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ABSTRACT

Klebsiella pneumoniae is responsible for numerous infections caused in hospitals,
leading to mortality and morbidity. It has been evolving as a multi-drug resistant
pathogen, acquiring multiple resistances such as such as horizontal gene transfer,
transposon-mediated insertions or change in outer membrane permeability. Therefore,
constant efforts are being carried out to control the infections using various antibiotic
therapies. Considering the severity of the acquired resistance, we developed a panel
of strains of K. pneumoniae expressing different resistance profiles such as high-level
penicillinase and AmpC production, extended spectrum beta-lactamases and carbapen-
emases. Bacterial strains expressing different resistance phenotypes were collected and
examined for resistance genes, mutations and porin alterations contributing to the
detected phenotypes. Using the Massive parallel sequencing (MPS) technology we
have constructed and genotypically characterized the panel strains to elucidate the
multidrug resistance. These panel strains can be used in the clinical laboratory as
standard reference strains. In addition, these strains could be significant in the field
of pharmaceuticals for the antibiotic drug testing to verify its efficiency on pathogens
expressing various resistances.

Subjects Microbiology, Molecular Biology, Drugs and Devices, Epidemiology, Infectious Diseases
Keywords Whole genome sequencing, Panel strain, Klebsiella pneumoniae, Antibiotic evaluation

INTRODUCTION

Over the last three decades, we have observed increased occurrence of multidrug-resistant
Enterobacteriaceae. These are constantly evolving as resistant pathogens posing the serious
problems in the choice of an appropriate antibiotic treatment in the hospital settings (Davies
¢ Davies, 2010). Klebsiella pneumoniae are emerging as one of the primary opportunistic
pathogens causing a significant amount of mortality and morbidity (Peleg ¢ Hooper, 2010)
in hospitals, causing urinary tract infections, pneumonia, bloodstream infections, surgical
site infections, and meningitis (Davis et al., 2015; Ko et al., 2002; Pereira et al., 2015; Ahn
etal., 2016; Oh et al., 2015). Over the years, it has evolved to be multi-drug resistant,
showing high resistance to extended spectrum beta-lactam (ESBL), fluoroquinolones,
aminoglycosides and even the last resort ‘carbapenems’ (Fair ¢ Tor, 2014).
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To validate these resistances various mechanisms have been illustrated, such as
high level production of AmpC B-lactamase and penicillinase, acquisition of genes
encoding for Extended Spectrum Beta-Lactamase (ESBL) or carbapenemase, change
in the membrane permeability or high level expression of efflux pump systems (Blair
et al., 2015; Tsai et al., 2013). K. pneumoniae producing AmpC B-lactamase, which is
a plasmid mediated, has become major therapeutic challenge due to their resistance
to cephalothin, cefazolin, cefoxitin and B-lactam inhibitor combinations (Gonzalez
Leiza et al., 1994; Horii et al., 1993; Jenks et al., 1995). Induction and over expression
of these enzymes has been linked with peptidoglycan recycling involving AmpD-
AmpR-AmpC gene regulatory networks in enterobacteriaceae (Anitha et al., 2015;
Guerin et al., 2015). ESBL are also plasmid-mediated, which are complex and rapidly
evolving enzymes that hydrolyze third- generation cephalosporins and aztreonam
but are inhibited by clavulanic acid (Rawat ¢ Nair, 2010). There are more than
200 ESBLs have been discovered originating from more than 30 different countries
(http://www.lahey.org/studies/). Previous studies indicate that K. pneumoniae consists
of several large plasmids which carry vast number of ESBLs and carbapenemases genes
along with the genes for resistance to aminoglycosides, trimethoprim, sulphonamides,
tetracyclyclins and chloramphenicol (Conlan et al., 2016; Paterson, 20005 Tokajian et al.,
2015). These plasmids are encoded with wide variety of adhesin-related gene clusters,
mobile genetic elements such as conjugation transfer genes such as tra, transposons
and insertion sequences which help in adaptive evolution, horizontal gene transfer,
thus spreading the antibiotic resistance from one species or genera to another (Liu et
al., 20125 Rafiq, Sam & Vaidyanathan, 2016; Ramos et al., 2014). Increased resistance to
carbapenems and glycylcycline has also been facilitated by alterations in membrane
permeability/potential or altered efflux pumps (Cannatelli et al., 2014; Filgona, Banerjee
& Anupurba, 2015; He et al., 2015; Seecoomar, Marmol & Kwon, 2013). Efflux pumps such
as AcrAB, KexD, KdeA, KmrA, kpnEF and kpnGH confer resistance to wide spectrum of
antimicrobial agents in K. pneumoniae (Ogawa et al., 2006; Ogawa et al., 2012; Padilla
et al., 2010; Ping et al., 2007; Srinivasan ¢ Rajamohan, 2013; Srinivasan et al., 2014).

