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Abstract: In order to ensure the safety of cultivated land and promote urban productivity, the Chinese
government began to promote intensive land use at the legislative level from 2014. At the same
time, China faces problems of carbon emissions and energy, so we need to improve energy efficiency.
Therefore, this paper aims to verify the spatial effects of intensive land use on energy efficiency of
China from 2009 to 2018. We further use an index system to quantify intensive land use and use
chain DEA (data envelope analysis) to quantify energy efficiency. This paper finds that: (1) intensive
land use can significantly improve energy efficiency. A 1% increase in the level of intensive land
use will increase energy efficiency by 1.3%. (2) The intensive use of land in one city will have a
negative impact on the energy efficiency of surrounding cities. The reason is that the intensive use
of land in a single city may lead to the transfer of energy-consuming industries to surrounding
cities. (3) The impact of intensive land use on the energy efficiency of surrounding cities has negative
threshold characteristics, and the negative impact will be weakened as the level of integration of the
city increases.
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1. Introduction

The widespread, severe negative impacts of human activities on Earth’s ecosystems
over the past few decades have highlighted the importance of continuous and up-to-date
monitoring of ecosystems health [1]. In the context of the “green revolution” sweeping
the world and the prevalence of international green trade barriers, only the harmonious
coexistence of economic development, energy consumption and the ecological environment
can support sustainable development and maintain a competitive advantage. As China has
reached crossroads of economic transformation and upgrading, it needs to transform its
economic development mode and transform its economic growth momentum. Therefore,
under the severe situation of the environmental carrying capacity reaching its upper limit,
it is necessary to promote the transformation of the industrial economic growth mode
to resource-saving and eco-environmental protection and promote the formation of a
development model with higher eco-efficiency [2,3].

In addition, in December 2020, the Chinese government announced a series of new
measures for China’s National Independent Contributions, including that carbon dioxide
emissions per unit of GDP before 2030 will drop by more than 65% compared to 2005, the
proportion of primary energy consumption of non-fossil energy stations will reach about
25%, and forest storage will increase by 6 billion cubic meters compared with 2005, etc.
China will strive to reach carbon peak by 2030 and achieve carbon neutrality by 2060. As
of 2019, 46 countries and regions around the world have achieved carbon peaks, mainly
developed countries. As the world’s largest developing country, China has substantial
carbon emissions, accounting for about 28% of the world’s total, and its energy structure is
dominated by coal. In 2019, coal accounted for 57.7% of total energy consumption. China’s
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economic development is still in the stage of stock accumulation, and it still needs to rely
on capital stock driven by production investment and infrastructure investment, which, in
turn, leads to carbon emissions; energy resource endowments are not abundant enough,
and it is difficult to build a diversified and green energy structure. Raising awareness
of environmental protection, encouraging green consumption, raising the level of green
technology innovation and improving energy efficiency are all ways to mitigate the growth
of carbon emissions. Among them, energy efficiency refers to obtaining a higher output
under the same energy input, so the improvement of energy efficiency can effectively save
the total energy use, thereby reducing related carbon emissions [4]. Improving energy
efficiency means that comprehensive innovation and exploration are required to promote
a new round of industrial energy revolution. Improving energy efficiency also requires
substantial improvements in existing energy production and consumption methods. It is
then conducive to promoting new industries, creating new growth points, and realizing a
low-carbon transformation of economic development in the process.

Human economic activities use land as the primary bearing space, and a large amount
of agricultural land is gradually transformed into non-agricultural land, which has gradu-
ally become one of the main factors for the rapid rise of carbon dioxide emissions. Addition-
ally, the change of land use is the second most significant factor behind the increase in global
atmospheric carbon dioxide content after the burning of fossil fuels [5]. The main reason is
that the intensive use of land is through the increase in labor, capital, technology and other
inputs to achieve a high-efficiency use of resources and achieve economic development,
while also inevitably increasing the total amount of carbon emissions. In addition, China’s
increasingly limited land resources have increasingly restricted the direction and speed of
urban development and have threatened food security and ecological security. When the
cultivation process of the introduced planted food species is complex, the requirements
for the living environment are relatively high, so a large amount of land is needed as a
test field. At the same time, the development of the renewable green low-carbon energy
industry requires large-scale engineering construction as a platform to support it, so it
can be widely promoted and applied [6]. Therefore, as a non-renewable resource, land is
an important support for economic development and an essential part of the coordinated
and sustainable development of China’s economy, society, and ecology. In the process of
reducing carbon emissions, China needs strong support from land resources. The Chinese
government has also successively issued a series of policies that emphasize the need to
promote the formation of a new pattern of high-quality development and protection of
land and space. It is proposed to continuously improve the land-saving and intensive-use
system, alleviate the contradiction between human and land, reduce the phenomenon of
land waste, and form favorable supporting conditions for the realization of sustainable
development [7].

