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In this paper, on the premise that the prior probability is unknown, a noise enhanced binary 
hypothesis-testing is investigated under the Minimax criterion for a general nonlinear system. 
Firstly, for lowering the decision risk, an additive noise is intentionally injected to the input 
and a decision is made under Minimax criterion based on the noise modified output. Then an 
optimization problem for minimizing the maximum of Bayesian conditional risk under an equality 
constraint is formulated via analyzing the relationship between the additive noise and the optimal 
noise modified Minimax decision rule. Furthermore, lemma and theorem are proposed to prove 
that the optimal noise is a constant vector, which simplifies the optimization problem greatly. 
An algorithm is also developed to search the optimal constant and the key parameter of detector, 
and further to determine the decision rule and the Bayes risk. Finally, simulation results about 
the original (in the absence of additive noise) and the noise-modified optimal decision solutions 
under Minimax criterion for a sine transform system are provided to illustrate the theoretical 
results.

1. Introduction

Although it seems counterintuitive, noise is not only harmless to the system but also beneficial for optimizing the performance 
under certain nonlinear conditions. Stochastic Resonance (SR) is a fairly typical theory to describe the beneficial effect of noise as 
an external driving force on the nonlinear system. Since the concept of SR was first given out by Benzi et al. in [1], the positive 
cooperative effect among the nonlinear system, signal and appropriate amount of noise has attracted intensive attention of researchers 
and experts in multi-fields [2–6], such as physical, chemical, optical, biomedical and information processing. With the exploration 
on the active effect of noise, SR has been investigated and applied in various fields, and it is more frequently called noise enhanced 
[7]. Compared to SR, the connotation of noise enhanced is more universal and easier to understand.
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In signal and information processing, SR phenomenon has also been widely focused and researched, especially in signal detection 
and parameter estimation. Through injecting additional noise or adjusting the level of background noise, the performance of a 
nonlinear system can be improved in forms of the increase of detection probability [7,8], output signal-to-noise ratio (SNR) [9] or 
mutual information (MI) [10], or the decrease of mean square error (MSE) [11–13], error probability [14] or Cramer-Rao Lower 
bound (CRLB) [15], etc.

To improve the SNR gain via SR mechanism was the earliest research hot spot in signal detection, and it was generally believed 
that a more accurate detect result could be achieved if SNR is improved. Nevertheless, there is not always positive correlation between 
SNR and the detection performance, a better detectability doesn’t necessarily mean a higher SNR. For instance, for the detection of 
a dc level embedded in a Gaussian mixture noise studied by S. Kay [16], the detection probability of a suboptimal detector is 
increased via adding noise to the observed data, in effect decreasing the SNR. Thus, instead of SNR, the metric that directly reflects 
the detectability such as detection probability, error probability or Bayes risk has been focused by the noise enhanced detection in 
recent years, the corresponding research could be explored according to Neyman-Pearson, Maximum a posteriori (MAP), Bayesian 
or Minimax criterion.

In [7], a mathematical framework is developed for a fixed suboptimal detector to explore the mechanism of SR noise enhanced 
signal detection under the Neyman-Pearson criterion. The maximum achievable detection probability via adding an independent 
additive noise to the observation is studied with a constraint on false alarm probability, and the form of the optimal SR noise pdf 
is determined as a randomization of no more than two discrete signals. The study is further extended to variable detectors [8]. A. 
Patel and B. Kosko also investigated the noise benefits for Neyman-Pearson hypothesis testing from a different perspective [17], the 
result is consistent with [7] and an effective algorithm is presented to search the optimal noise. The SR effects are researched in [18]
for binary composite hypothesis-testing problems in the Neyman-Pearson framework, in which the optimal noise enhanced detection 
performance is studied successively under Max-sum, Max-min and Max-max criteria with false alarm probability constraint. Noise 
enhanced M-ary hypothesis-testing problem is investigated in [19] under the restricted Bayesian framework, the optimal additive 
noise that minimizes the Bayes risk under certain constraints on the conditional risks is derived as a randomization of no more than 
M mass points. Furthermore, the noise enhanced detection under Bayesian and Minimax criteria could be viewed as two special cases 
under the restricted Bayesian framework. The exploration of reducing the error probability via adding noise is made in [14] for a 
suboptimal receiver. Quantum state discrimination and enhancement by noise is studied in [20], with the detectability measured in 
terms of the total error probability. A noise enhanced detection model which increases the detection probability and decreases the 
false-alarm probability simultaneously is discussed in [21], and divisional search algorithms are developed to solve the optimal SR 
noise under different conditions [22].

Almost all the studies mentioned above are considered to improve the performance of a suboptimal detector via adding additional 
noise to the observation or receive data. Since adding noise to the observation of a fixed detector can be equivalent to adjusting the 
detector without adding noise, the best detectability of the suboptimal detector achieved via adding SR noise will not be prior to 
the optimal detector, and also no noise exists to improve the optimal detector. In addition, it should be noted that the so-called 
optimal is a relative concept. Considering a general detection system including a nonlinear transform system, the decision result is 
made based on the output of nonlinear system. The optimal detector is usually defined according to the output and its performance 
cannot be enhanced via adding noise to the output. Nevertheless, if the additive noise is purposely introduced to the input of the 
nonlinear system instead of output, a new optimal detector can be achieved based on the noise modified output and the new optimal 
detectability may be superior to the original one (in absence of additive noise). Studies in [23] and [24] have proved this point, 
specifically, the optimal detection performance under the MAP and NP criteria can be improved significantly by adding additive 
noise to the input of the nonlinear system and adjusting the detector under certain conditions. The MAP case is applied under the 
condition that the conditional and prior probabilities are known, while the NP case is considered when only the prior probability is 
known. So far, few studies focus on the optimal noise enhanced decision solution for the case where the conditional probability and 
decision cost are known but the prior probability is unknown.