Rapid development in the field of massive parallel sequencing (MPS) has enabled the
clinical microbiology laboratory to gain better insights into understanding the bacterial
resistance (Goldberg et al., 2015; Koser et al., 2012; Koser, Ellington ¢ Peacock, 2014).
Considering the severity of incidence of K. pneumoniae infections we have constructed
a panel of strains, consisting of different resistance phenotypes. We have also elucidated
the relationship between displayed phenotypes with its corresponding genotypic profile
using MPS technology. This study was primarily designed for the preliminary screening of
the efficacy of antimicrobial compounds on K. pneumoniae expressing different resistance
phenotypes in pharmaceutical industry. These strains can be distributed to hospitals and
institutions undertaking research on antimicrobial resistance.
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MATERIALS AND METHODS

Bacterial isolates

K. pneumoniae isolates were collected during 2009 to 2013 from a tertiary care university
affiliated hospital in Seoul, Korea. Bacteria identification was performed using VITEK 32
GN system (BioMérieux, Marcy I’Etoile, France), and was confirmed using the direct colony
method with MALDI-TOF MS (Bruker Daltonics, Bremen, Germany). These isolates were
screened for specific phenotypes such as high level acquired penicillinase, over produced
AmpC, ESBL, and carbapenemase based on Bonnet R, et al. in “Antibiogram” (LeClercq,
Courvalin & Rice, 2010) and “From antibiogram to prescription” book (Francois et al.,
2004) from the hospital database.

Susceptibility tests and MIC determinations

Around 3,000 K. pneumoniae isolates were shortlisted for antibiotic susceptibility

test. This was performed by the disc diffusion method using piperacillin, ampicillin,
piperacillin/tazobactam, ceftazidime, cefepime, imipenem, meropenem, ciprofloxacin,
ceftazidime-clavulanate, ampicillin-sulbactam, aztreonam on Mueller-Hinton agar.
Further confirmatory tests were performed for the above antibiotics by agar-dilution
technique. All the results were interpreted according to the Clinical and laboratory standards
Institute (CLSI) guidelines (2015).

ESBL isolates were sorted out using double disk synergy test using cefepime and
clavulanate and Hodge test using cefoxitin. Imipenem and EDTA double disk synergy
along with Hodge test were used to select the carbapenemase-producing isolates. High level
AmpC were selected using ertapenem and aminophenyl boronic acid (APBA) double disk
synergy test.

Resistance gene confirmation

Phenotypically confirmed isolates were cultured overnight and suspended in distilled
water, heated at 95 °C for 10 min. The suspension was centrifuged for 1 min at 6,000 rpm
and the supernatant was used as a DNA template. Primers were designed for resistance
genes (Table S1) and ordered from Macrogen (Seoul, Korea) and PCR was performed
using accupower PCR premix (Bioneer, Korea).

DNA isolation

Random strains were picked from each resistance phenotypes and cultured overnight. Both
genomic and plasmid DNA were isolated using Wizard genomic DNA purification kit
(Promega, Madison, WI, USA) with little modification to the manufacturer’s protocol, and
Qiaprep spin miniprep kit (Qiagen, Hilden, Germany), respectively. DNA concentration
was estimated through Qubit dsDNA BR assay kit (Molecular Probes, Eugene, OR, USA).

lon Torrent PGM sequencing

Whole genome library was performed using Ionplus fragment library kit (Life Technologies,
Carlsbad, CA, USA). Emulsion PCR was carried out using the JTonOnetouch 200 Template
kit v2 DL (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s
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instructions. Sequencing of the libraries was carried out on a 318 chip using the Ion
Torrent PGM system and Ion Sequencing 200kit (Life Technologies, Carlsbad, CA, USA).

