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Abstract

DNA marker plays important role as valuable tools to increase crop productivity by find-

ing plausible answers to genetic variations and linking the Quantitative Trait Loci (QTL)

of beneficial trait. Prior approaches in development of Short Tandem Repeats (STR)

markers were time consuming and inefficient. Recent methods invoking the develop-

ment of STR markers using whole genomic or transcriptomics data has gained wide im-

portance with immense potential in developing breeding and cultivator improvement

approaches. Availability of whole genome sequences and in silico approaches has revo-

lutionized bulk marker discovery. We report world’s first sugarbeet whole genome

marker discovery having 145 K markers along with 5 K functional domain markers unified

in common platform using MySQL, Apache and PHP in SBMDb. Embedded markers and

corresponding location information can be selected for desired chromosome, location/

interval and primers can be generated using Primer3 core, integrated at backend. Our

analyses revealed abundance of ‘mono’ repeat (76.82%) over ‘di’ repeats (13.68%).

Highest density (671.05 markers/Mb) was found in chromosome 1 and lowest density

(341.27 markers/Mb) in chromosome 6. Current investigation of sugarbeet genome

marker density has direct implications in increasing mapping marker density. This will

enable present linkage map having marker distance of �2 cM, i.e. from 200 to 2.6 Kb,

thus facilitating QTL/gene mapping. We also report e-PCR-based detection of 2027
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polymorphic markers in panel of five genotypes. These markers can be used for DUS

test of variety identification and MAS/GAS in variety improvement program. The present

database presents wide source of potential markers for developing and implementing

new approaches for molecular breeding required to accelerate industrious use of this

crop, especially for sugar, health care products, medicines and color dye. Identified

markers will also help in improvement of bioenergy trait of bioethanol and biogas pro-

duction along with reaping advantage of crop efficiency in terms of low water and carbon

footprint especially in era of climate change.

Database URL: http://webapp.cabgrid.res.in/sbmdb/

Introduction

Sugarbeet (Beta vulgaris L. ssp. vulgaris) is a biennial,

dicotyledonous crop of temperate climate. It represents the

world’s second highest source of sucrose with 15–20%

sugar content (1) after sugarcane (Saccharum officianarum

L.). It accounts for �30% of the world’s annual sugar pro-

duction and has also been considered as a potential biofuel

crop (2) besides its potential as animal feed (3) and medi-

cinal properties (4). With the ever increasing rise in the glo-

bal population to be around 10 billion in 2050, finding

sustainable solutions to the bioenergy research is becoming

an important unanswered question. The use of potential

food crops for biofuels will be one of the critical needs to

support the global projected population. Its increasing

importance in bioenergy has led to greater area for produc-

tion of bioethanol and biogas (5).

Among the largest sugar beet producers, Europe and the

United States share 75% of both, global area harvested

and production. Among the main producers, France,

Germany, the Russian Federation, Turkey and Ukraine,

covers almost two thirds of the global production (6).

Sugarbeet has been introduced in India in 1971 but its

huge industrial potential has not been reaped so far. The

demanding biofuel requirement in the country and globe as

well, has necessitated the need of ethanol from sugarbeet.

Very recently few cases of industrial level production in

India, especially from the area of Punjab and Karnataka

for sugar and alcohol production, respectively, has been

started. If ensilage and anaerobic digestion approach is

used, it has further potential of more energy per hectare

than bioethanol (7).

Besides industrious use of sugarbeet crop in terms of sugar

and bioenergy, it also possesses the additional multifold ad-

vantages like: it is tolerant to various climatic and soil condi-

tions thus uncultivable land can also be used. In agriculture,

it has three major importance namely, cash crop, soil ameli-

oration/soil fertility improvement and use as by-products for

cattle feed/mineral supplement during summer/drought, es-

pecially when there is scarcity of green fodder (8).

