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Abstract

Background: Patients with well-differentiated small intestine neuroendocrine tumors (WD-SI-NETs) are most often
diagnosed at a metastatic stage of disease, which reduces possibilities for a curative treatment. Thus new approaches for
earlier detection and improved monitoring of the disease are required.

Materials and Methods: Suspension bead arrays targeting 124 unique proteins with antibodies from the Human Protein
Atlas were used to profile biotinylated serum samples. Discoveries from a cohort of 77 individuals were followed up in a
cohort of 132 individuals both including healthy controls as well as patients with untreated primary WD-SI-NETs, lymph
node metastases and liver metastases.

Results: A set of 20 antibodies suggested promising proteins for further verification based on technically verified statistical
significance. Proceeding, we assessed the classification performance in an independent cohort of patient serum, achieving,
classification accuracy of up to 85% with different subsets of antibodies in respective pairwise group comparisons. The
protein profiles of nine targets, namely IGFBP2, IGF1, SHKBP1, ETS1, IL1a, STX2, MAML3, EGR3 and XIAP were verified as
significant contributors to tumor classification.

Conclusions: We propose new potential protein biomarker candidates for classifying WD-SI-NETs at different stage of
disease. Further evaluation of these proteins in larger sample sets and with alternative approaches is needed in order to
further improve our understanding of their functional relation to WD-SI-NETs and their eventual use in diagnostics.
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Introduction

Neuroendocrine tumors (NETs) are rare, life-threatening,

malignant solid tumors, which arise in hormone-secreting tissue

of the diffuse neuroendocrine system. During the early stages of

disease, NETs are generally slow-growing and asymptomatic,

whereas at a later stage, tumor metastasis to the liver appears

along with hormonal hypersecretion. This generally leads to well

defined and debilitating clinical syndromes such as the flushing

and diarrhea of the carcinoid syndrome. Although several

guidelines have been agreed on to standardize diagnosis, due to

the insidious natural history of NETs, diagnosis is still made after

tumors produce clinical symptoms and are metastatic [1]. In

particular, well-differentiated small intestinal neuroendocrine

tumor (WD-SI-NET) patients are predominantly diagnosed with

a delay of three to four years at a metastatic stage of the disease,

hindering possible curative treatment.

Several variables, such as the rarity and heterogeneity of these

malignancies, the multiplicity of NET classification systems and

the historical lack of well-designed clinical trials may contribute to

the diagnostic delay. It has been previously suggested that a better

understanding of NET biology, blood biomarkers, and improved

analytical approaches to identify tumors, localizations and small

lesions [2] are required to achieve improved outcomes in NETs.

The goal of the presented study was to discover candidate

biomarker protein profiles for WD-SI-NETs, by investigating

proteomic signatures in serum of WD-SI-NET patients and

healthy individuals. We used a highly multiplexed antibody

suspension bead array [3-5] targeting 124 unique proteins with

184 antibodies produced and validated in the context of the

Human Protein Atlas (HPA) [6] in an initial sample cohort of 20
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healthy individuals and 57 WD-SI-NET patients at different stages

of disease. We were able to identify 20 interesting putative

biomarkers that were further validated in a second cohort of 36

healthy individuals and 96 WD-SI-NET patients. Moreover, we

discovered sets of protein profiles that discriminate healthy

individuals from WD-SI-NET patients at different stages of

disease with a classification accuracy of up to 85%.

Results

This study aims at expanding the list of potential biomarkers for

classifying WD-SI-NETs at different stages of disease using

proteomic signatures generated in serum samples by highly

multiplexed antibody suspension bead arrays (Figure 1). We

divided the serum samples into two independent sample sets,

further called cohort 1 and 2, consisting of 77 and 132 samples

respectively. We used cohort 1 to screen 124 protein candidates

and selected a subset of those for further analysis based on their

significance using a Wilcoxon rank sum test and their importance

as classifiers using multivariate classification. Analytes selected in

cohort 1 were then followed up in a subsequent verification in

cohort 2.