Sequence assembly, annotation, multilocus sequence typing (MLST)
and resistome analysis

Reads from Ion Torrent PGM system were assembled using MIRA plug-in available

in Torrent suite software. Annotations were performed using the RAST annotation
pipeline with manual scrutiny. Genomic analysis was performed using Geneious pro
8.0 (http://www.geneious.com; Kearse et al., 2012). Resistance genes were screened using
Resfinder (Zankari et al., 2012; https://cge.cbs.dtu.dk/services/ResFinder/) and they were
further verified using NCBI BLAST. All the references used to annotate the resistance genes
are listed in Table S2. Bacterial typing was performed using online tool MLST 1.8 (Zankari
et al., 2013; https://cge.cbs.dtu.dk/services/MLST/).

OMP detection

Bacterial cells were grown in high-osmolarity MHB to the logarithmic phase and lysed
by sonication at 18-20% amplitude for 2 x 30s cycles, each comprised 6 x 5s sonication
steps separated by s of no sonication, and 30s of no sonication between the two cycles.
Unbroken cells were separated using centrifugation at 3,000 g for 5 min and Outer
membrane proteins (OMP) were extracted with Sodium lauroyl sarcosinate and recovered
by ultracentrifugation, as described previously (Hernandez-Alles et al., 1999). The OMP
profiles were determined using SDS-PAGE using Mini-Protean TGX gels followed by
coomassie blue staining (Bio-Rad, Hercules, CA, USA). Additionally, OMP’s were detected
using Matrix-Assisted Laser Desorption-Time of Flight Mass Spectrometry on Tinkerbell
LT (ASTA, Suwon, Korea) as described in Cai ef al. (2012). All the experiments were
repeated thrice to check the reproducibility of the results.

RESULTS AND DISCUSSIONS

Among 3,000 K. pneumoniae collection, we could finally select eighteen isolates
showing typical phenotypes i.e. six ESBL producing, nine carbapenemase producing,
one isolate expressing High level penicillinase, one high level AmpC f-lactamase
producing and one wild-type strain susceptible to antibiotics except ampicillin. MIC’s
of these strains are illustrated in Table 1 and Table S3. YMC2011/8/B10311 (High level
acquired penicillinase); YMC2011/7/B774, YMC2013/7/B3993, YMC2011/11/B7578,
YMC2011/7/B7207 (ESBL); YMC2010/8/B2027 (High level AmpC B-lactamase) and
YMC2012/8/C631 (Carbapenemase) were sequenced to obtain the complete genotypic and
phenotypic correlation (Table 2). The assembly statistics and the annotation overview are
indicated in Table 3. Consistent with the previous sequencing studies of K. pneumoniae, the
genomic size was about 5-9 -mbp sequences with an average G + C content of 57%. More
than 650,000 high quality reads were assembled to produce the draft genomes of an average
30 fold coverage (Table 54). There are more than 5,000 predicted protein coding sequences
and 96 RNA’s within the genomes of sequences panel strains. Table S5 indicates the number
of subsystems which reveal the number of genes involved in specific biological process. To
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Table 1 Selected list of panel strains and its MIC.

Strains PIP CAZ FEP IMI MER CAZ/CLV FOX AMP SAM
ESBL MLST R R R S S S S R \%
YMC2011/7/B774 551 256(R) 256(R) 128(R) 0.25(S) 0.25(S) 1(S) 32(R) 256(R) 64(R)
YMC2013/7/B3993 11 256(R)  256(R)  64(R) 0.25(S)  025(S)  1(S) 32(R) 256(R)  128(R)
YMC2011/7/B7207 711 256(R) 64(R) 16(I) 0.25(S) 0.25(S) 1(S) 32(R) 256(R) 64(R)
YMC2011/11/B7578 11 256(R)  256(R)  64(R) 64(R) 1(S) 1(S) 128(R)  256(R)  64(R)
High level Ampc R R S S S R R R R
B-lactamase
YMC2010/8/B2027 517 256(R) 256(R) 2(S) 0.5(S) 0.25(S) 64(R) 256(R) 256(R) 128(R)
Carbapenemase R R R R R R R R R
YMC2012/8/C631 354 256(R) 256(R) 32(R) 64(R) 64(R) 32(R) 256(R) 256(R) 128(R)
High level acquired R S S S S S S R R
penicillinase
YMC2011/8/B10311 17 256(R) 2(S) 4(S) 0.5(S) 2(I) 2(S) 3(S) 256(R) 128(R)

Notes.