2. Literature Review and Theoretical Hypotheses
2.1. Energy Efficiency

Energy efficiency, or full-factor energy efficiency, has been the focus of research in the
field of population, resource and environmental economics in recent years. As early as
1995, the World Energy Commission gave an explanation of the concept of energy efficiency.
Energy efficiency can be defined as: “reducing energy input to provide equivalent energy
services.” From an economic point of view, Patterson (1996) defines energy efficiency
based on the concept of energy consumption per unit of output: energy efficiency refers
to the use of less energy to provide the same service or produce the same effective output.
Patterson believes that the improvement of energy efficiency should be based on ensuring
economic growth, rather than reducing investment [8]. Kilponel (2003) added the concept of
environment to the goal of energy efficiency on the basis of predecessors, further enriching
the concept of energy efficiency [9]. From early energy efficiency research, the measurement
of energy efficiency comes from the ratio of energy consumption to GDP, which belongs
to single-factor energy efficiency. As a method to measure factor input and output, single-
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factor energy efficiency has the characteristics of good data openness, simple calculation,
and clear economic significance. However, it ignores the substitution between factors, and
in the actual production process, the inputs of production factors can replace each other to
a certain extent, and the substitution rate can be expressed by the marginal substitution
rate; single-factor energy efficiency does not take into account the externality of energy
consumption, and in the process of energy consumption, waste water, waste gas and solid
waste will inevitably be generated. Therefore, energy efficiency will be overestimated if
single-factor energy efficiency is used [10].

Based on the shortcomings of single-factor energy efficiency, scholars began to look
for better indicators to describe the relationship between energy consumption and output.
Hu and Wang (2006) made a breakthrough study on the concept of energy efficiency, and
they also combined data envelopment analysis to measure total factor productivity [11].
The addition of labor and capital to the input factors changed the analytical framework
of previous studies that only considered energy factors, and at the same time introduced
the concept of marginal substitution of factors. This method of calculation has also been
widely used by later scholars. On the basis that the output remains unchanged, the ratio of
the optimal energy input to the actual input can better present the connotation of efficiency
because the coordination of different input elements is considered.

2.2. Intensive Land Use

The concept of intensive use of land was first proposed by the classical economist
David Ricardo in the theory of land rent, and it mainly refers to the increase in capital,
labor and other factors input on the land to obtain higher output [12]. However, the input
and output of capital and labor in the land is not an eternal, single positive correlation.
After the input exceeds a certain range, the output will decrease as the input increases.
Therefore, the increase in intensive land use is limited; when the continuous investment of
capital and labor in land reaches the point of diminishing economic returns, that is, when
the marginal revenue equals the marginal output, the operator will not add additional
input. This critical point is the intensive boundary of land use. Land use that reaches the
intensive boundary is called intensive land use. Conversely, land use that does not reach
the intensive boundary is called extensive use.

Under these constraints, by changing the investment intensity and utilization intensity,
the utilization efficiency can be maximized [13]. It emphasizes the sustainable develop-
ment of intensive land use under the constraints of resource environmental protection.
Technological progress and green policy system support are generally considered to be
important ways to improve energy efficiency. This is because green emission reduction
policies adjust industrial and energy structures to eliminate outdated production capacity
and jointly achieve the goal of reducing carbon emissions [14]; technological progress
can improve energy efficiency, save energy and increase the development and utilization
of clean energy. It is worth noting that the intensive use of land at the urban level can
help increase density, cause creative destruction, environmental regulation, and ultimately
increase energy efficiency [15].

2.3. Intensive Land Use and Energy Efficiency

However, the intensive use of land may have a spatial effect on energy efficiency, that is,
the level of intensive use of land in a certain city will have an impact on the energy efficiency
of surrounding cities. Existing research on pollution transfer issues from the perspectives
of environmental regulation, foreign direct investment, foreign trade, economic growth,
etc., verify the existence of a “polluted paradise” or “pollution refuge” [16]. China is a large
developing country. For a long time, due to the huge differences in geographical conditions
and resource endowments between regions, there has been a long-term large imbalance in
the level of regional economic development. For areas with high levels of development, in
order to improve the quality of local economic development and realize the upgrading of
the industrial structure, those industries with high pollution intensity and obvious negative
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externalities of production may be transferred out [17]. However, low-level development
areas may have undertaken this part of the industrial transfer due to their economic growth
as their primary goal. Therefore, for regions with low development levels, integration into
large economic zones or urban agglomerations may face greater ecological environmental
challenges while gaining industrial transfer and economic division of labor dividends.

Theoretically, the “Pollution Haven Hypothesis” (PHH) from the international division
of labor indicates that, in the process of advancing international economic integration,
regions with low levels of development may face the threat of pollution transfer from
regions with high levels of development [18]. In other words, when there is a clear gap in the
level of economic development between regions, the transfer of industries may be selective
due to the inconsistent preference for economic growth and environmental pollution. Those
late-developing areas with lower environmental requirements may become “pollution
refuges” for pollution-intensive industries [19]. This pollution transfer effect caused by the
difference in the level of economic development has been supported by many documents
between developed and developing regions [20]. Therefore, the implementation of the
intensive use of land in a certain city may lead to the transfer of industries from that city to
surrounding cities, thereby improving the energy efficiency of the city and reducing the
energy efficiency of surrounding cities.

