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A B S T R A C T

Chromium a heavy metal present in the effluent of the industries causes accumulation of toxicity in water. 
Chromium commonly has Cr (III) and Cr (VI), two oxidation states, in which hexavalent form causes more health 
issues to human, other species and environment. The increased anthropogenic effects, especially tannery in-
dustrial effluent contributes the higher percentage of chromium accumulation. Removal of heavy metal can be 
attributed to many aspects, conventionally the physio-chemical methods which superseded by biological means 
of remediation. Chromium resistant microbes can be used to remove metal ions of chromium from the effluent, as 
this can be considered an eco-friendly approach. The microbial accession of nanoparticles synthesis is being 
focused, due to its accuracy and specificity in results. Mycoremediation grabbed attention as fungal absorbance 
efficiency and the surface-mechanism of heavy metal ions correlates each other. Current study in-depth indulges 
the base to core mechanism of mycoremediation of chromium ions from different effluents. Fungal-assisted 
mechanism of chromium ions have insists to be fewer, which may gain attention by enhancing the methodol-
ogy of removal of chromium ions. This study focuses on improvement of fungal strain and pave-way, to 
improvise the study with immobilization technique which renders usage of the adsorbents redundant usage and 
applications, substantially with the low-cost polymeric material alginate is given more importance for immo-
bilization technique. Alginate apart from low-cost adsorbent, is an excellent support for fungal producing 
nanoparticles which would provide wide-cast and an extraordinary adsorbent material.

1. Introduction

Toxic heavy metals are inorganic chemical compounds that affects 
the environment causing pollution due to its non-biodegradability, ac-
cumulates the food chain, and bio-magnifications [47]. Strong heavy 
metal chromium (Cr) is found in waste products of industries including 
leather, ceramic materials, rubber, textile printing and dyeing, and 
chrome-plated metal components [91]. Basically, there are several 
oxidation states of chromium, the most dominant ones being Cr (0), Cr 
(III) or trivalent form, and Cr (VI) or hexavalent form [59]. A common 
heavy metal contaminant discharged from industries contaminating 
both agricultural soil and water bodies is Cr (VI) [29,56,57,86]. Hex-
avalent form of Chromium exists in different form based on their pH, pH 
range 1–6 dominant species the Hydrochromic acid, HCrO4

- and when 
the pH is more than 7, Chromate, CrO4

2- [12,15,91].Comparing Cr (III), 
Cr (VI) is highly toxic and mobile in nature [27,88]. Cr (III) and Cr (VI) 
both have harmful consequences, such as altering cell shape and interact 
with chemicals, proteins, and DNA through the digestive, respiratory, 

and epidermal systems leading to the destruction of gene expression, 
respectively [29,96]. The USEPA (United States Environmental Protec-
tion Agency) recommends that drinking water should only contain 
0.05 mg/L of chromium [42,59,89]. Therein, removal of chromium 
alongside with effective method with cost-effective proposition renders 
to be important.

Numerous methodologies have been built-in to remove the harsh 
chromium (Cr) metal. Currently, physical and chemical methods are 
available which enumerates its own disadvantages. Especially, the 
common methods ion exchange, photo-catalysis, chemical reduction 
and electro-kinetic remedies to treat the effluent containing Cr (VI) [83, 
88]. Although, disadvantages of these methods include building up of 
hazardous substances as by products, expensive operation and mainte-
nance costs [90]. Bringing up an alternate method becomes mandate, 
Bioremediation becomes a best choice. Bioremediation occurs through 
varied mechanisms like bio-accumulation, biosorption and biotransfor-
mation which needs small investment, low-toxic accumulation, and very 
fewer secondary pollutants [41,79]. Despite all this, this method renders 
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loss of microorganism which causes irregular developmental cycle and 
toxic effects which might have a greater impact in removal of Cr (VI) 
[32]. Certainly, a support material has been required in order to over-
come the disadvantages rendering in making in more efficient adsorbent 
in different mechanisms. These support systems can be any type of 
natural or chemically modified materials. Certainly, Microbial Immo-
bilization Technology (MIT), which becomes an exceptional methodol-
ogy that paves way for researches upcoming in the field of sequestration 
of heavy metals from industrial effluents. This article reviews more on 
immobilization technology its uniqueness and advantages over other 
methods being currently studied, rendering greater understanding on 
views of MIT, especially, on fungal species. This article particulates on 
varied fungal immobilization, as they can be easily cultivable and has 
greater adsorptivity. The aim of the study is to create an outline on MIT 
with fungal species using a low-cost and supportive material for 
improved anchorage towards the heavy metal ions and render an 
impulsive way of sequestration of heavy metal Chromium from indus-
trial effluent.