Discovery of candidate protein profiles
We assessed the profile levels of 124 proteins in a sample cohort

comprising 57 WD-SI-NET patients at different stages and 20

healthy controls (cohort 1). A detailed overview of cohort 1 can be

found in Table 1. All samples were analyzed in multiple

independent measurements to assess reproducibility of the single

binder assay. The raw data on cohort 1 samples, obtained by two

measurements, were deposited in Table S1a and S1b, respec-

tively. We found that the assays exhibited high inter-experimental

Spearman correlation coefficients across samples of rho .0.9 as

shown in Figure 2b.

To select candidates for further analysis, we used a Wilcoxon

rank sum test and selected analytes with p values smaller than

0.01. In addition, we performed multivariate random forest (RF)

[7] and between group analysis (BGA) [8] for the classification of

different groups identifying the most important analytes for each

classification. Since no multiple-testing correction was used during

the screening phase, identified candidates were required to arise as

either significant or important, for the univariate and multivariate

analysis respectively, in every independent experimental analysis

(technical verification). A first list of protein profiles from 20

antibodies was generated during the discovery phase, summarized

in Table S2. To describe the inter-assay concordance, correla-

tions between two independent measurements for each of the 20

selected analytes are presented in Figure 2a.

Verification of global analysis
The selected 20 analytes were further investigated in a larger

sample cohort of 36 healthy individuals and 96 cancer patients

(cohort 2) described in Table 1. The raw data on cohort 2

samples were deposited in Table S1c.

We performed multivariate classification using random forest

(RF) analysis in two different ways: First, we used RF analysis to

estimate proximity between different samples based on the

abundance of each of the 20 previously selected markers.

Subsequently, we calculated the scaling coordinates of the RF-

derived proximity matrix thus reducing the dimensions by which

each sample is represented to two. A typical two-dimensional

representation of different samples is shown in Figure 3, along

with a measure of the relative importance of each of the proteins

for the classification. We then calculated the classification

performance by assigning a class to each sample based on its

proximity with samples of a similar class (5-nearest neighbor

classification). Results showed that using the selected set of 20

Figure 1. Experimental procedure of antibody suspension bead arrays. The process starts with the distribution of samples into microtiter
plates according to a defined, randomized sample positioning (A). The protein content of diluted samples is then labeled with biotin (B) and
antibodies are coupled onto beads with distinct color codes to create a suspension bead array (C). Beads and samples are combined for incubation
after the samples have been heat treated in assay buffer (D). Proteins that have not been captured by antibodies are removed and fluorescent
streptavidin is added for detection (D). The beads are then measured and the co-occurrence of beads, which are identified via a green laser, and the
emitted reporter fluorescence, excited by a red laser, allow the determination of interaction dependent intensity values in multiplex (E).
doi:10.1371/journal.pone.0081712.g001
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antibodie classes were assigned correctly in 86% of the cases

(sensitivity = 92%, specificity = 72%).

Having performed multivariate classification using all 20

antibodies, we investigated the association of each of the 20

analytes with disease state by a univariate Wilcoxon test.

Antibodies towards six proteins, namely insulin-like growth

factor-binding protein 2 (IGFBP2), SH3KBP1-binding protein 1

(SHKBP1), protein C-ets-1 (ETS1), insulin-like growth factor I

(IGF1), interleukin 1 alpha (IL1a), and syntaxin-2 (STX2),

appeared as significant (p,0.01) when comparing all SI-NET

samples at different stages of disease with healthy controls. In

Figure 4A, profiles from each of these antibodies are shown. For

every protein, AUC values were calculated and are presented in

Table 2.

Verification of tumor type specific analysis
We performed multivariate classification on healthy individuals

and patients with primary tumors from cohort 2, using all 20

selected antibodies as described above. Thus, correct classification

to each sample was achieved with an 85% success rate

(sensitivity = 83%, specificity = 86%). When comparing healthy

individuals to patients with primary tumors, four out of 20 protein

profiles were found significant (p,0.01) in cohort 2, namely IGF1,

IL1a, SHKBP1, and early growth response protein 3 (EGR3).