MLST, Multilocus sequence typing; R, Resistant; I, Intermediate; S, susceptible; PIP, piperacillin; PIP/TZ, piperacillin-tazobactam; CAZ, ceftazidime; FEP, cefepime;
AZT, aztreonam; IMI, imipenem; MER, meropenem; CIP, ciprofloxacin; CAZ/CLV, ceftazidime-clavulanate; FOX, cefoxitin; AMP, ampicillin; SAM, Ampicillin/Sulbac-

tam.

characterize further, SDS-PAGE for detection of OMP analysis was performed for these
strains (Fig. S1), which was confirmed using MALDI-TOF Figures S2 and S3 indicates
the alignment of OmpK35 and OmpK36 genes of panel strains including their promoter
regions. The draft genome sequences of strains YMC2011/8/B10311, YMC2011/7/B774,
YMC2013/7/B3993, YMC2011/7/B7207, YMC2011/11/B7578, YMC2010/8/B2027 and
YMC2012/8/C631 have been deposited at DDBJ/ENA/GenBank under the accession
LYPQO00000000, LYPS00000000, LDWV00000000, LYPU00000000, LYPT00000000,
LYPV00000000 and LYPW00000000, respectively.

High level acquired Penicillinase

K. pneumoniae YMC2011/8/B10311 was susceptible to piperacillin-tazobactam,
ceftazidime, cefepime, imipenem, meropenem, ciprofloxacin, ceftazidime-clavulanate
and cefoxitin but resistant to piperacillin, ampicillin, and ampicillin-sulbactam. WGS
analysis shows the presence of blagyyy_11 and blatgn. genes. Resistance to the piperacillin,
ampicillin and ampicillin-sulbactam are due to hyperproduction of penicillinase TEM-1and
SHV-11 beta- lactamase. OmpK35 gene was present while OmpK36 gene expression was
truncated or terminated due to the mutations present as observed in the WGS. It was also
confirmed using SDS-PAGE, which revealed OmpK35 porin alone. TEM-1 beta-lactamase
offers resistance to «- amino and - carboxy - penicillins in E. coli and Enterobacteriaceae.
Generally, in high level acquired penicillinase strains, there was increased production of
TEM-1, which can be inhibited by piperacillin-tazobactam efficiently than the ampicillin-
sulbactam combination (Livermore ¢ Seetulsingh, 1991), as confirmed above.
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Table 3 Assembly statistics and annotation overview of the panel strains.

Strains Size(bp) Assembled Coverage Contigs N50(bp) N90(bp) N95(bp) GC(%) Sub Coding RNA
reads(bp) systems sequences

ESBL

YMC2011/7/B774 5,459,074 678,178 26.27 X 90 121,292 35,800 22,360 57.3 587 5175 107

YMC2013/7/B3993 5,908,460 851,171 30.63 X 188 115,815 21,473 7,508 57 590 5714 114

YMC2011/7/B7207 5,307,765 839,982 31.96 X 61 209,753 55,148 33,204 57.5 581 5039 113

YMC2011/11/B7578 5,635,222 693,699 30.89 X 104 143,377 32,570 21,435 57.2 588 5488 112

High level Ampc

B-lactamase

YMC2010/8/B2027 5,848,366 1,054,071 38.08 X 132 123,629 29,379 18,824 56.5 592 5911 111

Carbapenemase

YMC2012/8/C631 5,879,989 909,372 32.32X 233 84,557 10,295 5,587 56.7 589 5727 112

High level acquired

penicillinase

YMC2011/8/B10311 5,478,035 739,898 26.42 X 78 145,826 36,572 26,851 57.3 588 5242 96

Extended spectrum beta-lactamase

ESBL producing strains were phenotypically confirmed using the double disk and Hodge
test. Most of these strains belonged to ST11, which are predominant in Korea since 2010
(Ko et al., 2010).