2. Sources and effects of heavy metal chromium

Heavy metals are substances that has high densities and higher level 
of toxicity. Most hazardous and cancer-causing heavy metals include 
lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), thallium (Th), 
mercury (Hg), and mercury (Cr) [84]. Chromium is found to be the 
twentieth most abundant element in earth’s crust, naturally found in 
ultramafic, basaltic and serpentinites rocks. Anthropogenic sources of 
chromium are from the effluents of industries including electroplating, 
paint, pigments chemical production, dyeing, electroplating, tell pro-
duction, tanneries and paper pulp contributes in high chromium con-
centration wastes [26]. Especially, oxidations states of chromium has a 
greater impact on environmental and living beings dwelling. In agri-
culture, chromate fertilizers, tannery effluent, sewage sludge, and mine 
tailing drainage all release chromium in its oxidative forms, both 
trivalent and hexavalent [100,33,64,92]. According to the Central 
Water Commission (2019), the mining and ore processing, cement and 
asbestos manufacturing, and chemical industries all contribute to 
pollution of water bodies with chromium. The airborne particulates of 
Cr (VI) are released by mining, the chemical industry, and the energy 
sector. Individuals employed in sectors such as paint manufacture, 
metallurgical operations, mechanical alloying, animal skin dyeing, and 
electronic component manufacturing get affected mostly with many 
health hazards especially, cancer. Chromium is particularly known for 
its toxicity, one harsh carcinogen known since and causes many health 
issues [19]. The trivalent chromium in the cytosol interacts with various 
macromolecules, the genetic material as well and changes, as exposure 
increases causing mutagenicity. The valence state is directly propor-
tional to the ill-effects caused to plants, especially affecting the growth 
and phytoharmones production. In addition, chromium causes cancer 
and allergic hypersensitivities in both humans and animals. To add-on, 
hexavalent chromium species acts as cancer-causing agents, mutagens 
and teratogens [38,105,51]. Common mode of exposure to chromium is 
through food, inhalation and skin contact.

In Human, chromium causes health issues including cancer espe-
cially in lungs, eczemic allergies, septal perforation, asthma in respira-
tory tracts, lung diseases, increased ulcer conditions in nasal layers, 
growth and reproductive abnormalities [80]. Likewise, in plants intake 
of Cr through carrier ions including sulphate/iron causes developmental 
defects of root, stem and leaves, and germination rate alterations. The 
up-take, transport and aggregation of Cr influences the poisonous effects 
on plants such as reduced photosynthesis, nutritional and oxidation 
imbalances, mutagenesis, lower seed germination rate, reduction in rate 
of growth, decrease in yield production, and suppressed activity of 
enzyme [71]. Industries release Cr into the soil and water, which enu-
merates in higher percent of pollution than in air. The discharged 
effluent penetrates into surface and ground water during the processing 

[72]. Increased concentration of the Cr level, decreases the level of soil 
fertility, its native microorganism and agriculture-functional ability 
[54]. Photosynthesis, water relation, oxidative balance, mineral nutri-
tion and enzyme activity suppress are key impacts of Cr on plant phys-
iology. Oxidative stress created through Cr can influence the lipid 
peroxidation, i.e., damage of cell membrane of plants [35]. Fig. 1. de-
picts a glimpse of Cr sources and its impacts on environment and human 
health.

