECTS score
for each parameter was averaged from the two readings and this
value was used for final analysis.

We evaluated CBF/CBV ASPECTS ratio and MTT/CBV
ASPECTS ratio against corresponding penumbra fractions, i.e.,
PenCBF and PenMTT, respectively. Where we found a relationship
between the two, the corresponding ASPECTS ratio was evaluated
against time since onset.

STATISTICAL ANALYSIS
All analyses were performed using IBM SPSS, version 19 for Mac-
intosh and Microsoft Excel 2011. Mean (SD) and median (IQR)
values are reported here for baseline clinical characteristics.

For the ASPECTS scoring, interobserver agreement was mea-
sured using Kappa statistic (36, 37) and further measure of internal
consistency was applied using Cronbach’s alpha (38).

To test our hypothesis, we performed non-parametric correla-
tions using Kendall’s tau-b for penumbra fraction,ASPECTS ratios
and collateral score against time since stroke onset.

Two sided p-values were obtained and considered significant
if <0.05.

RESULTS
BASELINE CLINICAL FEATURES
Fifty-three patients were included in this study. Demographic and
pertinent clinical data are described in Table 1. Imaging was per-
formed at a mean (SD) time of 125.2 (55.3) minutes from stroke
onset. Forty-six patients (86.8%) received intravenous throm-
bolytic therapy with alteplase. Median (IQR) stroke severity score
on the NIHSS (39) was 15 (6). Small vessel disease did not appear in
the TOAST classification given that lacunar strokes were excluded.
Majority of patients (50.9%) had a cardioembolic etiology for their
stroke. About 58.5% of patients had hypertension as a comorbidity
and 56.6% had atrial fibrillation.

PENUMBRA FRACTIONS AND COLLATERAL SCORES AGAINST TIME
SINCE ONSET
Correlations between penumbra fractions and collateral scores
with time since onset are shown in Table 2. Penumbra fraction
derived using a CBF threshold, i.e., PenCBF correlated showing a
statistical trend, although non-significantly, with time since stroke
onset (Kendall’s tau-b=−0.196, p= 0.055). Penumbra fraction
derived using an MTT threshold, i.e., PenMTT showed a similar
trend (Kendall’s tau-b=−0.187, p= 0.068).

Collateral score did not correlate with time since stroke onset
(Kendall’s tau-b=−0.039, p value= 0.724).

ASPECTS SCORE RATIO AND TIME SINCE ONSET
There was significant inter observer agreement based on Fleiss
kappa values (36, 37) for ASPECTS scoring and these were

0.581 for CBV (p < 0.0001), 0.421 for CBF (p= 0.003), and
0.542 for MTT (p < 0.0001). As an additional measure of inter-
nal consistency, intraclass correlation coefficients were noted in
terms of Cronbach’s alpha (38) and these values were 0.739
for CBV, 0.598 for CBF, and 0.713 for MTT indicating that
the measurements were reliable and consistent between the two
raters.

CBF/CBV ASPECTS ratio showed a positive statistical trend
for a relationship with PenCBF (Kendall’s tau-b= 0.190, p
value= 0.070); MTT/CBV ASPECTS did not show a relation-
ship with PenMTT (Kendall’s tau-b=−0.094, p value= 0.368).
CBF/CBV ASPECTS ratio was thus, used as a surrogate for the
quantitative penumbra fraction, so simple visual assessment of
perfusion maps could be examined against time since onset.

There was a significant inverse relationship between ASPECTS
CBF/CBV against time since stroke onset (Kendall’s tau-
b=−0.265, p value= 0.006) as shown in Table 2.

Figure 2 shows the relationship between PenCBF ratio and time,
and between CBF/CBV ASPECTS ratio and time.