To fill the gap and enrich the noise enhanced signal detection theory, a binary hypothesis-testing problem with unknown prior 
probability for a nonlinear system studied under the Minimax criterion is considered in this paper. To explore the optimal per-
formance obtained via the SR mechanism, a mathematical framework is established under the Minimax criterion with adding an 
additive noise to the input and making an optimal decision based on the noise modified output according to the Minimax criterion. 
Firstly, the form of the noise modified Minimax detector, i.e., the optimal detector achieved under Minimax criterion, is determined. 
Then an optimization problem for minimizing the maximum Bayes risk is formulated, and the corresponding optimal additive noise 
and the noise modified Minimax detector are derived. Meanwhile, the improvability of detection performance is also discussed. Fur-
thermore, an algorithm for the optimal SR noise modified decision solution is developed. Finally, comparisons between the maximum 
conditional Bayes risks achieved in the original and SR cases are made in simulation results to show the practicality of theoretical 
results. The main contributions of this paper are summarized below:

•Noise enhanced Mathematical decision model under the Minimax criterion is established.
•Forms of the optimal additive noise and the noise modified Minimax detector and are derived.
•Algorithm for the optimal SR noise modified decision solution is developed.
•Simulations for the comparisons of the maximum conditional Bayes risks achieved in the original and SR cases are made.
The remainder of this paper is organized as follows. In Section 2, an optimization problem is formulated under Minimax criterion 

for a noise modified nonlinear detection system. The optimal SR noise and the corresponding noise modified Minimax decision rule 
2

are studied in Section 3. Finally, numerical examples are given in Section 4 and conclusions are presented in Section 5.
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Fig. 1. A general noise modified nonlinear detection system under Minimax Framework.

2. Problem formulation

In this paper, we consider a binary hypothesis-testing problem under Minimax criterion for a general nonlinear system as described 
in Fig. 1. In such detection system, 𝐱 ∈ℝ𝑁 is the original input of the nonlinear system with probability density functions (pdf) 𝑝𝑖(𝐱)
under the hypothesis 𝐻𝑖, 𝑖 = 0, 1, 𝐧 is an independent additive noise purposely added to 𝐱, 𝑇 (⋅) represents the transform function of 
the nonlinear system, and 𝐳 = 𝑇 (𝐱 + 𝐧) ∈ℝ𝑀 denotes the noise modified nonlinear system output. Then a binary hypothesis-testing 
problem for 𝐳 is given in Equation (1),

𝐻𝑖 ∶ 𝑝𝐳(𝐳|𝐻𝑖), 𝑖 = 0,1 (1)

where 𝑝𝐳(𝐳|𝐻𝑖) denotes the pdf of 𝐳 under the hypothesis 𝐻𝑖. Owing to the independence between 𝐧 and 𝐱, 𝑝𝐳(𝐳|𝐻𝑖) can be expressed 
in Equation (2),

𝑝𝐳(𝐳|𝐻𝑖) = 𝑓𝑖(𝐳|𝑝𝐧)
= ∫ℝ𝑁 ∫ℝ𝑁 𝛿(𝐳 − 𝑇 (𝐱 + 𝐧))𝑝𝑖(𝐱)𝑝𝐧(𝐧)𝑑𝐱𝑑𝐧
= ∫ℝ𝑁 ∫ℝ𝑁 𝛿(𝐳 − 𝑇 (𝐱 + 𝐧))𝑝𝑖(𝐱)𝑑𝐱𝑝𝐧(𝐧)𝑑𝐧
= ∫ℝ𝑁 𝑓𝑖(𝐳|𝐧)𝑝𝐧(𝐧)𝑑𝐧

(2)

where 𝛿(⋅) and 𝑝𝐧(𝐧) respectively denote the Dirac delta function and the pdf of 𝐧, while 𝑓𝑖(𝐳|𝐧) = ∫ℝ𝑁 𝛿(𝐳 − 𝑇 (𝐱 + 𝐧))𝑝𝑖(𝐱)𝑑𝐱 denotes 
the pdf of 𝐳 for the case 𝐧 is a constant vector.

Since the prior probability is unknown, the final decision is made based on the Minimax criterion, and the corresponding detector 
is denoted by 𝜙𝑚𝑚. From [25], the optimal test under Bayesian criterion is shown in Equation (3) below

𝑝𝐳(𝐳|𝐻1)
𝑝𝐳(𝐳|𝐻0)

𝐻1
>
<
𝐻0

𝜋0(𝐶10 −𝐶00)
(1 − 𝜋0)(𝐶01 −𝐶11)

(3)

where 𝜋0 denotes the prior probability of 𝐻0, and 𝐶𝑗𝑖 ≥ 0 denotes the cost of choosing 𝐻𝑗 when 𝐻𝑖 is true, 𝑖, 𝑗 = 0, 1. Under the 
premise that 𝜋0 is unknown, we first suppose that 𝜋0 = 𝑎 and 0 ≤ 𝑎 ≤ 1, then a decision rule of selecting 𝐻1 can be expressed in 
Equation (4),

𝜙𝑎,𝑝𝐧
(𝐳)=

{
1,𝐿(𝐳|𝑝𝐧) ≥ 𝜏𝑎
0,𝐿(𝐳|𝑝𝐧) < 𝜏𝑎

(4)

where 𝐿(𝐳|𝑝𝐧) = 𝑝𝐳(𝐳|𝐻1)
𝑝𝑧𝐳(𝐳|𝐻0)

= 𝑓1(𝐳|𝑝𝐧)
𝑓0(𝐳|𝑝𝐧) is the Likelihood ratio function, 𝜏𝑎 =

𝑎(𝐶10−𝐶00)
(1−𝑎)(𝐶01−𝐶11)

is the decision threshold. Accordingly, the real 
Bayes risk for given 𝑎 and 𝑝𝐧(𝐧) is shown in Equation (5),

𝑅𝐳(𝜋0|𝑎, 𝑝𝐧) = 𝜋0𝑅
𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) + (1 − 𝜋0)𝑅𝐳

1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)
= 𝜋0

(
𝑅𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) −𝑅𝐳

1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)
)
+𝑅𝐳

1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)
(5)

where 𝑅𝑖(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) denotes the conditional risk under 𝐻𝑖. According to the definition of conditional risk, 𝑅𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 

𝑅𝐳
1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) can be calculated by Equations (6) and (7),

𝑅𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) = 𝐶10𝑃

𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) +𝐶00𝑃

𝐳
00(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

=𝐶10𝑃
𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) +𝐶00(1 − 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧))
= 𝐶00 + (𝐶10 −𝐶00)𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)
(6)