However, this effect can be reduced to a certain extent. Regional integration effectively
reduces the administrative barriers to the flow of factors and commodities, promotes the
spatial allocation and integration of industrial resources and plays an important role in co-
ordinating regional economic development and tapping the potential for economic growth
through government cooperation between localities (regional integration in this article
refers to economic integration, that is, the elimination of artificial factors that hinder the
effective operation of the economy). Through mutual cooperation and unification, multiple
separate economies are integrated into a large economy, so that goods and factors tend to
flow freely in this large economy [21]. In recent years, with the implementation of the new
urbanization development strategy, government cooperation within urban agglomerations
has continued to deepen, and the integrated construction of urban agglomerations as a
space carrier has attracted more and more attention from scholars [22]. This article suggests
that spatial integration could be used to explore the inhibitory effect of intensive land use
on the energy efficiency of surrounding cities for the following reasons: first, the spatial
integration will to a large extent produce the coordinated development of governance
capabilities within the spatial scope, which will lead to the coordinated governance of pol-
lution across regions. By jointly carrying out the analysis and assessment of differences in
current environmental protection standards, and orderly formulating and revising unified
environmental protection standards in the fields of air, water, soil, hazardous waste, noise,
etc., the spillover effects of pollution can be greatly reduced; secondly, the overall level of
green innovation will be improved through integration, including the construction of a
green industry system [23], for instance, jointly build a green technology innovation center
and a green engineering research center, implement major green technology research and
development and demonstration projects, encourage the National Green Development
Fund to increase investment in the twin city economic circle; advocate a green lifestyle,
co-build a standardized technical support platform for green cities, improve a unified
green building standard and certification system, accelerate the promotion of garbage
classification and jointly build a regional integrated garbage classification and recycling
network system; carry out green development experiments and demonstrations, etc. [24].
In summary, the question is whether there is a relationship between intensive land use and
energy efficiency and whether this relationship shows spatial characteristics. At present,
there are few studies focusing on these questions, so this paper will explore the answers
to these questions in depth, thereby enriching the research about land intensive use and
energy efficiency.
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3. Data and Methods
3.1. Data
3.1.1. Data Selection

To figure out the relationship between intensive land use and energy efficiency, the
following variables are selected in this paper:

(1) Explained variable (energy efficiency, Ene): Referring to Patterson (1996) and Fan
et al. (2020) [25], the input variables selected in this article are labor (unit is thousands,
measured by the number of employees), capital (unit is RMB million, estimated according
to the method of Lu Fei et al. [26] and energy (unit is thousand tons of standard coal);
the output variable is GDP (unit is one hundred million yuan). This study uses the chain
network DEA to quantify energy efficiency [27,28], so each city above the prefecture level is
a decision-making unit DMUi, assuming that there are s (s = 1, 2, ..., S) stages in the whole
process, the input variables and output variables of each stage are Ii

s and Oi
s, respectively,

and satisfy Ii
s∈R+

αs and Oi
s∈R+

βs; the intermediate variable of the s stage and the s + 1
stage is set to Pi

(s,s+1), and it satisfies Pi
(s,s+1)∈R+

γ(s,s+1), where α, β and γ represent the
number of input variables, output variables and intermediate variables, respectively, α = 1,
2, ..., x, β = 1, 2, ..., y, γ = 1, 2, ..., z. λS is the model weight, wS is the weight variable of the
sth order in the whole process, and λS∈R+

n, µs− and µs+ are the slack variables of the input
variable and the output variable [29,30], respectively; the goal of the network envelope
analysis model can be expressed as θ:

θ = min
∑S

s=1 ωs[1− 1
α (∑

α
x=1

µs−
x

Is
x0
)]

∑S
s=1 ωs[1 + 1

β (∑
β
y=1

µs+
x

Os
y0
)]

(1)

The constraints are:
Is
0 =

n
∑

i=1
λs

i Is
i + µs−

Os
0 =

n
∑

i=1
λs

i O
s
i + µs+

P(s,s+1)λs+1 = P(s,s+1)λs

N
∑

i=1
λs

i =
S
∑

s=1
ωs = 1

λS, µS−, µS+, wS ≥ 0

The efficiency of stage s can be expressed as:

θs =
1− 1

α (∑
α
x=1

µs−∗
x
Is
x0

)

1 + 1
β (∑

β
y=1

µs+∗
x

Os
y0
)

(2)

(2) Explanatory variable (intensive land utilization, Liu): China currently divides
regional land into construction land and non-construction land. The former can be un-
derstood as the land that serves productive labor and capital factors and where various
factors of production can play a role; the latter refers to other land, which does not have
the nature of production. Because (positive) intensive land use refers to the investment
of more production factors per unit area of land and the agglomeration of urban internal
space, this article selects GDP density, population density, electricity consumption den-
sity, employment density, local fiscal expenditure density, and the inverse numbers of
urban patch density (the inverse number of indicators that measure the degree of urban
decentralization). The calculation method of density is the ratio of the total amount of
economic indicators to the area of construction land. The ratio of the total amount to
the total urban area is not adopted because many cities have large tracts of land without
economic activities, and only the area of construction land is engaged in economic activities.
The weighting is divided into subjective and objective methods. This article selects the
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EVM (entropy value method), that is: first adopt the normalization method for the data
(xi−xmin)/(xmax−xmin), then suppose there are m indexes that have been normalized, and
each index has n data, then the entropy value of the jth item is:

− 1
Ln(n)

∗∑m
j=1

xij

∑n
i=1 xij

∗ Ln(
xij

∑n
i=1 xij

) (3)

Information redundancy dj is the sum of the opposite of entropy and 1, and the weight

of the indicator wAj can be written as:
dj

∑m
j=1 dj

dj = 1 +
1

Ln(n)
∗∑m

j=1

xij

∑n
i=1 xij

∗ Ln(
xij

∑n
i=1 xij

) (4)

Following the EVM method above, the final weights given to the above indicators in
this article are: 0.1322, 0.2462, 0.1896, 0.1308, 0.2404 and 0.0606. Because, under this index
system, the intensive land use index has both positive and negative values, in order to
facilitate the analysis of the quadratic term in the heterogeneity analysis part, in this paper,
the value obtained under the index system is summed with 1 to obtain an index to measure
the level of intensive land use.

We draw maps as Figures 1 and 2 to reflect the distribution of the energy efficiency
and the intensive land use of Chinese cities from 2009 to 2018. Due to the data availability,
the below maps are based on the majority of Chinese cities.
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Figure 1. The distribution of the energy efficiency of China in 2009 and 2018. Figure 1. The distribution of the energy efficiency of China in 2009 and 2018.