YMC2011/7/B774

This strain was susceptible to imipenem, meropenem and ceftazidime-clavulanate,
intermediate to piperacillin-tazobactam but resistant to piperacillin, cefepime, cefoxitin,
ciprofloxacin, ampicillin, and ampicillin-sulbactam. The resistance is due to the presence
of blacrx-mis along with blagxa-1. The blapxa-1 gene has been frequently found to be
associated with genes encoding ESBL’s. This, along with the OmpK36 porin loss can cause
reduced susceptibility to cefepime (Beceiro et al., 2011; Torres et al., 2016). blapxa; was
found in the following genetic environment, IS26-catB4-blagxa-1-aac(6')-1b-cr-1S26. The
presence of multiple aminoglycoside resistance genes such as aac(6') Ib-cr, strA, strB, QurB66
and ogqxB have offered resistance to ciprofloxacin. Cefoxitin resistance was mediated by
loss of porins which is well described in K. pneumoniae strains (Ananthan ¢ Subha, 2005).

YMC2013/6/B3993

This multidrug-resistant strain was unique because it contained multiple copies of
ESBL gene (blaspy-12). This was susceptible to imipenem, meropenem and ceftazidime-
clavulanate but resistant to piperacillin, piperacillin-tazobactam, ceftazidime, cefepime,
cefoxitin, ciprofloxacin, ampicillin, and ampicillin-sulbactam. In-depth analysis of the
strain revealed 2 copies of blaspy.12 and one copy of blacrx.m-15 genes. In-addition,
we also found one copy of blapxa-9 and three copies of blargn.;. The strain belonged
to ST11.The insertion of Tn1331was detected, consisting of blaoxa.9, blatem.1, aac(6'-
)Ib-cr and aadAl genes. Ciprofloxacin resistance was notably high (MIC 128 mg/dl),
which was due the additive effect of both quinolone resistance-determining regions
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(QRDR) and plasmid-mediated quinolone resistance (PMQR). Mutations in QRDR
were noticed at Ser83Ile and Ser80Ile in gyrA and parC genes, respectively. PMQR
analysis indicated the presence of aac(6')-Ib-cr and gnrB, with efflux pumps 0ogxA
and ogxB. In silico analysis of the strain confirmed the presence of OmpK35 and
OmpK36 porins. However, the OmpK35 gene has been interrupted by ISI, thus
providing resistance to cefoxitin (Ananthan ¢» Subha, 2005; Palasubramaniam et al.,
2007). OmpK36 belong to the OmpK36_v1 variant with the amino acid substitution

at Arg357His with a nucleotide substitution from A to T at —10 box. Reduced
susceptibility to cefepime was due to the multiple copies of blatgy.1along with truncated
OmpK36 porin, which is consistent with the previous studies (Beceiro et al., 2011).

YMC2011/7/B7207

This strain was susceptible to imipenem, meropenem and ceftazidime-clavulanate,
intermediate to piperacillin-tazobactam and cefepime but resistant to piperacillin,
ceftazidime, cefoxitin, ciprofloxacin, ampicillin, and ampicillin-sulbactam. Similar to the
strainYMC2011/7/B774, this strain has blacrx-mis and blaoxa-1 along with the blasgy.-1s;.
Reduced susceptibility to cefepime is due to the blagxa-1 (Torres et al., 2016). The presence
of multiple aminoglycoside resistance genes such as aac(6')Ib-cr, strA, strB, 0gxA, 0ogxB and
QnrB66 offered resistance to ciprofloxacin. SDS-PAGE for OMP’s revealed the presence
of the OmpK35 alone. OmpK36 gene included several mutations (Table S6) leading to the

termination of its expression, presumably leading to cefoxitin resistance.

YMC2011/11/B7578

This was susceptible to imipenem, meropenem, ceftazidime-clavulanate and intermediate
to piperacillin-tazobactam but resistant to piperacillin, ceftazidime, imipenem, cefoxitin,
cefepime, ciprofloxacin, ampicillin, ampicillin-sulbactam. The presence of blasyy_1ss,
blaspy.12 along with AmpC gene blapya.; explains the resistance to cefoxitin similar to
the above strain. Ciprofloxacin resistance was due to the presence of fluoroquinolone
resistant genes such as QurB4, OqxA and OgxB. OmpK35 was present and there was a
deletion (313G) in OmpK36, which might have caused disruption in its expression leading
to cefepime resistance. We could not explain the ceftazidime-clavulanate susceptibility of
the strain in spite of the presence of AmpC gene, blapya-;. We are performing additional
experiments to understand this specific phenotype.