𝑅𝐳
1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) = 𝐶11𝑃

𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) +𝐶01𝑃

𝐳
01(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

= 𝐶01 + (𝐶11 −𝐶01)𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

(7)

where 𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) denote the probabilities of choosing 𝐻1 when 𝐻1 and 𝐻0 are true, respectively.
Based on (4), the greater the 𝜏𝑎, the smaller the region of selecting 𝐻1, so 𝑃 𝐳

11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) decrease with increasing 

𝜏𝑎. Furthermore, since 𝜏𝑎 is a monotonically increasing function of 𝑎, 𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) decrease with 𝑎. In general, the 
cost of an error decision is greater than that of a right one, i.e., 𝐶10 > 𝐶00 and 𝐶11 < 𝐶01, thereby the conditional risk 𝑅𝐳

0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)
is proportion to 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) while 𝑅𝐳
1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) is in inverse proportion to 𝑃 𝐳

11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) according to (6) and (7). In a word, 
𝑅𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) decreases and 𝑅𝐳

1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) increases with 𝑎. When 𝑎 increases from 0 to 1, 𝑅𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) decreases from 𝐶10 to 𝐶00
3

while 𝑅𝐳
1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) increases from 𝐶11 to 𝐶01.



Heliyon 10 (2024) e32659T. Yang, L. Liu, Y. Xiang et al.

From (5), 𝑅𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) − 𝑅𝐳

1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) is the slope of the function 𝑅𝐳(𝜋0|𝑎, 𝑝𝐧) with respect to (w.r.t.) 𝜋0, it decreases from 
𝐶10 − 𝐶11 > 0 to 𝐶00 − 𝐶01 < 0 as 𝑎 increases. If 𝑅𝐳(𝜋0|𝑎, 𝑝𝐧) is differentiable w.r.t. 𝜋0, the maximum Bayesian risk is achieved 
when 𝑅𝐳

0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) = 𝑅𝐳
1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧), otherwise it is obtained at the point 𝑎 = �̂� such that 𝑅𝐳

0(𝜙�̂�− ,𝑝𝐧 , 𝑝𝐧) − 𝑅𝐳
1(𝜙�̂�− ,𝑝𝐧 , 𝑝𝐧) > 0 and 

𝑅𝐳
0(𝜙�̂�+ ,𝑝𝐧 , 𝑝𝐧) −𝑅𝐳

1(𝜙�̂�+ ,𝑝𝐧 , 𝑝𝐧) < 0 where �̂�− = lim
𝜀→0

𝑎 − 𝜀 and �̂�+ = lim
𝜀→0

𝑎 + 𝜀.

In this paper, we just discuss the differentiable case and the aim is to study the optimal pair of noise 𝐧 and decision rule 𝜙𝑚𝑚
in Fig. 1 under Minimax criterion, more specifically, to find the exact form of 𝑝𝐧(𝐧) and the value of 𝑎 that minimize the maximum 
Bayesian risk. According to the Minimax criterion, the value of 𝑎 in the optimum decision rule 𝜙𝑚𝑚 for a given 𝑝𝐧(𝐧) is determined 
by 𝑎𝑝𝐧 = argmin

𝑎

{
max𝑅𝐳(𝜋0|𝑎, 𝑝𝐧)}, and in differentiable case it can be substituted by (8) below

𝑎𝑝𝐧
= argmin

𝑎
𝑅𝐳
𝑖
(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

𝑠.𝑡.𝑅𝐳
𝑖
(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) =𝑅𝐳

𝑗
(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

(8)

where 𝑖, 𝑗 = 0, 1, 𝑖 ≠ 𝑗. The solutions are the same for 𝑖 = 1 and 𝑖 = 0 owing to the equality constraint, and we take 𝑖 = 1 for 
convenience in the subsequent discussion. Furthermore, the optimization problem for minimizing the maximum Bayesian risk with 
unknown prior probability can be formulated in (9) as below:

min
𝑝𝐧

𝑅𝐳
1(𝜙𝑎𝑝𝐧 ,𝑝𝐧 , 𝑝𝐧) = min

𝑝𝐧
min
𝑎

𝑅𝐳
1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

𝑠.𝑡.𝑅𝐳
0(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) =𝑅𝐳

1(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)
(9)

where 𝜙𝑎𝑝𝐧 ,𝑝𝐧 is the noise modified Minimax decision rule achieved when an additive noise with pdf 𝑝𝐧(𝐧) is added to 𝐱, i.e.,

𝜙𝑚𝑚 = 𝜙𝑎𝑝𝐧 ,𝑝𝐧
for a given 𝑝𝐧(𝐧).

3. Optimal SR noise and decision rule

Combined (9) with (6) and (7), the optimization problem in (9) can be equivalently expressed by (10) below

(𝑎
𝑝
𝑜𝑝𝑡
𝐧
, 𝑝

𝑜𝑝𝑡
𝐧 ) = argmax

𝑝𝐧
max
𝑎

𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

𝑠.𝑡.(𝐶10 −𝐶00)𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) + (𝐶01 −𝐶11)𝑃 𝐳

11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)
= 𝐶01 −𝐶00

(10)

According to the definition of 𝑃 𝑧
11 and 𝑃 𝑧

10, we can calculate them as shown in (11) and (12),

𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) = ∫ℝ𝑀 𝜙𝑎,𝑝𝐧

(𝐳)𝑝𝐳(𝐳|𝐻1)𝑑𝐳
= ∫ℝ𝑀 𝜙𝑎,𝑝𝐧

(𝐳) ∫ℝ𝑁 𝑓1(𝐳|𝐧)𝑝𝐧(𝐧)𝑑𝑛𝑑𝐳
= ∫ℝ𝑁 ∫ℝ𝑀 𝑓1(𝐳|𝐧)𝜙𝑎,𝑝𝐧 (𝐳)𝑑𝐳𝑝𝐧(𝐧)𝑑𝐧
= ∫ℝ𝑁 𝑃 𝐳

11(𝜙𝑎,𝑝𝐧 ,𝐧)𝑝𝐧(𝐧)𝑑𝑛

(11)

𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) = ∫ℝ𝑀 𝜙𝑎,𝑝𝐧

(𝐳)𝑝𝐳(𝐳|𝐻0)𝑑𝐳
= ∫ℝ𝑁 ∫ℝ𝑀 𝑓0(𝐳|𝐧)𝜙𝑎,𝑝𝐧 (𝐳)𝑑𝐳𝑝𝐧(𝐧)𝑑𝐧
= ∫ℝ𝑁 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 ,𝐧)𝑝𝐧(𝐧)𝑑𝐧
(12)

where 𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝐧)= ∫ℝ𝑀 𝑓1(𝐳|𝐧)𝜙𝑎,𝑝𝐧 (𝐳)𝑑𝐳 and 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝐧)= ∫ℝ𝑀 𝑓0(𝐳|𝐧)𝜙𝑎,𝑝𝐧 (𝐳)𝑑𝐳 are obtained by adding a constant vector 𝐧 to 𝐱
and selecting 𝜙𝑎,𝑝𝐧 as the detector.