(3) Threshold variables (spatial integration, Spa): the existing literature does not
have a method to quantify spatial integration, so this article proposes the level of urban
construction integration to measure it. The specific method is to use night light data to
connect the geometric center of a certain city with the geometric centers of all neighboring
cities. The night light brightness of all county-level administrative units passing through
the connection is averaged and normalized for the measurement of spatial integration. If
the value is larger, it means that even between the two city centers, the brightness value of
the night lights is still very large, which, to a certain extent, indicates that the construction
of the city is connected together, and this reduces the cost of transporting goods and
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commuting people and represents a great deal of spatial integration (two regions can be
“surrounding areas” if they border each other).
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(4) Control variables: In order to control the impact of other variables on energy inten-
sity, this article selects four control variables: economic development, industrial structure,
opening to the outside world and technological innovation. (1) Economic development.
Faster economic development leads to more energy consumption, but the development of
new technologies and upgrading industries will also lead to improved energy efficiency,
thereby saving energy. Therefore, this article uses the logarithm of GDP (Gdp) and GDP per
capita (Gpp) as the control variables [31,32]. (2) Industrial structure. Areas with a higher
proportion of the secondary industry may have more carbon emissions. The reason is that
industrial production consumes a lot of energy and reduces energy efficiency. Therefore,
this article chooses the secondary industry (Ssr) and tertiary industry (Tsr) as the control
variables as the proportion of GDP. (3) Opening up to the outside world. Under normal
circumstances, the pace of regional opening up in order to attract foreign investment may
cause cities to pay more attention to energy and environmental issues, and the higher the
degree of opening up, the more likely it is to introduce clean technologies, which may
have a positive effect on energy efficiency [33]. Therefore, this paper chooses the actual
utilization of foreign capital as a control variable as the proportion of GDP (Fdi) [34–36]. (4)
Technological innovation: Under normal circumstances, cities with higher technological
innovation levels will also show more green technological innovations, which will help
save energy and reduce emissions [37], thereby improving energy efficiency factors. This
article selects the logarithm of the number of patent applications (Pat) and innovation
efficiency (Ine) of the city as the control variables, and the quantitative method of the latter
refers to Ke et al. (2021) [38], and all the variables’ descriptions are listed in Table 1.
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Table 1. Variables explanation.

Variables Name Explanation Data Source

dependent variable energy efficiency
(Ene)

this study uses the chain network DEA to
quantify energy efficiency.

Yearbooks of various provincial
administrative units, and “China

Energy Statistical Yearbook”

independent
variable

intensive land
utilization (Liu)

we select GDP density, population density,
electricity consumption density, employment
density, local fiscal expenditure density, and
the inverse numbers of urban patch density,

using EVM method to give weights.

“China Statistical Yearbook”, “China
City Statistical Yearbook”, Chinese

Basic GIS data.

threshold variable spatial integration
(Spa)

the specific method is to use night light data
to connect the geometric center of a certain

city with the geometric centers of all
neighboring cities. The night light brightness

of all county-level administrative units
passing through the connection is averaged

and normalized for the measurement of
spatial integration.

Visible Light Imaging Linear
Scanning Service System

(DMSP/OLS) in the U.S. Defense
Weather Satellite and Visible Near

Infrared Imaging Radiometer
(NPP/VIIRS) from the National Polar

Orbit Satellite

control variables GDP (Gdp) gross domestic product

“China Statistical Yearbook”, “China
City Statistical Yearbook”

GDP per
capita (Gpp) gross domestic product per capita

secondary industry
ratio (Ssr)

the proportion of secondary industry in
total GDP.

tertiary industry
ratio (Tsr)

the proportion of tertiary industry in
total GDP.

opening up (Fdi) the proportion of actual utilization of foreign
capital in total GDP.

patent applications
(Pat)

logarithm of the number of
patent applications

China national knowledge
infrastructure

innovation
efficiency (Ine)

quantitative method o refers to
Ke et al. (2021)

China national knowledge
infrastructure, “China Statistical

Yearbook”, “China City
Statistical Yearbook”

3.1.2. Data Source

The quantity of patent applications in this article was manually compiled on the CNKI
platform. The rest of the data come from the “China Statistical Yearbook”, “China City
Statistical Yearbook”, Statistical Yearbooks of Various Provincial Administrative Units, and
“China Energy Statistical Yearbook”. The night light data are from the Visible Light Imaging
Linear Scanning Service System (DMSP/OLS) in the U.S. Defense Weather Satellite and
Visible Near Infrared Imaging Radiometer (NPP/VIIRS) from the National Polar Orbit
Satellite. The sample selected in this paper is 280 cities as the data availability, and the time
period is from 2009 to 2018. The missing data are filled in by the difference method (if a
city has a missing year, we use the temporal trend of the variable to make it up).

3.2. Methods: Regression Model
3.2.1. Benchmark Regression

This paper establishes a panel least squares regression model:

yit = β1xit + βControlit + I + t + εit (5)

Among them, y is the explained variable, which is energy efficiency (Ene) in this article,
x is the explanatory variable (Liu), which is the level of intensive land use in this article, and
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Control is the control variable. After Hausman’s test, this article adopts a two-way fixed
effects model. Therefore, this article adds dummy variables for year t and individual i.