We performed an additional analysis, comparing healthy

individuals to patients with liver metastasis (LM) and lymph node

metastasis (LNM). For 87% of the samples belonging to the LM

group a correct class assignment was calculated using all 20

previously protein profiles (sensitivity = 85%, specificity = 86%).

Furthermore, we identified individual proteins IGF1, IGFBP2,

IL1a, mastermind-like protein 3 (MAML3), and SHKBP1 as

significant (p,0.01) in cohort 2.

For LNM patients, we determined a classification correctness of

84% (sensitivity = 83%, specificity = 80%) with samples of cohort

2. For the same patient group, we identified 4 protein profiles as

significant (p,0.01) in cohort 2, namely for the targets IL1a,

SHKBP1, STX2, and X-linked inhibitor of apoptosis (XIAP). In

Figure 4E, an overview of significant profiles is shown for all the

pairwise comparisons. Protein profiles for targets such as IL1a and

SHKBP1 were significantly different between healthy individuals

and each of the primary tumor (PT), lymph node metastasis

(LNM), and liver metastasis (LM) patients whereas protein profiles

for MAML3 were unique for the classification of LM patients,

XIAP for the classification of LNM patients, and EGR3 for PT

patients.

To confirm some of the findings, we proceeded by analyzing a

subset of patients and controls from cohort 2 (n = 95) using

sandwich immunoassays for IGF1 and IGFBP2. Assays were

performed by using previously employed HPA antibodies in

parallel with capture antibody of the sandwich pair. In these

analyses, both capture antibodies revealed a concordant and

significant (p,0.05) difference in abundance of IGF1 (decreased in

cancer) and IGFBP2 (increased in cancer), as shown in (Figure 5A
and B). Profiles from antibodies used for IGFBP2 correlated well

(rho = 0.7), whereas by using HPA048946 antibody targeting

IGF1, the signals above background were exclusively detected in

the healthy control samples, thus compromising this correlation

(rho = 0.3).

Discussion

WD-SI-NETs produce and secret various amines and peptides,

which can be used as markers locally in tissue [9] or in body fluids

such as blood [10]. Chromogranin A (CgA) is the most commonly

used general tumor marker at the moment. CgA is expressed in

80-90% of all patients with gastrointestinal pancreatic-NETs,

which comprise WD-SI-NETs. Although CgA works well for the

diagnosis of NETs, it is not a relevant biomarker at the stage of

metastatic disease, a stage for which we miss curative therapies.

The unmet need of recognition and identification of primary SI-

NETs requires further investigation to identify novel specific

biomarkers for the identification of tumors in the early phase of

malignancy. Along these lines, we recently identified autoantibod-

ies against the paraneoplastic MA antigen 2, which may be

important to detect patient recurrences [11], as well as olfactory

receptor 51E1 as a new potential tissue biomarker for these tumors

[12] and SI-NETs differentially expressed microRNAs [13].

The presented study is an exploratory approach using antibody

suspension bead arrays on a collection of serum samples from

WD-SI-NET patients at different stages of disease. All antibodies

used were routinely validated for specificity using planar protein

microarrays against 384 protein antigens [14] as well as other

methods [15]. The analytical format used here is a highly

multiplexed single-binder immunoassay to enrich a protein in a

complex solution, which yet cannot exclude off-target binding

events. Such events stem from weak affinity interactions to more

abundant target proteins than the ones addressed by the used

antibody. Our strategy here was to increase confidence in on-

target binding through (i) re-analysis, (ii) analysis of additional

sample material and (iii) using several antibodies per target

protein. Sensitivity of the assay has been described in the lower

ng/ml range by detecting prostate specific antigen (PSA) [5].