Obviously, (10) is a multi-parameter optimization problem with one equality constraint and it seems very different to directly 
solve the problem because it needs search all possible 𝑎 and 𝑝𝐧(𝐧). In addition, the complex connection between the detector 𝜙𝑎,𝑝𝐧
and the additive noise 𝐧 also increases the difficulty. Fortunately, the form of 𝜙𝑎,𝑝𝐧 is known as (4) and the parameter 𝑎 is uniquely 
determined by 𝑝𝐧(𝐧) according to (8), so the key is still to determine the exact form of 𝑝𝐧(𝐧). To achieve this, Lemma 1 is introduced 
first to discuss the relationship of 𝑎 and the additive noise 𝐧 under the equality constraint in (10).

Lemma 1. Define a function 𝑌 = 𝛼1𝑃
𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) + 𝛼2𝑃

𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) − 𝛼3, where 𝛼1 = 𝐶10 − 𝐶00, 𝛼2 = 𝐶01 − 𝐶11 and 𝛼3 = 𝐶01 − 𝐶00. 

Then there must exist at least one value of 𝑎 to make 𝑌 = 0 for any given 𝑝𝐧(𝐧).

Proof. From the definitions of 𝜙𝑎,𝑝𝐧 , 𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 𝑃 𝐳

11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧), we have 𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) 

||𝑎=0 = 𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) 

||𝑎=0 = 1 and 
𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) 

||𝑎=1 =𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) 

||𝑎=1 = 0. Then 𝑌 ||𝑎=0 = 𝛼1 ⋅ 1 + 𝛼2 ⋅ 1 − 𝛼3 = 𝛼2 > 0 and 𝑌 ||𝑎=1 = 𝛼1 ⋅ 0 + 𝛼2 ⋅ 0 − 𝛼3 = −𝛼3 < 0. In 
addition, since 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) are decreasing functions w.r.t. 𝑎 for any given 𝑝𝐧(𝐧), 𝑃 𝐳

10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 𝑃 𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

decrease from 1 to 0 when 𝑎 increases from 0 to 1. So 𝑌 is a decrease function of 𝑎. Given the above, there exists at least one value 
of 𝑎 ∈ (0, 1) to enable 𝑌 = 0.

According to Lemma 1, there is one or more values of 𝑎 to satisfy the equality constraint in (10) or (8) for any given 𝑝𝐧(𝐧), and let 
𝐺𝑝𝐧

= {𝑎|𝛼1𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) + 𝛼2𝑃

𝐳
11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) − 𝛼3= 0} for ease of understanding. When 𝑝𝐧(𝐧) is fixed, 𝑃 𝐳

11(𝜙𝑎,𝑝𝐧 , 𝑝𝐧) and 𝑃 𝐳
10(𝜙𝑎,𝑝𝐧 , 𝑝𝐧)

for 𝑎 ∈ G𝑝𝐧
are constants due to the monotonicity, otherwise the equality constraint cannot be established. In conclusion, 𝐺𝑝𝐧

is the 
4

set of the solutions for the optimization problem in (8), i.e., 𝑎𝑝𝐧 ∈𝐺𝑝𝐧
. That also means 𝑎𝑝𝐧 and the noise modified Minimax decision 
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rule 𝜙𝑎𝑝𝐧 ,𝑝𝐧 may not be unique. Once any 𝑝𝐧(𝐧) and 𝑎𝑝𝐧 make max
𝑖

𝑅𝐳
𝑖
(𝜙𝑎𝑝𝐧 ,𝑝𝐧 , 𝑝𝐧) less than the original maximum of conditional risk, 

it means the detectability can be improved via SR mechanism.
Based on the conclusions above, a theorem is shown below to present the optimal solution for the optimization problem in (10).

Theorem 1. The minimum of the maximum Bayesian risk is achieved by adding the constant vector 𝐧𝑜 to 𝐱 and choosing 𝜙𝑎𝐧𝑜 ,𝐧𝑜 as decision 
rule, where

𝐧𝑜=argmax
𝐧

𝑃 𝐳
11(𝜙𝑎𝐧 ,𝐧,𝐧) (13)

and 𝜙𝑎𝐧 ,𝐧 denotes the noise modified Minimax detector corresponding to a constant 𝐧.

Proof. Based on the conclusion of Lemma 1, the noise modified Minimax detector 𝜙𝑎𝑝𝐧 ,𝑝𝐧 can be achieved for any given additive 
noise with pdf 𝑝𝐧(𝐧). In addition, the pdf of any random variable can approximately be expressed with Dirac delta function 𝛿(⋅), 

thereby 𝑝𝐧(𝐧) can be formulated by 𝑝𝐧 =
∞∑
𝑖=0

𝜆𝑖𝛿(𝐧− 𝐧𝑖) with 0 ≤ 𝜆 ≤ 1 and 
∞∑
𝑖=0

𝜆𝑖= 1. Then 𝑃 𝐳
11(𝜙𝑎𝑝𝐧 ,𝑝𝐧 , 𝑝𝐧) can be calculated as (14),

𝑃 𝐳
11(𝜙𝑎𝑝𝐧 ,𝑝𝐧 , 𝑝𝐧) = ∫ℝ𝑁 𝑃 𝐳

11(𝜙𝑎𝑝𝐧 ,𝑝𝐧 ,𝐧)
∞∑
𝑖=0

𝜆𝑖𝛿(𝐧− 𝐧𝑖)𝑑𝐧

=
∞∑
𝑖=0

𝜆𝑖 ∫ℝ𝑁 𝑃 𝐳
11(𝜙𝑎𝑝𝐧 ,𝑝𝐧 ,𝐧)𝛿(𝐧− 𝐧𝑖)𝑑𝐧

=
∞∑
𝑖=0

𝜆𝑖𝑃
𝐳
11(𝜙𝑎𝑝𝐧 ,𝑝𝐧 ,𝐧𝑖)