3. Bioremediation process

The process "bioremediation”, eliminates hazardous pollutants such 
as heavy metals converting it to less hazardous chemicals, or elimination 
of entities causing the noxious action. Usage of biomass either dead/ 
alive, degrades non-degradable substances and the final organic con-
version into CO2, Water, nitrogen gas, etc. Bioremediation, especially 
targets specific contaminants and toxins causing zero ill effects on 
environment and living organisms. For any successful bioremediation 
process microorganism, nutrients and energetics are three important 
elements required. In any environmental conditions, contaminants can 
itself serve as carbon source thereby serving as energetics through redox 
reactions. At aerobic conditions, contaminants lose their electrons, 
while microbes use these as electron acceptor and reaching out anaer-
obic condition degrades the specific target pollutant [31].

Based on implementation process, bioremediation is classified into 
in-situ bioremediation and ex-situ bioremediation. Firstly, in-situ 
bioremediation involves introducing oxygen and nutrients into a 
contaminated environment through an aqueous solution, this allows 
natural bacteria to break down toxins. The methods used in this process 
include bioventing, bio-sparging, bio-slurping, and phytoremediation. 
Two subtypes of in-situ bioremediation exist: intrinsic bioremediation 
and artificial bioremediation. The former seeks to stimulate the mi-
crobes to boost metabolism by supplying them with nutrients and oxy-
gen, while the latter directs microorganisms to the site of contamination. 
Ex-situ method involves application of methods after removing the 
contents in polluted environment and the methodologies involved are 
bio pile, windrows, bioreactor, and land farming. Kulshreshtha et al. 
[34]. Heavy metals are eradicated by bioremediation through bio-
accumulation, and biosorption mechanisms. Bioaccumulation is a 
metabolism driven method where metal ions are accumulated through 
bio-sorbent intercellularly [94]. Through the physio-chemical process of 
biosorption, biomass gradually collect heavy metals by adhering to cell 
structure (Fomina M & Gadd, 2014). Bioaccumulation and biosorption 
techniques are the recently emerging approaches in wastewater treat-
ment which is cost-efficient and intact to environment [21].

4. Immobilization and its methods

Microbial Immobilization Technology (MIT) is a cost-effective and 
environmentally friendly wastewater treatment technology that offers a 
significant alternative to traditional methods in industries. This method 
involves confining or retaining the free-living microbial cells and en-
zymes on a free surface area and keeping the complex active for various 
uses. Furthermore, various carriers and immobilization techniques can 
control chromium pollution by immobilizing microorganisms such as 
bacteria, fungus, and algae. This is regarded as an efficient way to reduce 
chromium pollution in microbial cells and enzymes [30,44,82].There 
are many researchers who reviewed the chromium removal with the 
MIT methodology, and a few of the prominent studies are tabulated in 
Table 1.

4.1. Carrier selection

The carrier is an important module in immobilization of substances 
onto it. The selection of the carrier material is one crucial factor that 
affects microbial immobilization [104]. The characteristics of the carrier 
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materials, like their mechanical strength, pore size, specific surface area, 
and structure, are significant for the microbial load [95,61]. At present, 
widely used carrier materials for this method are inorganic carriers, 
organic carriers, new-type carriers, and composite carriers.

4.1.1. Organic carriers
Organic materials are formed as gels using high-density polymers to 

embed microorganisms onto them [7]. Naturally occurring carriers (like 
agar and alginate) and manufactured polymers (like polypropylene, 
ammonia, polyvinyl alcohol, etc.) are the two subclasses of organic 
carriers [8]. Alginate is a translucent, permeable, and non-toxic matrix 
that protects immobilized cells from harsh environments and provides 
the microbe with an appropriate habitat [28,65]. Sodium and calcium 
alginate beads are the most widely used carriers, and recently, many 
researchers have studied on this basis. Though natural carriers are 
widely used, poor mechanical strength and chemical instability are their 
main disadvantages. Alternatively, synthetic polymers are used as 
they’ve got good mechanical strength, but their diffuse-ability is poor 
[101,87].