DISCUSSION
Our quantitative analysis, using CBF and MTT thresholds derived
from published literature, showed a trend for a relationship of
penumbra fraction with time, in the expected negative direc-
tion. Toward an application in the wider clinical setting, we also
investigated visual assessment of perfusion abnormalities, apply-
ing the previously validated ASPECTS approach (23, 40) to CTp.
Interobserver agreement and internal consistency measures for
the two raters were in keeping with published literature (24). At
variance with the quantitative analysis, the visual analysis using
the CBF/CBV ASPECTS ratio showed a statistically significant
decremental relationship over time. Larger studies are warranted
to confirm these visual assessment-based findings and explore
clinical applicability in detail.

MRI-based timing of stroke lesions has been previously inves-
tigated in detail, with DWI-FLAIR mismatch being a predictor
of stroke onset within 4.5 h (36), leading on to an ongoing clini-
cal trial (41). While MRI-based methods have been more widely
studied (36), perfusion CT-based evaluations are limited (42, 43).
Given the ease of access, shorter scanning times, lower cost, and less
susceptibility to movement artefacts (11, 44), CTp has potential
clinical utility and has been successfully compared to MRI-based
methods in acute stroke (45).

One potential issue with using quantitative thresholds to iden-
tify the penumbra and core using CTp that could account for
our marginal findings, is the lack of formal validation so far,
resulting in various groups using different data processing and
perfusion variables and thresholds (10, 46). Generally, penumbral
imaging holds potential promise to clinical translation, although
a number of early trials of treatments using these methods have
been negative (47). There are a number of limitations of these
studies including methodological variability and lack of evalu-
ation in an early time window due to previous evidence being
based on plain CT imaging. More recently, two positive trials
used CTp and quantitative perfusion thresholds to select optimal
candidates to evaluate new thrombolytic agents (20) and endovas-
cular intervention (21), may lead to changes in practice in due
course.
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FIGURE 1 | ASPECTS score was applied CT perfusion maps.
(Continued )
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FIGURE 1 | Continued
The ASPECTS template divides each hemisphere into 10 vascular regions
covering the MCA territory, which include 6 middle cerebral artery cortical
regions (M1–M6), caudate nucleus, lentiform nucleus, internal capsule,
and insular cortex (23, 24). The CTP maps used were those for cerebral
blood volume [CBV (A)], cerebral blood flow [CBF (B)], and mean transit
time [MTT (C)] as shown in the illustrative figures below. The images were
color scaled, as follows, for each of the parameters consistently across all
study subjects: CBV scaled at 0–6 ml/100 ml, CBF color scaled at 0–100 ml/
100 ml/s and MTT scaled at 0–10 s. The example in this figure shows a
proximal right MCA stroke (outlined in figure). The unaffected hemisphere

was used as a reference and each ASPECTS region was compared with
the corresponding region on the unaffected hemisphere to assign a score.
Each map was scored visually on each of the 10 regions of the ASPECTS
template with a score of 0 if the affected side showed a comparative
abnormality and a score of 1 if no relative abnormality was seen; thus a
total ASPECTS score could vary from 0 to 10 for each of the perfusion
maps, with 0 denoting an abnormality across all ten regions and 10
indicating no abnormality in the affected hemisphere. Each rater scored
the scans individually and average of the two was subsequently used for
the study analysis. In this example, average ASPECTS score was 7 for
CBV, 3 for CBF and 2 for MTT.

Table 1 | Baseline characteristics (n = 53).

Mean age in years (SD) 71.3 (14.9)

Sex (M:F) 24:29

Median NIHSS (IQR) 15 (6)

Mean time to imaging in minutes (SD) 125.2 (55.3)

Mean systolic blood pressure (SD) 152.3 (22.2)

Mean diastolic blood pressure (SD) 82.4 (15.7)

Mean blood glucose (SD) 7.6 (1.6)

Mean CRP (SD) 15.3 (29.1)

Mean hematocrit (SD) 0.40 (0.04)

Mean full blood count (SD) 9.5 (3.9)

Mean platelet count (SD) 225.4 (61.7)

Mean body temperature (SD) 36.4 (0.7)

Hypertension n (%) 31 (58.5)

History of smoking n (%) 24 (45.3)

Current smoking n (%) 7 (13.2)