≤max
𝐧𝑖

𝑃 𝐳
11(𝜙𝑎𝑝𝐧 ,𝑝𝐧 ,𝐧𝑖)

≤max
𝐧𝑖

𝑃 𝐳
11(𝜙𝑎𝐧𝑖 ,𝐧𝑖 ,𝐧𝑖)

(14)

where the last inequality holds since 𝜙𝑎𝐧𝑖 ,𝐧𝑖 denotes the optimal noise modified Minimax decision rule obtained when 𝐧𝑖 is added to 
𝐱. Furthermore, we have

max
𝑝𝐧

𝑃 𝑧
11(𝜙𝑎𝑝𝐧 ,𝑝𝐧 , 𝑝𝐧) ≤max

𝐧
𝑃 𝑧
11(𝜙𝑎𝐧 ,𝐧,𝐧) (15)

and the equality constraint in (10) is satisfied for the two different noise modified decision solutions applied on both sides of the 
inequality. As a result, the optimal additive noise for the optimization problem in (10) is a constant vector, and it is denoted by 
𝐧𝑜=argmax

𝐧
𝑃 𝑧
11(𝜙𝑎𝐧 ,𝐧, 𝐧). Furthermore, the maximum Bayesian risk is achieved by adding 𝐧𝑜 to 𝐱 and choosing 𝜙𝑎𝐧𝑜 ,𝐧𝑜 as decision 

rule.

According to Theorem 1, the optimization problem in (10) is simplified in (16) as below:

(𝑎𝐧𝑜 ,𝐧𝑜) = argmax
𝐧

max
𝑎

𝑃 𝐳
11(𝜙𝑎,𝐧,𝐧)

𝑠.𝑡.(𝐶10 −𝐶00)𝑃 𝐳
10(𝜙𝑎,𝐧,𝐧) + (𝐶01 −𝐶11)𝑃 𝐳

11(𝜙𝑎,𝐧,𝐧) =
𝐶01 −𝐶00

(16)

where 𝜙𝑎,𝐧(𝐳)=0, 𝐿(𝐳|𝐧) < 𝜏𝑎; 1, 𝐿(𝐳|𝐧) ≥ 𝜏𝑎 and 𝐿(𝐳|𝐧) = 𝑓1(𝐳|𝐧)∕𝑓0(𝐳|𝐧). Naturally, 𝐧𝑜 in (16) is same with (13), and 𝜙𝑎𝐧𝑜 ,𝐧𝑜 is 
obtained by substituting 𝑎𝐧𝑜 and 𝐧𝑜 into 𝜙𝑎,𝐧(𝐳). Furthermore, inspired by Lemma 1, Algorithm 1 is provided for searching 𝑎𝐧𝑜
and 𝐧𝑜 by utilizing an auxiliary function 𝑌 = 𝛼1𝑃

𝐳
10(𝜙𝑎,𝐧, 𝐧) + 𝛼2𝑃

𝐳
11(𝜙𝑎,𝐧, 𝐧) − 𝛼3 with 𝛼1 = 𝐶10 − 𝐶00, 𝛼2 = 𝐶01 − 𝐶11 and 𝛼3 =

𝐶01 −𝐶00.
In step 1) of Algorithm 1, 𝜀 equals zero theoretically, but the algorithm is almost unable to converge. So 𝜀 is usually set as slightly 

greater than 0, such as 10−4 or 10−6, in practical application to make the algorithm converge quickly. The smaller 𝜀 the slower the 
convergence speed, and the computing accuracy of 𝑎 also hinges on the parameter 𝜀. The existing optimization algorithms such as 
particle swarm optimization (PSO), differential evolution, and Genetic Algorithms (GA) are also available to search 𝑎𝐧𝑜 and 𝐧𝑜. A 
significant benefit of Algorithm 1 is that it can always secure a global optimal solution while the existing optimization algorithms 
are easy to fall into local optimum. Besides, in step 2) of Algorithm 1, although all the 𝐧 ∈ℝ𝑁 should be searched in theory so that 
the work is very tremendous, the search scope of 𝐧 can be narrowed according to the search results of adjacent data, which greatly 
reduces the workload and saves time. Thus, the convergence speed of Algorithm 1 is not slower than the existing in many cases.

4. Simulation results

In this section, a simple binary hypothesis-testing problem for sine transform is studied to illustrate the theoretical results, which 
is given in (17) below{

𝐻0 ∶ 𝑥 = 𝑣
5

𝐻1 ∶ 𝑥 =A+ 𝑣
(17)
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Algorithm 1 Optimal SR noise modified decision solution.

1) Define a function to search the value of 𝑎 that makes 𝑌 = 𝛼1𝑃
𝐳
10(𝜙𝑎,𝐧, 𝐧) + 𝛼2𝑃

𝐳
11(𝜙𝑎,𝐧, 𝐧) − 𝛼3 equal to zero for a given constant 𝐧, the main part can be shown as 

below:
Let 𝑎𝑠 = 0 and 𝑎𝑒 = 1;
While |𝑎𝑠 − 𝑎𝑒| > 𝜀

Let 𝑎𝑟 = (𝑎𝑠 + 𝑎𝑒)∕2;

If 𝑌 |||𝑎=𝑎𝑟 = 0
Break;

Elseif 𝑌 |||𝑎=𝑎𝑟 > 0
𝑎𝑠 = 𝑎𝑟 ;

Elseif 𝑌 |||𝑎=𝑎𝑟 < 0
𝑎𝑒 = 𝑎𝑟 ;

End If
End While

The value of 𝑎𝑟 at the end of the cycle is the solution.