Nonetheless, sensitivity is very much dependent on the antibody

(e.g. target affinity, functionality as capture reagent) as well as on

the antigen (e.g. accessibility, stability, modification). For inde-

pendent verification of the identified candidates, we have

conducted sandwich assays using commercially available kits and

therefore reagents produced outside the Human Protein Atlas.

Functional sandwich assays were though not available to all

targets. A next phase analysis will therefore be multiplexed

sandwich immunoassays including preferentially as many of the 20

Table 1. Descriptive statistics for each of the two cohorts used in the study.

Cohort 1 N Age (mean±SE) Gender Cohort 2 N Age (mean±SE) Gender

M F M F

HC 20 5462 10 10 HC 36 5662 18 18

PT 19 5663 15 4 PT 29 6962 18 11

LNM 19 6563 8 11 LNM 23 6362 14 9

LM 19 6463 7 12 LM 44 6462 15 29

doi:10.1371/journal.pone.0081712.t001
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targets in one assay as possible. This is though a challenge due to

detection antibody cross-reactivity [16].

Although a variety of metastases can be analyzed, our choice of

primary tumors, lymph node metastases, and liver metastases was

ideal to detect proteomic serum protein signatures, which were

associated with early tumors and progressive stages. Moreover, our

main goal was to select new potential interesting targets that could

facilitate early diagnosis and monitoring of disease progression for

WD-SI-NETs. Indeed, despite recent findings on putative markers

[11,17], as well as the first systematic analysis of circulating tumor

cells in NETs [18], the recognition of new diagnostic biomarkers

remains a challenge.

To overcome some of the major challenges associated with the

identification of novel biomarkers, we combined well-defined

sample collections with a highly multiplexed antibody suspension

bead array to generate protein profiles in blood of WD-SI-NET

patients and healthy individuals. Verification of a set of 20 protein

profiles identified during the discovery phase, resulted in

supportive classification performance on an independently ana-

lyzed sample cohort. In addition, the verification resulted in a

more defined list of six analytes, which arose as significant

classifiers of healthy controls and cancer patients, irrespectively

from the disease stage. Briefly, these proteins are IGFBP2,

SHKBP1, ETS1, IGF1, IL1a, and STX2. The current indications

suggest that such a classification performance may provide a

Figure 3. Multivariate classification of different individual groups. Distribution of each individual sample belonging to the healthy control
group (blue circles) and all SI-NET patients (A), patients with primary tumors (B), lymph node metastasis (C), and liver metastasis (D). Axes values
correspond to the two-dimensional projection of the proximity matrices generated for each pairwise comparison using RF. For each group, the
relative importance of each protein used in the multivariate classification is shown.
doi:10.1371/journal.pone.0081712.g003

Figure 2. Correlation analysis during the discovery phase. Correlation of two independent experiments for all 20 selected analytes (A). Each
data point represents 1 of 77 patients and controls included in cohort 1. Axes represent MFI for each sample. Correlation analysis between two
independent experiments of all the 124 analytes (B). X-axis represents Spearman correlation coefficients, whereas the y-axis represents frequency.
doi:10.1371/journal.pone.0081712.g002
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promising and yet relevant marker panel for future efforts towards

improved detection and eventually earlier diagnosis of the disease.

Because biomarker signatures should ideally be disease-stage

specific, we compared the data from individuals at different stages

(PT, LNM and LM) to healthy controls, achieving more than 80%

classification performance for each pairwise comparison using 20

selected antibodies. Furthermore, at the stage of primary tumors,

four proteins IGF1, IL1a, SHKBP1, and EGR3 were identified as

significant in the verification analysis. Similarly for patients with

lymph node metastasis we identified four proteins, namely IL1a,

XIAP, STX2, and SHKBP1, whereas for patients with liver

metastasis we identified IGF1, IL1a, IGFBP2, MAML3, and

SHKBP1 as significant.