Diabetes mellitus n (%) 4 (7.5)

Atrial fibrillation n (%) 30 (56.6)

Premorbid antiplatelet therapy n (%) 17 (32.1)

Premorbid statin therapy n (%) 18 (33.9)

Premorbid antihypertensive therapy n (%) 30 (56.6)

Thrombolysis administration n (%) 46 (86.8)

Mean premorbid modified Rankin score (SD) 0.4 (0.8)

Mean modified Rankin score at 3 months (SD) 2.4 (2.1)

TOAST classification n (%)

Large vessel disease 5 (9.4)

Cardioembolic 27 (50.9)

Other 21 (39.6)

Our data show that collateral response does not change over
time in the early window we studied. One explanation is that col-
lateral response may be intrinsically variable in individuals with
proximal occlusions and thus, either present or not (48). It is
in turn feasible that the collateral status affects the relationship
between the penumbra ratio and time, complicating the across-
subject relationship. For instance, one would expect that if there
are good collaterals, the ratio would remain higher for a longer
period, until the penumbral tissue has exhausted its energy reserve
and proceeds to infarction (13, 14). Thus, the difference in collater-
als between individuals may explain why time only trended toward
association with penumbra ratio, as the rate of conversion to an
ischemic core is dependent on not only time, but also the presence
or absence of efficient collaterals in any given individual. Our small

Table 2 | Correlations of penumbra fractions and collateral score with

time since stroke onset.

Parameter Kendall’s tau-b p value

CBF derived penumbra fraction (PenCBF)

vs. time since stroke onset

−0.196 0.055

MTT derived penumbra fraction (PenMTT)

vs. time since stroke onset

−0.187 0.068

CBF/CBV ASPECTS ratio vs. time since

stroke onset

−0.265 0.006

Collateral score vs. time since stroke onset −0.039 0.724

sample size precludes a meaningful multivariate analysis to answer
these questions. Future studies with larger patient populations are
thus needed.

Thus far published CT-based characterization of “wake
up/strokes of unclear onset” have not been able to identify any
specific features compared to those events where the time of onset
is known (33, 35, 49, 50), with the exception of one study that
found higher frequency of hypodensity on non-contrast CT in the
“wake up/unclear onset” group (33). Heterogeneity in time since
onset may be one reason. There is some evidence in clinical studies
that stroke on awakening may develop shortly prior to presentation
unlike unwitnessed stroke due to other reasons (33, 51) and thus,
at least in a subset of patients where time of symptom onset is not
known, CTp parameters that we describe may have role. However,
we acknowledge that the lack of patients beyond the 4.5-h window
is a clear limitation of our study with respect to wake up/unknown
time of onset strokes. Larger studies with patients beyond this time
window may help confirm the trends we demonstrate in our quan-
titative data and ASPECTS derived metrics. We studied patients in
the time window for current thrombolysis license (52) due to the
observational nature of our study. However, given the current clin-
ical evidence-based guidelines or thrombolysis in stroke cover the
first 4.5 h post ictus, our study may also have utility in this very
clinical setting.

Another confound of our study,which may explain why we were
unable to detect statistically significant relationships in our quan-
titative data, is the small sample size. Larger datasets of patients
in longer time windows are needed to confirm the trends that
we demonstrate, both, with respect to the quantitative findings
and the visual assessment-based findings. We also recognize that
the visual assessment approach could be improved further, par-
ticularly for CBF, while future studies will need to assess optimal
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FIGURE 2 | Perfusion parameters and time since stroke onset. Scatter plots for penumbra fraction defined by a CBF threshold (PenCBF) and CBF/CBV
ASPECTS ratios against time since stroke onset.

thresholds when applying the quantitative method, which may
provide more reliable clinically applicable indices.

CONCLUSION
In this pilot study of patients with proximal arterial occlusions,
we find some evidence towards a relationship between CTp and
time since onset within the currently licensed thrombolysis win-
dow, which if confirmed in larger studies with broader inclusion
times, could have implications in the clinical setting of strokes of
unknown onset time.
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