2) Search all the pairs of (𝑎, 𝐧) that makes 𝑌 = 0 via call the function of 1) and let 𝑄 =
{
(𝑎,𝐧) |||𝑌 = 𝛼1𝑃

𝐳
10(𝜙𝑎,𝐧,𝐧) + 𝛼2𝑃

𝐳
11(𝜙𝑎,𝐧,𝐧) − 𝛼3= 0, 𝑛 ∈𝐷}, where 𝐷 denotes 

the search scope of 𝐧 and it is a subset of ℝ𝑁 .
3) Calculate (𝑎𝐧𝑜 , 𝐧𝑜) = arg max

(𝑎,𝐧)∈𝑄
𝑃 𝐳
11(𝜙𝑎,𝐧, 𝐧), then (𝑎𝐧𝑜 , 𝐧𝑜) is the optimal solution of the optimization problem in (16), and determinate the corresponding decision 

rule is 𝜙𝑎𝐧𝑜 ,𝐧𝑜
.

4) Calculate the noise modified Bayse risk 𝑅𝐳 =𝑅𝐳
𝑖
(𝜙𝑎𝐧𝑜 ,𝐧𝑜

, 𝐧𝑜), 𝑖 =0 or 1.

where 𝑥 denotes the input signal of sine transform system, 𝐴 is the dc level and 𝐴 > 0. In addition, 𝑣 denotes a Guassian background 
noise with pdf 𝑝𝑣(𝑣) =𝐺(𝑣; 0, 𝜎), where 𝐺(𝑣; 𝜇, 𝜎) = 1∕

√
2𝜋𝜎2 exp(−(𝑣− 𝜇)2∕2𝜎2). According to Theorem 1, the optimal SR additive 

noise under Minimax criterion is a constant, so here a constant 𝑛 is injected to the input 𝑥 and the corresponding noise modified 
nonlinear system output is obtained by 𝑧 = sin2𝜋(𝑥 + 𝑛). Then the pdf of 𝑧 under 𝐻0 and 𝐻1 are computed respectively by (18) and 
(19).

𝑓0(𝑧|𝑛) = 1
2𝜋

√
1−𝑧2

∞∑
𝑘=−∞

[
𝑝𝑣(𝑘+

1
2𝜋 arcsin𝑧− 𝑛)

+𝑝𝑣(𝑘+
1
2 −

1
2𝜋 arcsin𝑧− 𝑛

] (18)

𝑓1(𝑧|𝑛) = 1
2𝜋

√
1−𝑧2

∞∑
𝑘=−∞

[
𝑝𝑣(𝑘+

1
2𝜋 arcsin𝑧− 𝑛−𝐴)

+𝑝𝑣(𝑘+
1
2 −

1
2𝜋 arcsin𝑧− 𝑛−𝐴)

] (19)

Under uniform cost assignment (UCA), namely 𝐶10 = 𝐶01 = 1 and 𝐶00 = 𝐶11 = 0, the decision rule obtained based on (4) includes 
an unknown parameter 𝑎 on the premise that the probability of 𝐻0 is unknown. The expressions of 𝑃 𝑧

11 and 𝑃 𝑧
10 are determined 

based on (11) and (12). Then Algorithm 1 is utilized to search the optimal constant 𝑛𝑜 and the corresponding parameter 𝑎𝑛𝑜 , and 
to determine the noise modified Minimax decision rule 𝜙𝑎𝑛𝑜 ,𝑛𝑜 . For explanatory purpose, the form of decision rule is redescribed in 
(20),

𝜙(𝑧) =
{

1, 𝑧 ∈Λ1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (20)

where Λ1 denotes the observation space of choosing 𝐻1.
Take 𝐴 = 0.3 and 𝜎 = 0.1 for instance, the maximums of conditional risk are 0.1691 and 0.0670 obtained respectively in the 

original (in the absence of additive noise) and the noise modified Minimax decision solutions. The decision risk is decreased by 60% 
via adding 𝑛𝑜 = −0.15 to the input and adjusting observation space Λ1 from (−∞, −1] ∪ [0.5399, +∞) to (−∞, −1] ∪ [0, +∞). Figs. 2
and 3 plot the Maximums of conditional risk for different 𝜎 and 𝐴 achieved by the optimal decision rules under the Minimax criterion 
for the original and SR cases.

It is observed that from Fig. 2, the Maximums of conditional risk in the original and SR cases gradually increase from zero to 0.5 
as 𝜎 increases. When 𝜎 closes to zero, the original Maximum of conditional risk equals to zero and it cannot be decreased by any 
methods. With the increase of 𝜎, the SR approach plays a positive role in decreasing the decision risk, the decline degree increases 
first and then decreases to 0. When 𝜎 > 0.5, few SR phenomenon occurs.

As illustrated in Fig. 3, for 𝐴 ∈ (0, 0.5), the maximum of conditional risk obtained in SR case decreases monotonously from 0.5 
to 0.0124 as 𝐴 increases from 0 to 0.5, while the original maximum conditional risk decreases first from 0.5 to 0.1469 and then 
increases to 0.4980. When 𝐴 > 0.15, the maximum of conditional risk obtained in SR case is lower than that in the original case, 
and the difference between them increases gradually with 𝐴 and reaches the maximum 0.4856 when 𝐴 = 0.5. Owing to the cyclicity 
of sine transform function, the maximum of conditional risk is a cycle function of 𝐴. In addition, considering the symmetry of sine 
function and Guassian background noise, it is also a symmetric function of 𝐴. In the original case, the cycle and the axis of symmetry 
are 0.5 and 𝐴 = 0.25 +0.25𝑘, and they become 1 and 𝐴 = 0.5 +0.5𝑘 in SR case, where 𝑘 =±0, 1, 2, …. It implies that the decision risk 
can be decreased significantly via SR approach for any 0.15 + 𝑘 < 𝐴 < 0.85 + 𝑘, namely the detection performance under Minimax 
6

criterion is improved greatly via SR mechanism.
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Fig. 2. Maximums of conditional risk versus 𝜎 achieved by different Minimax decision rules in the original and SR cases when 𝐴 = 0.3. ‘Original’ denotes the optimal 
Minimax decision solution in the absence of additive noise, ‘SR’ denotes the optimal SR noise modified Minimax decision solution.

Fig. 3. Maximums of conditional risk as a function of 𝐴 achieved by the Minimax decision rules in the original and SR cases when 𝜎 = 0.1.