The results of our profiling from clinical WD-SI-NETs at

different stages of disease led to four potential novel marker

candidates to distinguish different stages of WD-SI-NET cases

from healthy subjects. Indeed, our major findings demonstrate that

different targets such as IGF1, IL1a, SHKBP1, and EGR3 are

pivotal to classify WD-SI-NETs at the stage of PT; IL1a, XIAP,

STX2 and SHKBP1 classify LNM patients, whereas IGF1, IL1a,

IGFBP2, MAML3 and SHKBP1 properly classify LM patients.

We would like to describe major protein targets and extend this

discussion for the remaining markers in Text S1.

Reassuringly, insulin-like growth factor 1 (IGF1) has been

previously described as a biomarker for SI-NETs [19] indicating

the validity of our approach. However, due to the paucity of

information about their real function and the lack of direct

correlation with WD-SI-NETs at different stages of disease these

proteins require further investigation. However, these antigens

highlight the importance that angiogenesis and inflammation can

have in WD-SI-NETs, like they have in the course of other

malignancies.

IGF1 is a protein similar to insulin in function and structure and

is a member of a protein family involved in mediating growth and

Figure 4. Group comparison by using the 9 selected proteins. Boxplots and ROC curves for each of the significant analytes in each of the
pairwise comparisons between Healthy individuals (green color) and all cancer patients combined (All SI-NET), Liver metastasis (LM), Primary tumors
(PT) and Lymph-node metastasis (LNM). In the lower part of Figure 3, a Venn diagram for all significant analytes is presented. Common analytes for
the discrimination of each cancer patient group and healthy controls are shown.
doi:10.1371/journal.pone.0081712.g004

Table 2. AUC values for every significant analyte.

PT LNM LM All SI-NET

Protein AUC Protein AUC Protein AUC Protein AUC

IGF1 0.81 SHKBP1 0.74 IGF1 0.74 IGF1 0.74

IL1a 0.69 STX2 0.73 IGFBP2 0.73 SHKBP1 0.67

SHKBP1 0.65 IL1a 0.69 SHKBP1 0.64 IL1a 0.67

EGR3 0.63 XIAP 0.63 IL1a 0.64 IGFBP2 0.66

MAML3 0.64 ETS1 0.62

STX2 0.61

In addition, the combined AUC value of all proteins for every group is
presented.
doi:10.1371/journal.pone.0081712.t002
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development [20]. The activation of the IGF1/IGF1 receptor

system (IGF1/IGF1R) is a critical event in transformation and

tumorigenesis in a wide variety of human tumors [21-23]. The

IGF1/IGF1R system has been recently studied in SI-NETs [19].

Moreover, results suggest that IGF1 may play an important role

even at the early stages of tumor formation [19].

Insulin-like growth factor binding protein 2 (IGFBP2) regulates

the function of IGF-1. It is up-regulated in a dose-dependent

manner in melanoma cells treated with IGF-1, which indicates a

possible role of IGFBP2 in the pathogenesis of melanoma [5].

There is no evidence that this protein is related to the SI-NETs at

the moment. However, IGFBP2 was identified in HS vs LM and

showed an average AUC 0.78 in four rounds of analysis. Although

this is not a perfect value, IGFBB2 maintains a significant

reliability as potential diagnostic marker.

For both of the above target proteins identified differences were

confirmed using sandwich immunoassays. As this dedicated assays

use one antibody for capture and a second for detection, this assay

is more specific then the single binder assay, which was employed

during the first and highly multiplexed discovery-driven analysis.

As shown also by supplementing the sandwich assays with HPA

antibodies utilized during discovery, concordant trends were

observed between recommended and HPA capture antibodies.

Even though further optimization for IGF1 detection would be

needed for a further integration of this HPA capture antibody, the

results show that profiles from single binder assay can provide

valuable information of differential detection and that antibodies

from such screenings can be used for functional sandwich assays.