Beside agricultural importance, sugarbeet plays very

important role in industrial area as sunless tanner dihy-

droxyacetone extracted from sugar beet (9). For human

health, it has good medical potentials for anticancerous

activity (10) and is a good source of antioxidant (11), aphro-

disiac (12), antidepressant (13) and organic dyes (14).

Additionally, it is used in herbal therapy and hepatopro-

tective activity (4, 15). Furthermore, versatile industrial

compounds like betaine (16), phenolics and betacyanins

(17) obtained from the sugarbeet are also well documented

in literature for their therapeutics. Betain is used in indus-

try for PCR adjuvants as it improves amplification of GC-

rich DNA sequences (18). Sugarbeet being, short season

crop (6 months), offers advantage over sugarcane (12–18

months) along with its ability as most efficient crop in

terms of water foot printing (19) and also for lowering

ethanol’s carbon footprint (20).

To accelerate the rate of genetic gain for high sugar con-

tent, resistance towards biotic (disease causing pathogens)

and abiotic stresses (high temperature and saline/alkaline

conditions) molecular markers are imperative and have

been developed in various crops. Apart from abiotic

stresses, sugarbeet is susceptible to over 60 disease caused

by pathogens like bacteria, fungi, nematodes, viruses, phy-

toplasmal, spiroplasmal pathogens, aphids etc. (21–23).

Biotic stress can lead to loss even upto 50% of sugarbeet

yield (24). Molecular markers play major roles in higher

root yield, strong selection against premature bolting,

annuality and winter hardness which are the major prob-

lems in sugarbeet abiotic management (25).

Present linkage map of sugarbeet constitutes of nine

groups with �700 cM marker coverage (26, 27). Dohm et al.

(28) reported an extended genetic map consisting of 983

markers, and Holtgrawe et al. (29) in 2014 further added 307

markers to the existing dataset. A sugar beet physical map

based on 8361 EST-derived probes was also provided (28).

Fugate et al. (30) has reported 7680 putative SSR markers.

In vitro methods of Short Tandem Repeats (STR) devel-

opment is disadvantageous as it is time-consuming and
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expensive. Availability of whole genome sequence and in

silico approach has revolutionized the marker discovery.

Recently, a new class of functionally relevant microsatel-

lites called as simple sequence repeats functional domain

markers (SSR-FDMs) (31–33) have gained wide import-

ance. This is being widely applied in a number of crop spe-

cies including the biofuel and energy crop species such as

sugarcane (34). For molecular breeding program of sugar-

beet, its recently available genome assembly (569 Mb) of

KWS2320 genotype (3) needs in silico approach for bulk

marker discovery. Further, there is a need of in silico dis-

covery of polymorphism of these markers utilizing rese-

quencing data of four additional genotypes namely,

KWS230-DH1440, STR06A6001, SynMono and

SynTilling. These markers should be in the form of ‘ready

to use’ and readily available to the global community in

form of freely accessible database.

Our present work aims at development of microsatellite

marker database of sugarbeet whole genome-based STR

mining. We further aimed, the user defined primer design-

ing with precise selection from each chromosome, at

defined location and equal interval along with evaluation

of polymorphism. This work also aims at mining of SSR-

FDM from various major sources which can be assessed

for the genotyping for direct functional markers using gen-

omic DNA primers.

Material and methods

Data collection and search flexibilities

For mining of markers, the recently sequenced sugar beet

genome data of genotype KWS2320 was used. This hap-

loid line genome was of 567 Mb of which 85% data

assigned over its nine chromosomes (2n¼ 18) having an

assembly coverage of 63% was used in our study.

This assembly is having more than 27 000 predicted

genes (3). This de novo assembly was downloaded from

http://www.ncbi.nlm.ih.gov/assembly/GCA_000511025.1#/st

in FASTA format. These were cleaved using in house PERL

scripts and parsed for the identification of the microsatel-

lite markers using the MIcroSAtellite identification (MISA)

tool (http://pgrc.ipk-gatersleben.de/misa/) with default par-

ameter setting.