4.1.2. Inorganic carriers
Inorganic carriers, such as activated charcoal, biochar, diatomite, 

and others, are utilized because of the holes in their structure that allow 
bacteria to be adsorbed to the surface [77]. The most popular of them is 
biochar, its rich functional groups, large specific surface area, and 
greater pore structure [37]. Biochar is a high-quality inorganic carrier 
that efficiently adsorbs microorganisms, providing a stable environment 

due to its biodegradability efficiency [39,40]. Cr (VI) is adsorbed onto 
the phenolic, hydroxyl, and carboxylic functional groups of the biochar, 
which then converts it to Cr (III) reducing toxicity [103].

4.1.3. Composite carriers
Separately, organic and inorganic carrier materials tend to have a lot 

of drawbacks in complex environmental situations. Therein, researchers 
have tried composite materials, that is, complexes that can complement 
each other [104]. Samani & Toghraie, 2019 is a recent study that used a 
polyaniline/sawdust/polyethylene glycol (PANi/SD/PEG) composite 
that is used in the removal of Cr (VI) adsorbing and reducing the chro-
mium from the wastewater. Though it is advantageous to combine two 
carrier materials, the high requirement for preparing the material and its 
expensiveness limit its usage and application.

4.2. Techniques for Microbial Immobilization

Due to usage and different composition of surface molecules on the 
microorganisms, immobilization methods are carried out in different 
ways. The most commonly used are categorized as adsorption, covalent 
bonding, embedding, medium interception, and composite method 
[11].

4.2.1. Adsorption
The physical characteristics of the carrier material or the force that 

exists between them and the microorganism to be adsorbed are high-
lighted by adsorption [25]. Certainly, the positives of the method are 
easy handling and preparation, good microbial activity and good mass 
transfer ability. Although, this tend to have weak contact between 
microorganism and carrier material, cause loosening. El Sayed and 
El-Sayed 2020 is one recent study that was to estimate the biosorption 
capacity of Fusarium solani to absorb Zn (II) and was observed to be at 
600 mg/l Zn (II) concentration, pH 4.0 and 5.0 with incubation time of 
30℃, time 40 min.

4.2.2. Embedding
Embedding, the encapsulation of the microbial cells to carrier, which 

will be effortless and has minimal effect on microbe cells. Commonly 
used embedding methods are fiber embedding, gel embedding and 
microcapsule [25]. Entrapping may cause larger mass transfer resis-
tance, were the substrate and product should be compact molecules. 
Thereby, aerobic microorganism cannot be handled due to bad perme-
ability [76]. Materials used in this method can be alginate, polyvinyl 

Fig. 1. Chromium sources and its toxicity.

Table 1 
Chromium removal through MIT.

S. 
no

Microorganism Carrier material Method of 
immobilization

Reference

1. Fusarium oxysporum 
OSF18

Sodium alginate Biosorption [14]

2. Recombinant 
Escherichia coli

Magnetic pellets Biosorption [98]

3. Chlorella sp. Calcium alginate Biosorption [16]
4. Cyanobacteria 

Limnococcus 
limneticus

Calcium alginate Biosorption [75]

5. 5.1 Saccharomyces 
cerevisiae 
5.2 Rhizobium

Multi-walled 
carbon 
nanotubes 
(MWCNT)

Biosorption [70]
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alcohol, etc. as these materials will have pores in their structure which 
will entrap the pollutants [9]. Cuong et al., 2018 is one research that 
looked at how much Cr (VI) heavy metal was removed from industrial 
wastewater using two melanin-embedded beads from two separate 
melanin powder (IMB/CMB) sources. The highest values for IMB and 
CMB, respectively, were 19.60 and 6.24 under optimal circumstances.