Tables 1-4 present the original and the optimal SR noise modified Minimax decision solutions for different values of 𝜎 and 𝐴
respectively so as to study the results in Figs. 2 and 3 further. From Tables 1 and 3, different values of 𝑎 and observation spaces 
Λ1 are applied in the original Minimax decision solution for different 𝜎 and 𝐴. As a contrast, it is observed from Tables 2 and 4, 
the optimal SR noise 𝑛𝑜 is always −𝐴∕2 and the corresponding parameter 𝑎𝑛𝑜 always equals to 0.5 in the noise modified Minimax 
decision solutions. Moreover, the noise modified observation spaces Λ1 are also same when 𝜎 is lower than a certain value. It is 
obvious that detection performance is mainly depended on 𝐴 when 𝜎 is small enough. The distribution of noise modified input signal 
under 𝐻1 and 𝐻0 are Gaussian distributions with mean 0 and −𝐴∕2, respectively, so they can match the sine transform system better 
to improve detection performance further. It should be noted that the optimal SR noise modified solution is not unique; for instance, 
when 𝐴 = 0.375 and 𝜎 = 0.1, the Bayesian risk can also equal to 0.0313 via adding 𝑛𝑜 = −0.188 to 𝑥 and selecting 𝑎𝑛𝑜 = 0.5 to adjust 
the observation space Λ1 as (−∞, −1] ∪ [−0.0027, +∞). In addition, Tables 1-4 exhibit an interesting result that all the values of 𝑎𝑛𝑜
are 0.5.

In the following sections, an asymmetric Gaussian mixture background noise with zero mean is considered for the same 
hypothesis-testing problem in (17) and its pdf is denoted by

𝑝𝑣(𝑣) = 𝑡𝐺(𝑣;−(1 − 𝑡)𝜇,𝜎) + (1 − 𝑡)𝐺(𝑣; 𝑡𝜇, 𝜎) (21)

where 0 ≤ 𝑡 ≤ 1. Then the pdf of 𝑧 under 𝐻𝑖, 𝑖 = 0, 1, can be obtained by substituting the 𝑝𝑣(⋅) of (18) and (19) with (21). The noise 
modified Minimax decision rule can also be searched by Algorithm 1 with UCA.

Fig. 4 shows the different maximums of conditional risk w.r.t. the weight 𝑡 when 𝜎 = 0.1, 𝐴 = 0.3 and 𝜇 = 0.5 obtained in 
7

the original and SR cases. The SR phenomenon can be observed for almost all the values of 𝑡. As 𝑡 increases from 0, the original 
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Table 1

Original Minimax decision solutions and Bayes risks for various val-
ues of 𝜎 when 𝐴 = 0.3.

𝜎 𝑎 Λ1 𝑅

0.05 0.5003 (−∞,−1] ∪ [0.5878,+∞) 0.0228
0.15 0.5512 (−∞,−1] ∪ [0.4938,+∞) 0.2893
0.25 0.5288 (−∞,−1] ∪ [0.2639,+∞) 0.4139
0.35 0.5035 …∪ [−1.027,−1] ∪ [0.0846,+∞) 0.4739
0.45 0.5002 …∪ [−1.074,−1] ∪ [0.023,+∞) 0.4944

Table 2

Optimal SR noise modified Minimax decision solutions and Bayes 
risks for various values of 𝜎 when 𝐴 = 0.3.

𝜎 𝑛𝑜 𝑎𝑛𝑜 Λ1 𝑅

0.05 -0.15 0.5 (−∞,−1] ∪ [0,+∞) 0.0013
0.15 -0.15 0.5 (−∞,−1] ∪ [0,+∞) 0.1685
0.25 -0.15 0.5 (−∞,−1] ∪ [0,+∞) 0.3500
0.35 -0.15 0.5 …∪ [−1.026,−1] ∪ [0,+∞) 0.4541
0.45 -0.15 0.5 …∪ [−1.072,−1] ∪ [0,+∞) 0.4905

Table 3

Original Minimax decision solutions and Bayes risks for vari-
ous values of 𝐴 when 𝜎 = 0.1.

𝐴 𝑎 Λ1 𝑅

0.100 0.5005 (−∞,−1] ∪ [0.3088,+∞) 0.3087
0.175 0.5136 (−∞,−1] ∪ [0.5142,+∞) 0.1950
0.250 0.5477 (−∞,−1] ∪ [0.6127,+∞) 0.1469
0.375 0.5018 (−∞,−1] ∪ [0.3819,+∞) 0.2664
0.500 0.5000 (−∞,−1] ∪ [0,+∞) 0.5000

Table 4

Optimal SR noise modified Minimax decision solutions and 
Bayes risks for various values of 𝐴 when 𝜎 = 0.1.

𝐴 𝑛𝑜 𝑎𝑛𝑜 Λ1 𝑅

0.100 -0.0500 0.5 (−∞,−1] ∪ [0,+∞) 0.3085
0.175 -0.0875 0.5 (−∞,−1] ∪ [0,+∞) 0.1908
0.250 -0.1250 0.5 (−∞,−1] ∪ [0,+∞) 0.1057
0.375 -0.1875 0.5 (−∞,−1] ∪ [0,+∞) 0.0313
0.500 -0.2500 0.5 (−∞,−1] ∪ [0,+∞) 0.0241
8

Fig. 4. Maximums of conditional risk versus 𝑡 achieved by the Minimax decision rules in the original and SR cases when 𝜎 = 0.1, 𝐴 = 0.3 and 𝜇 = 0.5.
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Fig. 5. Maximums of conditional risk versus 𝜎 achieved by the Minimax decision rules in the original and SR cases when 𝑡 = 0.25, 𝐴 = 0.3 and 𝜇 = 0.5.

Table 5

Original Minimax decision solutions and Bayes risk for different 𝑡 when 
𝜎 = 0.1, 𝐴 = 0.3 and 𝜇 = 0.5.

𝑡 𝑎 Λ1 𝑅

0.10 0.4877 (−∞,−0.8790] ∪ [0.5596,+∞) 0.3259
0.25 0.5141 (−∞,−1] ∪ [−0.7322,0.5614] ∪ [1,+∞) 0.4133
0.50 0.4760 (−∞,−1] ∪ [−0.7385,0.7385] ∪ [1,+∞) 0.2388
0.65 0.5394 (−∞,−1] ∪ [−0.3192,0.9846] ∪ [1,+∞) 0.3603
0.94 0.4425 (−∞,−1] ∪ [0.4769,+∞) 0.1481

Table 6

Optimal SR noise modified Minimax decision solutions and Bayes risks for 
different 𝑡 when 𝜎 = 0.1, 𝐴 = 0.3 and 𝜇 = 0.5.