3.2.2. Spatial Regression

This article adopts spatial econometric regression. The spatial measurement model
is divided into three types: spatial lag model, spatial error model and spatial Durbin
model [38]. The spatial lag model adds the spatial lag term of the explained variable to the
general panel data model, indicating that the explanatory variable on a certain spatial unit
is affected by the explanatory variable of the adjacent spatial unit; the spatial error model
adds spatially related error terms, that is, the error term of a certain spatial unit model is
considered to be affected by the adjacent spatial unit model error term; the spatial Durbin
model integrates the characteristics of the spatial lag model and the spatial error model.
This intensity of the influence of adjacent spatial units is represented by a spatial weight
matrix. The spatial lag model, the spatial error model and the spatial Durbin model are
as follows:

yit = δ
N

∑
j=1

Wijyit+ϕ + βxit + Ci + αt + εit (6)

yit = ϕ + βxit + Ci + αt + uit, uit = ρ
N

∑
j=1

Wijuit + εit (7)

yit = δ
N

∑
j=1

Wijyjt + ϕ + βxit + δ
N

∑
j=1

Wijyijtθ + Ci + αt + εit (8)

where: δ is the spatial regression coefficient, which represents the influence of the explained
variable y of the adjacent spatial unit on the explained variable y of this spatial unit (y is
the explained variable, which is energy efficiency “Ene”). If it is significantly positive, it
means that the explained variable has obvious spatial overflow. That is, the increase in the
variable by one spatial unit within the research scope corresponds to the increase in the
variable in other spatial units; uit is the spatial autoregressive error term; ρ is the spatial
error coefficient, which represents the influence of the adjacent spatial unit error term u on
the spatial unit error term u; θ is the spatial lag term coefficient of the explanatory variable,
which indicates the influence of the explanatory variable x of the adjacent space unit on
the explanatory variable y of this space unit; N is the number of spatial units, and W is
the spatial weight matrix. First, use the LM test to determine whether the spatial lag effect
and the spatial error effect are significant, then use Wald or LR test to judge whether the
spatial Durbin model can be simplified into a spatial lag model or a spatial error model.
Assumption 1: θ = 0; assumption 2: θ + λβ = 0. If assumption 1 passes the significance
test, it is considered that the spatial Durbin model can be reduced to a spatial lag model. If
assumption 2 passes the significance test, it is considered that the spatial Durbin model can
be reduced to a spatial error model [34]. After testing, assumption 1 and assumption 2 are
not true, so this article chooses the spatial Durbin model.

3.2.3. Spatial Threshold Regression
Additionally, threshold regression is to test whether the parameters of the sample

group divided according to the threshold value are significantly different, and it is often
used to study the heterogeneity of the interaction between variables. The threshold regres-
sion model developed by Hansen (1999) [39] can endogenously divide the data interval
according to the characteristics of the data itself, avoiding the randomness of artificially
dividing the sample interval. The relationship between each city level and innovation
performance may be nonlinear. Traditional linear regression cannot explain the relationship
between the two. The threshold model regression is closer to reality. Therefore, this paper
adopts the threshold regression model of Hansen (1999), which is different from the tradi-
tional threshold model. The spatial threshold model adopted in this paper adds the spatial
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lag of explanatory variables and explained variables. First, the following single threshold
regression model is set:

yit= λ0+λ1w × Dit · I (thre it ≤ r1) + λ2w × Dit · I ( thre it> r1) + λ3Xit+γ · t + εit (9)

Among them, I (·) represents an indicative function, and the value is 1 when the
expression in the brackets is true and 0 when it is false. Dit is the core explanatory variable,
where w × Dit refers to the spatial lag term of the explained variable, Urbsit is the threshold
variable, Xit represents the control variable, and εit is the random disturbance term. When
Urbsit ≤ r1, the core explanatory variable Dit coefficient is λ1; when Urbsit > r1, the core
explanatory variable Dit coefficient is λ2. t is the time effect, λ0 is a constant term and
εit~(0, σ) is a random interference term. Additionally, Equation (9) only assumes that there
is one threshold, but there may be two or more thresholds. Due to space limitations, the
double and more threshold tests will not be repeated.

To estimate these variables we mentioned above, we used software named STATA 15.
This software is a general-purpose statistical software package developed by StataCorp for
data manipulation, visualization, statistics and automated reporting.

4. Results
4.1. Benchmark Regression Results

Based on Equation (5), Table 2 shows the results of the benchmark regression. The first
column is the OLS (ordinary least squares) regression before adding the control variables;
the second column is the regression result using the two-way fixed effects model; the third
column is the regression result of replacing the T test with D-K (Driscoll–Kraay) standard
error, and the purpose is to eliminate the influence of heteroscedasticity and cross-sectional
correlation on the regression result; the fourth column is the regression result using the
system GMM (Generalized Method of Moment),with two-period lag and three-period lag
as instrumental variables. The core of the system GMM model is to use the difference
equation and the level equation as an equation system, so that the difference variable and
the level variable are mutually instrumental variables for system estimation, so that the
parameter estimation is more effective; the fifth column is to remove the extreme value.
We remove the samples of the highest 5% and the lowest 5% of carbon emissions and
perform regression again, which can eliminate the adverse effects of abnormal values on
the results; the sixth column is the use of two-stage least squares regression; we choose the
urban topographic undulation as an instrumental variable. The reason is that the higher
the terrain undulation, the less the land area that can be used for production and living,
and the higher the level of intensive land use. However, the terrain undulation may not
directly impact energy efficiency.