4.2.3. Covalent bonding
Covalent bonding uses the surface functional groups in order to bind 

with the carrier molecules. This method uses amino, carbon, imidazole, 
hydro and sulfhydryl functional group on the microbial cell surfaced to 
bind with the carrier molecule surface, so that it cannot be easily broken- 
off, having greater stability and strong binding force [20]. However, this 
method is difficult in handling, thus, presently this method isn’t reco-
mended for chromium-contamination [27].

4.2.4. Medium retention
The membrane biological approach is the source of the medium 

retention procedure. This particularly depends upon the carrier struc-
ture in order to trap the microorganism into its range, which rejects the 
movement of microorganism without affecting the material. Clogging 
and fouling of the membrane are the certain drawbacks of this method 
[81].

4.2.5. Composite immobilization
Combining one or two of the previously mentioned techniques re-

sults in composite immobilization. This can be beneficial if it operates 
simply, performs well, and is economical. A key component of this 
composite immobilization approach is the adsorption/embedding. Mi-
croorganisms and carrier molecules are mostly combined to create a 
compound that is fixed in the gel, much as calcium/sodium alginate. 
This highlights not only the high concentration of immobilization 
strength but also the inactivation of the microorganisms as a result of the 
carrier material’s microenvironment and nutritional supplement [60]. 
Luo et al., 2019 study was about the immobilized Shewanella xiamenensis 
polyvinyl alcohol/graphene oxide biofilm, this estimate that film had 
great recyclability and biocompatibility, and graphene which acted as 
good electron shuttling to remove Cr (VI) by the microbe.

5. Fungal mechanism of heavy metal adsorption

Key factors involved in MIT are the selection of microbial strain and 
the carrier materials chosen. The cellular structure of the microorgan-
isms traps the heavy metal ions and eventually adsorb these onto its sites 
of binding at microbial cell wall [48]. The amount of the adsorption 
depends upon the composition of the metal at cellular surface and ki-
netic equilibrium. MIT is faster as it follows equilibrium in minutes of 
the process initiation [17]. Taking in account bioaccumulation, micro-
organisms that collect heavy metals must be able to tolerate one or more 
metals at high concentrations and have improved transformational 
ability, which converts toxic chemicals into safer forms so that the or-
ganism can reduce the metal’s toxicity level and retain metal [52].

A rigid cell wall composed of chitin, inorganic ions, lipids, nitroge-
nous polysaccharides, polyphosphate molecules, and protein molecules 
that can withstand toxicity is possessed by fungal species. With the help 
of its mycelium, spores, and internal and extracellular precipitation, the 
fungal cell wall’s composition both tolerates and detoxifies the metal 
particles. Heavy metal elimination is achieved outside of the cells 
serving as ligand molecule binding sites for metal ions [18]. The first 
barrier works by ejecting chemicals that has the power to immobilize 
heavy metals. Heavy metals binding non-specifically through cell walls 
and melanin inside them, which is eliminated by the second barrier. The 
toxicity of heavy metals those cannot be removed by the exterior of the 
cell can be removed by interior structure of the cells [49]. The study 
focuses mainly on mycoremediation to remove chromium, different 
fungal strains involved in chromium is summarized in Table 2.

6. Applications of the immobilization with alginate beads

Alginate is most abundant polysaccharide present in nature. The use 
of alginate in removing heavy metal is the most interest-gaining study 
as, its structure and availability of the functional groups like bulk 
carbonyl and hydroxyl groups, which serve as the heavy metals’ anchor 
sites throughout its polymer chain [2]. The utilization of alginate gel 
beads, which have been employed as adsorbents in the majority of 
current research. The mechanical strength of alginate gel is low, despite 
the fact that the ionic cross-linking method makes the preparation 
procedure simple and the conditions are benign. Parameters like algi-
nate concentration, solution pH, salt concentration and type of salt are 
considered during the gelation, this is due to its large contribution to 
stabile nature, mechanical property and morphological structure of 
alginate gel [97]. Surface functionalization of material is to improve the 
mechanical strength of alginate and stability, this is also beneficial to 
alginate as it has established functional groups which enhances the 
binding capacity and absorptivity of the heavy metal to it. The selection 
of the material that incorporates with alginate has key role to enhance 
the adsorptivity. The choice of integrated material containing alginate is 
a crucial factor in determining the target pollutants’ capacity to be 
adsorbed.