In conclusion, serum protein profiles generated by antibody

suspension bead arrays identified candidate proteins assisting a

classification of primary tumors, lymph-node metastases and liver

Figure 5. IGFBP2 and IGF1 sandwich immunoassays. Commercially available sandwich immunoassays were performed to confirm the
differential detection of IGFBP2 (A) and IGF1 (B). The assays were supplemented with HPA045140 for IGFBP2 and with HPA048946 for IGF1, both used
during discovery. In the two assays both capture antibodies revealed concordant and previously observed differences between cases and control
group (p,0.05). Data shown was normalized using a linear model.
doi:10.1371/journal.pone.0081712.g005
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metastases. The most important findings suggested that IGF1,

IL1a, SHKBP1, and EGR3 were able to distinguish between

controls and primary tumor-bearing patients. Further evaluation

of the functional relation of the identified signatures to WD-SI-

NETs using additional serum samples and tissue material,

establishment of sandwich ELISAs and immunohistological assays

will eventually lead to a more refined understanding of the

proposed biomarker candidates for the detection and classification

of WD-SI-NETs.

Materials and Methods

Ethics Statement
All patient and control blood samples were included in the study

after a written consent statement was obtained from each

individual. The study was approved by the regional ethical

committee at the Clinic of Endocrine Oncology, Uppsala

University Hospital, Sweden (ref. no. Dnr 2011/426).

Samples
Serum samples were obtained at two different time points (2009

and 2012) from the Uppsala University Hospital Biobank. Samples

were divided into two independent cohorts, cohort 1 and 2.

Cohort 1 included 20 healthy controls (HCs), 19 untreated SI-

NETs (primary tumors, PT), 19 lymph node metastases (LM) and

19 liver metastases (LNM). Cohort 2 included 36 healthy age-

matched controls as well as 96 untreated WD-SI-NETs, (29 PT,

23 LNM and 44 LM). A more detailed summary of each cohort

can be found in Table 1. All samples represent different

individuals and there is no overlap between cohorts or within

different patient groups.

Antibodies
We prepared a list of potentially interesting protein targets using

information from the literature and data from our published

[17,24] and unpublished WD-SI-NET microarray analyses data.

Protein profiles were generated for a set of 184 antibodies

targeting 124 unique proteins. A list of all unique proteins targeted

can be found in Table S3.

Bead coupling
Coupling of antibodies to beads was performed as previously

described [25] and 30 ml of each bead identity was coupled to

1.6 mg of a different antibody. First, beads were washed twice on a

magnet with activation buffer (AB) (0.1 M NaH2PO4 (Merck),

pH 6.2) and subsequently beads were resuspended in 50 ml of AB.

After resuspension, 50 ml of activation solution (AS) (50 mg/ml

NHS (Pierce), 50 mg/ml EDC (Pierce) in AB) were added and

beads were incubated for 20 min at room temperature with

rotation at 650 rpm in the dark. Upon activation, beads were

washed twice on a magnet with MES buffer 0.1M 2[N-

Morpholino] ethanesulfonic acid (Sigma), pH 4.5 and 1.6 mg of

antibody diluted in MES were added. Antibody coupling on the

beads was allowed to proceed for 2 h at RT with constant rotation

at 650 rpm. After coupling, beads were washed twice on a magnet

with 1x PBS (Medicago) with 0.05% v/v Tween-20 (Sigma).

Coupled beads are stored in 50 ml of storage buffer (Blocking

reagent for ELISA (Roche) supplemented with proclin (Sigma)) at

4uC in the dark. All different bead IDs, carrying different capture

antibodies were mixed to create a suspension bead array (SBA).

Sample preparation
Prior to analysis, samples were labeled with biotin and heat-

treated. Samples were centrifuged for 10 min at 3500 rpm and

7.5 ml of each sample were diluted in 55 ml of PBS. Pre-weighted

NHS-biotin (2 mg, Pierce) was diluted in 200 ml of DMSO to a

final concentration of 10 mg/ml. For each labeling reaction, 1.5 ml

reconstituted biotin were diluted in 3.5 ml PBS and 5 ml biotin

were added to 25 ml of each sample. Labeling was allowed to

proceed for 2 h at 4uC and the reaction was stopped by adding

12.5 ml 0.5 M Tris-HCl. Labeled samples were diluted 1:50 in

assay buffer (0.5% (w/v) polyvinyl alcohol and 0.8% (w/v)

polyvinylpyrrolidone (Sigma) in 0.1% casein in PBS supplemented

with 0.5 mg/ml rabbit IgG (Bethyl Laboratories) and heat-treated

for 30 min at 56uC.