For the mining of the functional SSRs markers (SSR-

FDMs), Expressed Sequence Tags (ESTs) were downloaded

from NCBI (www.ncbi.nlm.nih.gov). Additionally,

Putative Unique Transcripts (PUTs) for suagrbeet were sys-

tematically downloaded from PlantGDB (Version release

187) available at http://www.plantgdb.org/. All the ESTs

and PUTs were first scanned for the presence of the homo-

polymers errors and sequence ambiguity was further

removed using the est_trimmer available at http://pgrc.ipk-

gatersleben.de/misa/download/est_trimmer.pl with the fol-

lowing settings: -amb¼2,50 -tr5¼T,5,50 -tr3¼A,5,50 and

were subsequently screened for the SSRs identification

using MISA. For the identification of the functional

domains, the PUTs were translated into all the coding

frames and were searched against Interpro. PUTs having

SSRs and Interpro assigned functional domain were classi-

fied as SSR-FDMs (31–33, 37). For genotyping of SSR-

FDM, primers were designed on genomic DNA sequence.

Whole genome based markers were generated with

descriptive information on motif size, motif type, repeat

numbers with their length and size, repeat type, GC con-

tent, start and end position. Provision was made for locat-

ing markers on each chromosome at desired interval for

mapping of Quantitative Trait Loci (QTL)/gene.

Additionally, marker can be selected based on motif type,

repeat kind, GC content, number of base pair and copy

number of repeat unit as markers with more than eight re-

peat often exhibits polymorphism due to slippage event in

DNA replication. An additional plug-in of primer gener-

ation was implemented for the markers, using the primer3

core executable with further flexibility of 500 bp upstream

and downstream sequence extraction using PERL scripts

targeting approximately 1000 bp as a template for primer

designing. Figure 1 demonstrates the flow of analytical

pipeline developed for the SBMDb.

For the identified markers, web-based application was

created in the window web development environment,

WAMP Server with Apache, PHP and MySQL Database.

Database development

Sugarbeet MicroSatellite Database (SBMDb) has been

developed using PHP and MySQL database under the web

development environment, WAMP Server. This relational

database was developed based on ‘three tier architecture’

having client tier, middle tier and database tier. Provision

to store all in silico mined STRs was made at the backend

in MySQL database. PHP scripts were written to properly

query and execute the search made by users. The primer3

core was integrated to compute primers of the selected

STRs. Primer call for specific locus, i.e. output of primer

designing is with list of five primers with their respective

melting temperature, GC content, start position and esti-

mated PCR product size are available in the database.

Functional domains linked with the simple sequence repeat

patterns as an add-on utility to search for the simple

sequence repeats functional domain markers (SSR-FDMs)

has also been made. To identify the functional domains, all

the sequences were translated into all the six reading

frames and Interproscan tool was used to analyse and
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predict the protein domains using the default settings

(31–33). Sequences harboring the functional domains and

the simple sequence repeats along with the primer pairs

were classified as the functional markers. The database has

been designed to cater the needs of the plant biologist and

breeders thus making it very flexible to access with user

defined options. The choice of motif type, namely, mono,

di, tri, tetra, penta and hexa, repeat type and repeat kind

(simple and composite) over all the nine chromosomes will

be useful to breeding researchers and QTL placements to

select desired type of STR markers.

In silico discovery of polymorphic markers

A total of five genotypes namely, KWS2320, KWS230

DH1440 (KDHBv), STR06A6001 (UMSBv), SynMono

(YMoBv) and SynTilling (YTiBv) (http://bvseq.molgen.mpg.

de/) were used for in silico discovery of polymorphic

markers using selected SSRs. Since polymorphism is

exhibited by SSR having greater than or equal to eight re-

peat unit (35), these were selected and all simple repeats ex-

cept ‘mono-nucleotide’ repeats were selected for discovery

of polymorphic markers. For this, in house perl scripts were

written accordingly. Further, selected primers were put in

e-PCR (36) among five genotypes. Locus having difference

in PCR product size were considered as polymorphic.