𝐴 𝑛𝑜 𝑎𝑛𝑜 Λ1 𝑅

0.10 -0.14 0.3748 (−∞,−0.7531] ∪ [0.4882,+∞) 0.1491
0.25 -0.16 0.4959 (−∞,−0.8655] ∪ [0.5833,+∞) 0.2057
0.50 -0.27 0.4947 (−∞,−0.7005] ∪ [0.7005,+∞) 0.2258
0.65 -0.35 0.4967 (−∞,−0.6357] ∪ [0.7865,+∞) 0.2190
0.94 -0.07 0.4324 (−∞,−1] ∪ [0.2576,+∞) 0.1171

conditional risk first linearly increases from 0.1691 to the maximum 0.5 till 𝑡 = 0.2, then decreases to 0.2253 till 𝑡 = 0.46, then 
increases to a local maximum 0.3603 till 𝑡 = 0.65, then decreases to the minimum 0.1481 till 𝑡 = 0.94, and then increases to 0.1691 
till 𝑡 = 1. In contrast, the SR noise modified conditional risk increases from 0.0670 to 0.2258 with 𝑡 for 𝑡 ∈ (0, 0.5), and it is symmetric 
with 𝑡 = 0.5. Specially, the original conditional risk equals to the noise modified one when 𝑡 = 0.46 and 𝑡 = 0.88. For investigating the 
results in Fig. 4, Tables 5 and 6 are given below to show different decision solutions in the original and SR cases. The decision risk 
can be reduced greatly by adding the constant noise and applying the noise modified decision rule. Special to note is that different 
from Tables 2 and 4, the values of 𝑎𝑛𝑜 in Table 6 are not identically equal to 0.5.

Fig. 5 plots different maximums of conditional risk w.r.t. 𝜎 when 𝑡 = 0.25, 𝐴 = 0.3 and 𝜇 = 0.5. The change trend is similar with 
that in Fig. 2. With the increase of 𝜎, the original and the noise modified maximums of conditional risk increase gradually from 0 
to 0.5, while the difference between them first increases and then decreases, the maximum is achieved at 𝜎 = 0.06 nearly. Namely, 
the detection performance under Minimax criterion is improved via SR effect for 𝜎 < 0.5. Maximums of conditional risk obtained 
by different decision rules versus 𝐴 are compared in Fig. 6. The original conditional risk is symmetric with 𝐴 = 0.125 and for 
𝐴 ∈ (0,0.25) and 𝐴 ∈ (0.25,1), respectively. The change trends in the two intervals are similar. Specifically, the original conditional 
risk decreases first from 0.5 to the local or global minimum and then increases to 0.5 as 𝐴 increases. In contrast, the noise modified 
conditional risk is symmetric with 𝐴 = 0.5, it decreases first from 0.5 to the minimum 0.1998 at 𝐴 = 0.26 and gradually increases to a 
certain degree, then decreases to a local minimum 0.2563 at 𝐴 = 0.5. In addition, the maximum of conditional risk achieved in the SR 
case is lower than that achieved by the original Minimax decision rule for almost all the values of 𝐴. The maximum improvement is 
achieved at 𝐴 = 0.25, where the noise enhanced Bayes risk 𝑅𝑍 = 0.2005 and it has been lowered by 59.9% compared to the original 
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one.
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Fig. 6. Maximums of conditional risk versus 𝐴 achieved by the Minimax decision rules in the original and SR cases when 𝑡 = 0.25, 𝜎 = 0.1 and 𝜇 = 0.5.

Fig. 7. Maximums of conditional risk versus 𝜇 achieved by the Minimax decision rules in the original and SR cases when 𝑡 = 0.25, 𝜎 = 0.1 and 𝐴 = 0.3.

Fig. 7 illustrates different maximums of conditional risk versus 𝜇 when 𝑡 = 0.25, 𝜎 = 0.1 and 𝐴 = 0.3. The original conditional 
risk increases from 0.1691 to 0.5565 as 𝜇 increases from 0 to 0.3625, and then gradually decreases to 0.0932 as 𝜇 increases to 1. As 
a comparison, the noise modified conditional risk is symmetric with 𝜇 = 0.5; with the increase of 𝜇 in 𝜇 ∈ (0.0.5), it increases from 
0.0670 to the maximum 0.2211 when 𝑡 = 0.35, and then decreases to a local minimum 0.2015 when 𝑡 = 0.45, and finally increases 
to a local maximum 0.2057 when 𝑡 = 0.5. For any 𝜇 ∈ (0, 1), the detection performance under Minimax criterion can be greatly 
enhanced by adding a constant to the nonlinear system input and choosing the noise modified Minimax decision rule.

5. Conclusion

This paper focuses on a binary hypothesis-testing problem for nonlinear detection system with unknown prior probability. In 
order to improve the detection performance, a noise enhanced detection framework has been established under Minimax criterion. 
In detail, an additive noise has been purposely added to the input of system and a new optimal detector has been constructed 
based on the noise modified out according to Minimax criterion. Firstly, an optimization problem has been formulated to search 
the optimal additive noise and the corresponding noise modified minimax decision rule that minimize the maximum of Bayesian 
conditional risk under an equality constraint. An auxiliary function has been introduced in Lemma 1 to prove that the equality 
constraint can be satisfied for any additive noise. Based on this conclusion, the optimal additive noise has been derived as a constant 
vector in Theorem 1. Furthermore, an algorithm has been developed for searching the constant and the corresponding noise modified 
Minimax decision rule. An advantage of this algorithm compared with the traditional global search algorithms is that it can avoid 
falling into local optima. Additionally, the search range can be narrowed by utilizing the search results of neighboring data, thereby 
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greatly saving reducing workload and increasing the convergence speed. It is worth mentioning that the optimal noise enhanced 
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solution is not unique. Finally, a detection example for sine transform system has been researched under Gaussian and asymmetric 
Gaussian mixture background noises successively to show the practicality of the noise enhanced decision solution proposed in this 
paper.
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