Sample analysis
Next 45 ml of each sample were mixed with 5 ml SBA and

allowed to incubate overnight at RT with constant rotation at 650

rpm. After incubation, beads were washed three times on a

magnet with PBS-T and 50 ml 0.4% PFA were added in each well.

Beads in PFA were incubated for 10 min at RT with constant

rotation prior to being washed once with PBS-T. Streptavidin R-

PE (SAPE, Invitrogen) was diluted 1:600 in PBS and 50 ml were

added in each well. SAPE binding to biotinylated captured protein

molecules was allowed to proceed for 20 min at RT with constant

rotation. Prior to analysis in a Luminex FlexMap3D instrument,

beads were washed three times on a magnet with PBS-T. Median

fluorescence intensities (MFI) of each bead ID were used for

subsequent analysis.

Sandwich immunoassay
A pair of antibodies for sandwich immunoassay analysis of

IGFBP2 and IGF1 was acquired (RnD Systems). For capture

500,000 beads (MagPlex, Luminex) were coupled either with 4 mg

of monoclonal antibody (RnD Systems) or 1.6 mg of HPA

antibodies using the same procedure as described above and

coupling was confirmed by with R-phycoerythrin labeled anti-

mouse antibody coupled or R-phycoerythrin labeled anti-rabbit

antibody (both Moss Inc). For IGFBP2, samples were diluted 1:10

in 5% Tween20 in PBS and for IGF1 1:2 in a buffer containing

0.5% (w/v) polyvinyl alcohol and 0.8% (w/v) polyvinylpyrrolidone

in 0.1% casein in PBS (all Sigma). Both assays were conducted as

2-plex assay using 5 ml beads and 45 ml diluted serum sample. The

assays were incubated 3 h at RT for IGFBP2 and overnight for

IGF1, beads were washed 3x 100 ml of PBS-T and on a magnet,

followed by adding 25 ml biotinylated detection antibody with

IGFBP2 at 0.2 mg/ml and IGF1 at 0.5 mg/ml. Both detection

antibodies were incubated for 1 h at RT and after 3x 100 ml PBS-

T washing 50 ml Streptavidin R-PE (SAPE, Invitrogen) diluted at

1:750 in PBS-Twas added and incubated 30 min. Beads were

washed again and measured in 100 ml PBS-T using the Luminex

FlexMap3D instrument.

Data Analysis
All data analysis was performed using the R statistical software

[26]. MFI for each bead ID and for each sample were initially

normalized using probabilistic quotient normalization (PQN)

[27,28].

Prior to multivariate analysis with random forest (RF) [7] or

BGA [8] normalized intensities were scaled and centered to

account for differences of absolute intensity values between

different experiments. RF analysis was performed using the

randomForest package [7] and proximity matrixes generated by

RF were further scaled in two dimensions and plotted using the

MDSplot function in R. Nearest neighbor assignment of sample

identities was performed using a majority vote among five

neighbors (closest data point in Euclidean distance) for each

SI-NET Arrays
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sample, using the package class [29,30]. Each RF analysis was

performed 1000 times, using default parameters and the classifi-

cation accuracy reported correspond to the median classification

accuracy of the 1000 repeated classifications.

Individual significant analytes were identified using a Wilcoxon

rank-sum test with a cut-off for significance set at 0.01, without

multiple sample testing correction. AUC values were calculated

using the package pROC [31].

For sandwich immunoassay, a linear model was used on the

randomized samples to account for intensity differences due to the

sequence of measurement (location of sample in plate).
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