Results and discussion

Analysis of sugarbeet genome and relative

abundance

The overall analysis of available sugarbeet genome gives

the association of the distribution of the microsatellite

Figure 1. Flow of the database search.

Page 4 of 10 Database, Vol. 2015, Article ID bav111

http://bvseq.molgen.mpg.de/
http://bvseq.molgen.mpg.de/


markers to the genomic attributes. A total of 145 K STR

markers were successfully mined and populated in data-

base as user friendly application. The distribution of simple

and compound repeat types were 88 and 12%, respect-

ively. Among simple type, ‘mono’ repeat type were more

prevalent with 76.82%, followed by ‘di’ repeats, which

was 13.68%. Although ‘di-nucleotide’ repeat type are

observed abundantly in eukaryotes (38), on the contrast,

our analysis reports ‘mono’ repeat patterns as the most

abundant type (Figure 2). Since MISA parameters were not

set for any threshold for mono-repeats, thus this promin-

ence might be due to the inherent limitation of the NGS

technology used which causes more mono nucleotide

stretches as sequencing error (39).

STR markers being ubiquitously distributed, propor-

tionately higher repeat content for longer chromosomes

are expected (40), which is also observed in the present

analysis. The most abundance STRs were distributed in

Chromosome 1, followed by Chromosome 6 and 5, while

Chromosome 3 contains the least abundant STRs

(Table 1). The proportion of STRs with size less than

(<10 bp) was maximum (57.05 %) followed by the ones

between the size range of 11–13 bp (28.38%) and size

range 14–25 bp (13.32%). Only 1.26% of the total STRs

belonged to the size more than 25 bp (Figure 3).

Chromosome 1 showed highest density (671.05 markers/

Mb) of markers and chromosome 6 reports minimum

density of markers (341.27 markers/Mb), while the relative

density of the sugarbeet whole genome is 378.54 markers/

Mb, showing that these markers are ubiquitously distrib-

uted with homogeneity in terms of distance, which is inher-

ent attribute of microsatellite to be used as marker of

choice. Remaining all seven chromosomes were having the

marker density of 341.27 to 384.94 marker/Mb.

The relative density of the sugarbeet whole genome re-

ported in the present study is 379 markers per Mb, which

is more than the range in Arabidopsis (157 markers per

Mb). The other crops having similar number of markers

are, cucumber (367 markers per Mb), rice (370–490

markers per Mb), poplar (485 markers per Mb) and grape

(487 markers per Mb).

The initial linkage map of sugarbeet was having nine

groups, with 700 cM coverage with just 500 STR markers

(26, 27). An extended genetic map of sugar beet (Beta vul-

garis L.) was achieved with 177 segregating markers on

nine linkage groups (26). The linkage map comprises

1057.3 cM. Marker density calculations of present genetic

map reveal a distance of �2 cM between markers. The

bulk set of markers (145 K), identified in the present study

were assigned to the projected physical map and showed

430-fold higher marker density i.e. segregating two

markers with a distance of 2.6 Kb. Since the average size of

any eukaryotic gene falls within this distance between

markers. Thus, these set of markers can ensure mapping of

almost all genes.

In evaluation of 15 513 repeats by e-PCR, we found

2027 polymorphic markers in panel of five genotypes.

Chromosome-wise distribution is summarized in Table 2

and details are given in supplementary table

(Supplementary Table 1).

Utility of the database

Previously, several attempts have been made for increasing

the markers based species delineation and genus identifica-

tion events in Beta vulgaris. Earlier attempts have been

made using the morphological descriptor and isozyme

markers to differentiate Beta vulgaris and B webbiana

(41). Earlier attempts have been made to delineate the

approaches for the varieties/lines differentiation within the

B. vulgaris species using both STR and SNP markers.

Varieties/line differentiation within the species of B.

vulgaris has been attempted by both STR and SNP

Figure 2. Graphical representation of motif-wise distribution of micro-

satellites in sugarbeet genome.