In summary, during the study period, it can be found that every unit increase in the
level of intensive land use will lead to a corresponding increase in energy efficiency by
1.3 units. Therefore, the intensive use of land is an inevitable requirement for developing
a circular economy and a conservation-minded society and an essential guarantee for
achieving carbon neutrality and improving energy efficiency. As the concept of sustainable
development has become more and more widely accepted by people, the ideology of urban
planning has also undergone tremendous changes. Sustainable land resource management
has also been promoted to the strategic height of the country by countries worldwide.
Especially since the 1990s, this kind of change has been clearly manifested, and some
new urban planning ideas and urban land use ideas have appeared. For example, the
United States of America is facing the social, economic, and political problems caused
by land use. Thus, the USA tries to improve land management, especially reforming
planning regulations. It is hoped that the legal function of planning as a weapon to deal
with land development issues has become an issue that academia and government are
concerned about.
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Table 2. Benchmark regression results.

Variables (1)
OLS

(2)
FE

(3)
D-K

(4)
GMM

(5)
Drop Extremum

(6)
2SLS

Liu 1.209 ***
(−3.61)

1.321 ***
(4.34)

1.514 ***
(5.17)

1.412 ***
(3.84)

1.732 ***
(4.70)

1.318 ***
(4.68)

GDP 0.183 ***
(6.45)

0.246 ***
(6.54)

0.287 ***
(9.73)

0.203 ***
(8.08)

0.262 ***
(9.76)

Gpp 0.230 ***
(4.09)

0.322 ***
(4.26)

0.166 ***
(5.52)

0.241 ***
(5.38)

0.231 ***
(4.90)

Ssr −2.152 ***
(−6.54)

−2.733 ***
(−6.29)

−2.249 ***
(−6.16)

−1.875 ***
(−5.27)

−2.522 ***
(−6.34)

Tsr 3.367 ***
(10.62)

3.268 ***
(11.53)

2.339 ***
(9.42)

3.385 ***
(8.33)

2.670 ***
(9.68)

Fdi −0.211
(−1.09)

−0.308
(−1.17)

−0.084
(−1.20)

−0.107
(−0.99)

−0.151 ***
(−1.19)

Pat −0.130
(−0.49)

−0.087
(−0.50)

−0.084
(−0.49)

−0.116
(−0.33)

−0.074
(−0.44)

Ine 0.122 ***
(6.16)

0.122 ***
(5.86)

0.103 ***
(4.93)

0.094 ***
(5.09)

0.116 ***
(4.49)

Time × Individual fixed effect Control Control Control Control Control Control

Constant 1.215 ***
(11.04)

1.192 ***
(3.83)

1.052 ***
(3.41)

0.656 ***
(3.68)

1.248 ***
(−3.13)

1.319 ***
(−4.21)

R2 0.2638 0.7942 0.7942 0.7181 0.5654 0.8013
Sample size 2800 2800 2800 1960 2520 2800

Note: *, **, and *** represent significant at the 10%, 5%, and 1% levels, respectively, and the hypothesis test
statistics are in parentheses.

For the control variables, it can be found that: (1) the increase in GDP and GDP per
capita can significantly improve energy efficiency, and the reason is that with the growth
of the economy, people’s demand for energy saving, emission reduction and a green and
low-carbon lifestyle is increasing. In addition, the industrial structure has been shifting
to cleaner production with economic growth, which has caused an increase in energy
efficiency. (2) The increase in the proportion of the tertiary industry will help improve
energy efficiency, and the decline in the proportion of agriculture will also help improve
energy efficiency. Therefore, we can find that, based on paying attention to the carbon
emissions caused by industry, we should pay attention to the impact of agriculture on
carbon emissions and the impact of reduced energy efficiency. (3) The increase in the degree
of opening up will not affect energy efficiency. The reason is that although opening up to
the outside world can help green technology progress, developed countries may transfer
backward, and energy-intensive industries may transfer to China, which is not conducive to
energy efficiency. (4) Innovation efficiency significantly enhances energy efficiency, which is
similar to the results of Ke et al. (2021) that innovation efficiency can reduce the ecological
footprint, so this article will not repeat it.

Based on Equation (5), Table 3 shows the regression based on the eastern, central,
western and northeastern regions. China’s eastern, central and western regions have
different levels of economic development and ecological civilization construction, and the
development goals of green finance should also be formulated from different angles. The
eastern region has a more developed economy, a more mature capital operation, and a
more complete policy environment. Green finance projects choose to invest and operate in
the eastern region. Under the action of mature systems and mechanisms, they can achieve
results in a short period of time. With the help of regional economic power, they can give
full play to the role of production factors. These advantages cannot be highlighted in
the central and western regions. For the eastern region, the improvement of the level of
intensive land use has a greater degree of promotion of energy efficiency than other sectors.
The reason is that the eastern region is the top priority of China’s economic development,
so it carries a large number of economic activities and industrial development. Therefore,
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it is necessary to strengthen land use regulation in the eastern region to avoid disorderly
expansion of land [40].

Table 3. Benchmark regression results of four regions in China.