Functionalized alginate with organic compounds has always shown 
better results than the unmodified form in terms of characters and 
functional-ability. Omer et al., [55] studied to remove the Cr (VI) using 
tetraethylenepentamine on alginate via covalent interaction, which 
significantly improved the selectivity and adsorptivity of Cr (VI) as there 
was increased number of functional groups. This polymer was also 
incorporated with copolymer/ polymers in order to form a composite, 
this polymer can either be natural or synthetic containing the amine, 
aldehyde, methyl and sulfate groups for additional active sites for 
adsorption. Recent studies showed much use of chitosan [53,4], cellu-
lose [24], xanthan gum [102], gelatin [68], poly-itaconic acid [46] and 
polyacrylonitrile [66] which showed multiple adsorption ability. 
Another interest gaining sections is alginate in immobilizing the 
micro-organisms like algae, bacteria, fungi and yeasts as they are 
easily-avail and holds greater potential applications majorly in waste-
water treatment [36,1]. Carbonaceous materials (like biochar, activated 
charcoal, carbon nanotubes and graphene) are also one type of func-
tionalizing as they have specific surface area, regulating chemistry, large 
mechanical & thermal stable characters and well-defined pore structure. 
Although, recent studies have shown the usage of magnetic based ma-
terials functionalized with alginate to exhibit good morphology and 
chemical stability, and easy separation of target from the sample 

Table 2 
Different fungal spp. used in Chromium removal.

S.no Fungal Species used Reference

1. Aspergillus niger [58]
2. Fusarium sp. [74]
3. Aspergillus niger, Rhizopus oryzae, Saccharomyces cerevisiae, 

Penicillium chrysogenum
[58]

4. Fusarium solani [73]
5. Trichoderma viride [10]
6. Antrodia vaillantii [5]
7. Coriolus versicolour [69]
8. Termitomyces clypeatus [62]
9. Rhizopus sp. LG04 [40,39]
10. Cladosporeum perangustum, Penicillium sp., Fusarium equiseti, 

Paecilomyces lilacinus
[78]

11. Trichoderma sp. [85]
12. Saccharomyces cerevisiae, Rhizobium [70]
13. Penicillium oxalicum SL2 [43]
14. Aspergillus terricola [50]
15. Fusarium oxysporum OSF18 [14]
16. Aspergillus niveus, Aspergillus flavus, Aspergillus niger [13]
17. Aspergillus oryzae/ Penicillium roqueforti [45]
18. Byssochlamys sp., Candida maltose [3]
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solution from centrifugation or filtration [93]. Therefore, careful se-
lection and handling of the alginate would enhance the adsorptivity of 
the heavy metals.

7. Sustainability of the immobilized microbe

Microbial immobilization technology is one of the most prominent 
method to evacuate heavy metals from industrial wastewater. While 
technological appropriateness and economic sustainability are impor-
tant considerations, the chromium recovery volume and the immobi-
lized microorganism’s capacity for regeneration and reusability are also 
crucial. Henceforth, the immobilized microorganism must be regained 
with the eluent and used for the repetitive treatment cycles. As per many 
studies considered, NaOH has been considered as an effective absorbent 
material for elution and adsorbing the Cr from the biosorbent material 
being used [67,23,6]. Shailendra, et al.,2012 research used three ad-
sorbents, observed that sodium hydroxide was observed to be good 
adsorbent, this might be due to adsorption of biosorbent material caused 
due to formation of the proton bridge effect on biosorbent, also alkaline 
washing will consume protons, recovery rate was found of Cr (VI) to be 
low. Additionally, it was difficult to separate the microorganisms, leads 
to secondary pollution. Recently, the alternative study has said that 
magnetically altered materials as carriers, which proved to be very 
stable and reusable as well as easily recyclable. This however had 
drawbacks as the adsorption ability was found out to be decreased 24 % 
after 5 runs of adsorption and desorption [99,22].