Table 1. Motif-wise distribution of microsatellites in sugar-

beet genome

Chromosome Simple Simple Compound

Mono Di Tri Tetra Penta Hexa

1 16 014 2896 1502 76 284 80 20 852 2930

2 9970 1675 947 43 212 46 12 893 1737

3 7200 1089 643 33 159 41 9165 1212

4 8302 1277 754 41 179 46 10 599 1470

5 12 125 2325 1187 70 235 67 16 009 2189

6 14 132 2624 1336 83 265 70 18 510 2592

7 10 158 1895 917 47 201 61 13 279 1758

8 9035 1704 830 54 170 57 11 850 1688

9 10 723 1906 1012 55 217 61 13 974 1882

Total 97 659 17 391 9128 502 1922 529 127 131 17 458
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markers, e.g. a limited 677 SNP markers have been used

for differentiation of 924 lines of sugarbeet (42).

However, there is limited use of STR markers in sugar-

beet variety identification as reported earlier (43).

Additionally, the number of informative morphological

characters is limited in sugarbeet that often leads to some

problems in variety registration (43). Previously there have

been reports on the varietal differentiation using 12 STR

markers in this species (43). However, the amount of the

markers used were very few, which is a bottle-neck in this

species. In the present report, the identified 145 K markers,

can serve as a good reference resource for the development

of the varietal identification markers. These whole genome

markers have also played a role in the mapping and variety

identification supplementing Distinctness, Uniformity and

Stability (DUS) test and product trace ability (44). Use of

STR in plant variety identification is well reported in other

crops like barley varieties (45), S. tuberosum ssp. tubero-

sum (46), sugarcane (47), capsicum (48) and identification

of Basmati rice from that of non-Basmati rice (49) etc.

STR markers have known to play an important role

in regulating the gene expression. The observed markers in

the present study are ubiquitously distributed can help in

deciphering the gene level regulation. For example, length

changes of microsatellites within promoters and other cis-

regulatory regions can also change gene expression

quickly, between generations. Such mechanism is already

reported in large number of genomes. For example, in case

of human genome, more than 16 000 STRs in regulatory

regions are working as ‘tuning knobs’ for gene expression

(50). Additionally, STR markers distributed across the in-

tronic regions are reported to influence phenotype

(51, 52). Such relation of STR with phenotype has not

been reported in Beta vulgaris. Our markers can be used

for exploration of similar association. Transposable elem-

ent contributes in plant gene regulation (53). Such trans-

posable elements are present in sugarbeet also (54). It is

probable that short sequence repeats in those locations are

also involved in the regulation of gene expression (55). The

repeat sequence mined in our database can be used for

such studies where transposable elements play role in gene

regulation.

STR has been used to trace hybridization and introgres-

sion events with wild beet to monitor feral or wild beet

characters in GM beets (56), genetic diversity and root

traits (57). Similarly, SNP markers have also been used for

diversity analysis of sugarbeet (57). Our in silico dis-

covered 2027 polymorphic markers can also be used for

Figure 3. Distribution of microsatellite sizes in sugarbeet genome.

Table 2. Chromosome-wise number of polymorphic markers

Difference in product size

between reference genotype and

Chromosome All 4 At least 3 At least 2 At least 1 Total

1 4 18 37 151 210

2 5 9 35 158 207

3 3 3 28 121 155

4 2 7 36 129 174

5 2 14 39 229 284

6 1 12 64 260 337

7 6 12 33 188 239

8 1 11 48 138 198

9 2 13 40 168 223

Total 26 99 360 1542 2027
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diversity studies and phylogenetic studies of varieties or

species.