Variables (1)
Easter

(2)
Middle

(3)
West

(4)
Northeast

Liu 1.81 ***
(4.40)

1.78 ***
(4.27)

1.75 ***
(3.30)

1.42 ***
(3.39)

GDP 0.22 ***
(−6.43)

0.19 ***
(6.68)

0.22 ***
(−9.62)

0.18 ***
(−8.53)

Gpp 0.15 ***
(−5.12)

0.17 ***
(4.97)

0.22 ***
(−5.40)

0.18 ***
(−5.68)

Ssr −2.01 ***
(−4.48)

−1.761 ***
(−4.69)

−2.20 ***
(−5.77)

−2.00***
(−5.83)

Tsr 2.46 ***
(11.63)

2.429 ***
(8.75)

2.41 ***
(9.99)

2.04 ***
(8.29)

Fdi −0.09
(−1.10)

−0.09
(−1.19)

−0.10
(−1.22)

−0.11
(−1.21)

Pat −0.08
(−0.48)

−0.09
(−0.45)

−0.08
(−0.50)

−0.10
(−0.44)

Ine −0.12 ***
(−5.90)

−0.10 ***
(−6.27)

−0.09 ***
(−6.71)

−0.09 ***
(−6.03)

Time × Individual
fixed effect Control Control Control Control

Constant 0.807 ***
(4.64)

1.122 ***
(3.29)

1.121 ***
(4.50)

1.076 ***
(4.73)

R2 0.6438 0.7017 0.8056 0.8321
Sample size 900 910 570 420

Note: *, **, and *** represent significant at the 10%, 5%, and 1% levels, respectively, and the hypothesis test
statistics are in parentheses.

The difference in regression results between the sections may be related to the differ-
ences in the degree of industrialization in different regions. The contradiction between
economic growth, scarcity of resources, and environmental damage will exist for a long
time, which will be particularly prominent in the stage of rapid industrialization and
urbanization. This result is the predicament of rapid economic growth and a manifestation
of the underdevelopment of industrial technology. Of course, this has a lot to do with
improper development. Resource and environmental problems are definitely not obstacles
that cannot be overcome in economic development. Resource and environmental problems
encountered in development cannot be solved by stopping development but can only be
solved in development.

4.2. Spatial Regression Results

Table 4 shows the regression results of the spatial model. In order to reduce the
endogenous problems caused by the omitted variables, this paper adopts the spatial
dynamic Durbin model. Based on the research results of LeSage and Pace in 2009 [41,42],
the total effect represents the average impact of X on all regions, the direct effect represents
the average impact of X on Y in this region, and the indirect effect represents the average
impact of X on Y in other regions.

It can be found that although the intensive use of land can positively promote the
energy efficiency of the region, it will lead to a decline in the energy efficiency of the sur-
rounding areas. The reason is that the intensive use of land in a particular city may cause
industries to shift to the surrounding areas. Therefore, when the intensity of environmental
regulations increases, the market can guide different regions to make decisions that suit
them. For each region, economic incentive-based environmental regulations have flexibil-
ity and incentives, which can more effectively mobilize enterprises’ subjective initiative
and enthusiasm. At the same time, it should be noted that different regions can flexibly
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choose the most suitable type of environmental regulation according to their own specific
conditions so as to achieve the purpose of protecting the environment while pursuing the
maximization of the company’s own interests. For other control variables, it can be found
that the signs of their direct effects and indirect effects are similar. Therefore, the impact
on the local area and the surrounding area are similar, and it is similar to the benchmark
regression part, so we will not repeat it in this article.

Table 4. Spatial regression results.

Durbin Model Dynamic Durbin Model
Variables Direct Effect Indirect Effect Total Effect Direct Effect Indirect Effect Total Effect

Liu 2.125 ***
(3.22)

−1.242 ***
(−4.73)

0.883 ***
(2.94)

2.784 ***
(4.96)

−1.723 ***
(−4.95)

1.061 ***
(3.52)

GDP 0.272 ***
(−6.63)

0.183 ***
(−9.06)

0.455 ***
(−3.92)

0.193 ***
(−9.46)

0.231 ***
(−6.13)

0.416 ***
(−9.29)

Gpp 0.226 ***
(−4.47)

0.211 ***
(−4.60)

0.437 ***
(−4.96)

0.147 ***
(−5.57)

0.221 ***
(−3.74)

0.368 ***
(−3.32)

Ssr −1.942 **
(−5.76)

−2.182 ***
(−4.88)

−4.124 ***
(−2.64)

−2.536 ***
(−4.69)

−1.632 ***
(−5.89)

−4.168 ***
(−4.55)

Tsr 3.011 ***
(7.48)

2.453 ***
(11.55)

5.464 *
(1.91)

3.088
(1.40)

2.760
(1.21)

5.848 **
(2.61)

Fdi −0.125
(−1.04)

−0.094
(−1.24)

−0.219 **
(−2.27)

−0.082
(−0.81)

−0.133
(−1.06)

−0.215
−1.87

Pat −0.082
(−0.44)

−0.083
(−0.44)

−0.165
(−0.89)

−0.103
(−0.51)

−0.082
(−0.39)

−0.175
−0.90

Ine −0.113 ***
(−4.30)

−0.114 ***
(−6.57)

−0.227 ***
(−5.38)

−0.123 ***
(−6.26)

−0.121 ***
(−5.34)

−0.244
−11.60

Rho 10.76 ***
(5.61)

8.78 ***
(3.63)

R2 0.7804 0.7676
likelihood

ratio 1308.272 1295.620

Note: *, **, and *** represent significant at the 10%, 5%, and 1% levels, respectively, and the hypothesis test
statistics are in parentheses.

4.3. Spatial Threshold Regression Results

We incorporated the spatial lag of intensive land use level into the threshold model.
Table 4 shows the threshold effect test. It can be found in Table 5 that whether it is a
single threshold model, a double threshold model, or a three-threshold model, they all
exist significantly. Therefore, this paper uses the above three threshold models to verify
the impact of intensive land use on energy efficiency under different spatial integration
levels [43,44].

Table 5. Threshold effect test.

F-Value p-Value 1% Critical
Value

5% Critical
Value

10% Critical
Value

Single threshold 18.937 *** 0.003 15.303 7.955 5.922
Double threshold 40.923 *** 0.007 34.044 18.871 11.045
Third thresholds −11.530 * 0.090 11.707 −6.286 −12.327

Note: *, **, and *** represent significant at the 10%, 5%, and 1% levels, respectively, and the hypothesis test
statistics are in parentheses.