High level AmpC beta-lactamase

K. pneumoniae YMC 2010/8/B2027 was found to be susceptible to cefepime, imipenem and
meropenem and intermediate to ciprofloxacin but resistant to piperacillin, piperacillin-
tazobactam, ceftazidime, ceftazidime-clavulanate, cefoxitin, ampicillin and ampicillin-
sulbactam. The resistance phenotype can be because of the presence of AmpC genes
i.e.blapya.1and blacyy-;. It also carries the broad spectrum beta-lactamase blagyy-11
andpenicillinase gene blargy.1.Ciprofloxacin resistance has been conferred by the presence
of aac(6')Ib-cr, strA and strB.
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Carbapenemases

K. pneumoniae YMC 2012/8/C631 was found to be susceptible to piperacillin-tazobactam
and ciprofloxacin but resistant to piperacillin, ceftazidime, imipenem, meropenem,
ceftazidime-clavulanate, cefoxitin, ampicillin and ampicillin-sulbactam. The cefoxitin
resistance was due to the presence of blappa-;. Even though IMP-1 enzyme is known to
hydrolyze piperacillin and tazobactam, this strain appeared susceptible. Similar cases have
been reported earlier (Chen et al., 2009; Koh, Wang ¢ Sng, 2004; Mushtaq, Ge & Livermore,
2004; Picao et al., 2013; Santella et al., 20105 Scheffer et al., 2010), which may be due to
inherent susceptibility to the particular antibiotics. Other resistances are conferred due to
the presence of 3 copies of blatgm-1 and blasyy.11. While SDS-PAGE revealed the presence
of OmpK35, in silico analysis of OmpK35 gene showed the insertion of IS102, thus affecting
antibiotic passage through the membrane.

In addition, as opposed to the findings by Zankari et al. (2012) we found few discrepancy
in the identification of antimicrobial resistance genes by using Resfinder using the
whole genome sequencing, such as few genes were identified as bla;gy.11 instead of
blasyy_11/blaspy_12 in the above panel strains. Hence the above panel strains needed to
be further evaluated for accurate identification. This software consists of database of
resistance genes, which helps us to easily identify the resistance mechanism. However,
manual scrutiny of the Resfinder results is essential to identify the true antibiotic resistance
genes present in the pathogen. Figure 54 indicates the encoded amino acid alignment of the
SHV type genes found in the panel strains. blasyy.; is a broad spectrum f-lactamase gene,
encodes 286 amino acid, in which the mutations Gly,34-Serine;s4 and Glu,ss-Lys;35 results
in SHV-12 B-lactamase, Glns;-Leus; results in SHV-187 B-lactamase and Thrss-Alasy
leads to SHV-158 S-lactamase.

The advent of NGS in clinical laboratory field has helped us to gain better insights
of resistant mechanisms in detail compared to the traditional phenotypic detection. The
analysis of WGS will also help us to understand the collective molecular network of
pathogen offering the specific MIC with the relevant antibiotics (Tsai et al., 2013). In
addition, it also plays an important role in clarifying the discrepancy observed due to
false negative results generated from existing diagnostic assays (Koser, Ellington ¢ Peacock,
2014). These assays mostly target the single resistance mechanism or phenotype, which is
not sufficient to understand the complete underlying mechanism. Using WGS to predict
the antibiotic resistance has demonstrated sensitivity and specificity of 96% and 97%
respectively, compared to the phenotypic detection assays (Goldberg et al., 2015).

CONCLUSIONS

Complete characterization of the phenotypic and molecular mechanism of the panel strain
will hold a great importance in pharmaceutical industry during the initial screening to
evaluate the adequacy of antimicrobial drugs. The efficacy of the drug can be verified on
pathogens displaying different resistant profiles, hence enabling their role before entering
into clinical trials. These strains can also be used as standard reference strains and its
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antimicrobial resistance profile can be used in laboratory settings. Additionally, this
would improve our understanding of resistance phenotypes with its in-depth mechanism
responsible for the same.
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