A deep review of the previously published literature

illustrates that identification of candidate genes for

marker-assisted selection can improve the efficiency of

breeding for increased drought tolerance (58). Need of

markers to improve crop efficiency ratio in alkali soil for

alcohol production is reported by Garg and Khanduja

(59). Molecular markers are needed for mapping of disease

resistance genes by linkage analysis in sugarbeet (60). Use

of molecular markers are reported for construction of link-

age map and identification of commercially valuable CMS

in sugarbeet (61). Genes for various economically and

commercially relevant trait of sugarbeet has been reported,

e.g. seedling vigour (62), FLC-like gene BvFL1 associated

with annuality and winter hardiness (25), root traits (57),

non-restoring allele for Owen-type cytoplasmic male steril-

ity, for development of molecular markers for the main-

tainer genotype (61), aphid resistance (63), nematode

resistance (64), QTL for leaf spot (65), hardiness and bolt-

ing (66) and draught and salt tolerance (67). To increase

the crop efficiency for bioenergy mapping of bioenergy

traits are imperative (68). Markers can be used as a gen-

omic resources to increase the biofuel potential from sugar-

beet (30). We believe that the genome-wide STR makers

developed and displayed graphically in our database with

the options to synthesize the primers directly for the

desired regions of the chromosome will serve the ease of

developing markers for screening the mapping-based popu-

lation for the genes involved in the several key domestica-

tion and biofuel traits.

Additionally, SBMDb provides access to the first ever

comprehensive catalogue of the SSR-FDMs along with the

markers from the genome wide coverage. Previously, SSR-

FDMs have been widely used for the fluorescent based

markers with an average of 7.42 alleles per locus in sugar-

cane (34). Utility of these markers also established the

structure–function relationship for the beta-amylase and

protein kinase encoding unigenes, which harbors the func-

tional repeats in the catalytic domains (34). It is worth-

while to mention that a high robust amplification

efficiency (96.5%) and high intra-specific polymorphic

potential (34%) has been recently been exploited for the

genotyping and trait association mapping in Chickpea

using the 1108 transcription factor gene-derived microsat-

ellite (TFGMS) and 161 transcription factor functional do-

main-associated microsatellite (TFFDMS) markers (69).

Based on the above observations and later on application

of the SSR-FDMs in several crop species such as Ocimum

basilicum (70), Seasme indicum (71), Elaeis guineensis (72)

and Camellia sinensis (73), suggests that linking the identi-

fied markers to the possible functional domains extends

the evaluation of these markers from genotypic arrays and

possibly can help us to elucidate the possible linkage of the

strand slippage mechanism to the functional relevance.

If STR markers from our database are used for mapping

of these genes or markers of flanking regions of these spe-

cific genes are selected, then they can directly be used in

molecular breeding program for introgression of these

genes/traits.

Conclusion

Using a computationally intensive in silico approaches,

we mined and catalog the 145 K STR markers and built

the first whole genome based STR database, which is

freely accessible to the public domain at http://webapp.

cabgrid.res.in/sbmdb/. With the marker information

present in the SBMDb, the linkage map’s marker density

can be increased which will facilitate in QTL and gene

mapping. In order to facilitate the use of these markers

in various molecular breeding and QTL programs, we

have implemented several plug-in to generate primers at

user defined chromosomal locations, which can be dir-

ectly exported for genotyping assays. Additionally, the

identified polymorphic markers can also be used for the

DUS test for variety identification and improvement,

MAS/GAS, QTL and gene mapping and germplasm im-

provement and management through marker genotyp-

ing. The present database will overcome the need of the

marker portal of the sugarbeet genomics and the user

friendly design will also help in the easy to access the

marker information for molecular breeding required to

accelerate industrious use of this crop, especially for

sugar, biofuel/bioenergy, health care products, medi-

cines, color dye. These markers need widest utilization

across globe for best industrious use of sugarbeet by im-

provement of bioenergy trait of bioethanol and biogas

production. This will not only improve the crop effi-

ciency, but will also be a model industrial crop in the en-

deavour of water and carbon footprint in the

challenging climate change regime.

Availability and requirement

SBMDb, the sugarbeet microsatellite marker database is

freely accessible for research purposes for non-profit and

academic organizations at http://webapp.cabgrid.res.in/

sbmdb/.

Supplementary Data

Supplementary data are available at Database Online.
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