8. Insights and discussions

Although there are different mechanisms in removal of Chromium 
ions stated so far, adsorption stays to be quiet prominent. Mycor-
emediation based researches kept emerging since, but analyzing quiet 
few studies shows loss of fungal strains itself. Henceforth, this encoun-
ters to elaborate a mechanistic alternate method for more effective 
removal of Chromium ions. A composite adsorbent material prepared 
using the fungal strain synthesized nanoparticles immobilized with a 
low-cost support material may endure the removal pathway proficient. 
Since then, there is no study emerged with composite-based adsorbent 
for the removal of Chromium heavy metal, the reason for the adsorbent 
suggested is because of the sustainability of the support material 
rendering and the vacant spaces in its surface, the strength of the 
nanoparticles in order to adsorb and also, the selected fungal strain 
would have an extraordinary mechanism of captivating the negatively 
charged Chromium ions.

Improved mechanism of adsorption can be rendered using a com-
posite material for any heavy metal ions can be noted from varied pre-
vious studies, one such example is the [63] which used a low cost 
composite adsorbent constructed in order to remove Cd and Pb ions 
from wastewater. Sustainability of beads made from alginate is literally 
the highest comparing to any other support material constructed, that is, 
the composite can be re-used for the removal mechanism until its ability 
to remove evades, each beads after optimized can be re-used for at least 
2–3 cycles making cost effective process of removal. Despite of these 
advantages, the nanoparticles synthesis and beads formation using 
alginate would be challenging, but optimizing parameters could over-
come the same.

9. Conclusion

Sequestration of heavy metals are one of the crucial and much 
required process, that must behanded to industrial sector, as the efflu-
ents from these sectors play key role in causing environmental pollution 
and troublesome to organisms. Various methodologies have been stud-
ied and kept studying since, as these heavy metals are enmesh. Biore-
mediation is a greater method for removal of heavy metals, especially 
mycoremediation is wondrous as this method uses fungus as adsorbent 

which anchors heavy metals stronger. Although, studies with varied 
fungal species have been conducted there are many commonly dwelling 
microbes like Bacillus sp., Fusarium sp., sulfate reducing bacteria, Pseudo-
monas which can be further studied through immobilization method as 
they are easy to isolate and has high detoxifying effects. Further, studied 
adsorbents were studied only in laboratory scale which can be upgraded 
to industrial scale tests for efficient validation. Adsorption isotherm and 
kinetics study for the so-studied adsorbent were found to be validated 
upto 96 %, there can be studies further enhanced removal upto 99 %. 
Eventually, carrier materials like biochar, nanoparticles, nanotubes, 
nanomaterials are kept unused functionalizing the material to immobi-
lize which can be synthesized easier in laboratory scale easily and is also 
cost-effective. Reduction in coagulation and time consumption can be 
concentrated in further studies being conducted. Regeneration and 
reusage of the immobilized microbial adsorbents has to be further 
focused on. Recovery of the immobilized materials should be focused 
and studied. This study provides MIT as an irreplaceable method for 
recovery of heavy metal from industrial wastewater. MIT with fungal 
species can be eco-friendly, cost-effective if at all, further improvements 
can be a versatile methodology. Further, future prospects in view, 
studies with composite based on the immobilized fungal-synthesized 
nanoparticles. This study theoretically supports this mechanistic rea-
sons, real-time research could be done for a prominent result analysis.
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