The regression results of the spatial threshold model are shown in Table 6. It can be
found that with the improvement of the integration level, the impact of the intensive use
of land in a particular city on the surrounding areas has changed from a negative value
to a positive value. Only at the level of integration of the space will the intensive use of
land cause a decline in energy efficiency in the surrounding areas. Based on this, the state
and local governments should pay attention to the sharing of resources, technology, and
information in the region to realize the coordinated development of the regional economy
and strengthen joint prevention and control in the region. In turn, it will realize the benign
interaction and coordinated development of the region, give full play to the scale effect,
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synergy effect and agglomeration effect of the region, and effectively promote the coordi-
nated governance in the region. When implementing differentiated environmental policy
combinations in different regions of our country, governments at all levels should be guided
by economic means and market regulation, pay attention to encouraging governments and
enterprises to use economic incentive-type environmental regulation policies, and guide
different types of industrial enterprises to achieve clean and green development based on
the characteristics of economic incentive environmental policies. At the same time, different
regions use economic incentives and stimulus measures to promote the transformation and
upgrading of different types of industrial enterprises as soon as possible.

Table 6. Spatial threshold effect results.

(1)
Single Threshold

(2)
Double Threshold

(3)
Third Thresholds

W * Liu

Threshold variable
< δ1

−0.654 **
(−2.30)

−1.125 **
(−2.02)

−1.432 *
(−1.83)

δ1 ≤ Threshold
variable < δ2

1.744 ***
(4.40)

−1.201 *
(−1.92)

−1.532
(−1.39)

δ2 ≤ Threshold
variable < δ3 — 3.601 ***

(7.61)
2.565 ***

(3.07)
δ3 < Threshold

variable — — 2.278 **
(2.19)

GDP 0.272 ***
(−9.63)

0.252 ***
(−9.11)

0.233 ***
(−6.82)

Gpp 0.183 ***
(−5.37)

0.147 ***
(−5.70)

0.215 ***
(−4.10)

Ssr −1.895 ***
(−4.46)

−2.348 ***
(−5.14)

−2.394 ***
(−6.65)

Tsr 3.273 ***
(8.81)

2.127 ***
(11.87)

2.034 ***
(7.88)

Fdi −0.712
(−1.09)

−0.096
(−1.04)

−0.115
(−1.20)

Pat −0.170
(−0.37)

−0.047
(−0.34)

−0.130
(−0.54)

Ine −0.11 ***
(−5.05)

−0.09 ***
(−6.65)

−0.10 ***
(−6.43)

Time fixed Control Control Control
Individual fixed Control Control Control

Constant 0.692 ***
(3.98)

0.781 ***
(6.04)

0.882 ***
(5.72)

R2 0.7348 0.7725 0.7803
Sample size 3800 3800 3800

δ1 0.1304 0.1475 0.1477
δ2 — 0.2843 0.2628
δ3 — — 0.3891

Note: *, **, and *** represent significant at the 10%, 5%, and 1% levels, respectively, and the hypothesis test
statistics are in parentheses.

Spatial integration is conducive to improving the marketization of resources and
environmental factors and the allocation efficiency of resources and environmental factors.
For example, the trading market of pollution emission rights will form incentives for
enterprises to reduce emissions. Market integration can reduce the transaction cost of
environmental protection technology, facilitate the promotion and application of various
energy saving and emission reduction technologies, promote the spillover of production
technology between regions, narrow the gap of environmental protection technology
between regions, and narrow the gap of regional pollution emissions. The integration
of infrastructure and public services will improve the sharing and efficiency of public
resources and reduce energy consumption and emissions.

5. Discussions

As the land use change has been the second largest factor contributing to the increase
in global atmospheric carbon dioxide, more and more scholars are considering the need to
emphasize ecological and environmental protection or the coordinated development of the
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two in the process of intensive land use. In the meanwhile, energy efficiency, which plays a
vital role in sustainable development of economy, has been the hot topic of research in the
relevant field. On this basis, the relationship between land use and energy efficiency has
also been concerned recently.

Existing studies have mostly focused on the economic effects brought about by in-
tensive land use and its impact on the environment, and few have directly explored the
relationship between intensive land use and energy efficiency from a spatial perspec-
tive [45–48]. However, this paper takes prefecture-level and city-level data from 2009 to
2018 as the research object and examines the complex impact of intensive land use on
energy efficiency from a spatial perspective, which will help China realize the development
of a larger-scale urban green economy, and has certain research value and application sig-
nificance. Additionally, this paper has the following limitations, which can be improved in
further study: first, this paper studies the impact of intensive land use on energy efficiency
based on urban data in China. However, whether this proposition is also applicable in
other countries deserves further robustness test. Secondly, this paper uses the DEA method
to quantify energy efficiency, which can be quantified in a variety of ways in the future to
improve the credibility of the proposition. Thirdly, although the improvement in energy
efficiency mitigated the trend of carbon emission growth to some extent, it did not reduce
the trend of total increase in carbon emission scale. To what extent the contribution of land
intensive use to energy efficiency can continuously reduce carbon emissions is a direction
we can study in the future. Finally, this paper does not attempt to use a general equilibrium
framework for analysis, so it can be attempted in future studies.

6. Conclusions

In order to examines the relationship between intensive land use and urban energy
efficiency, contributing to the sustainable development of economy, based on the panel
data from 2009–2018, this paper first uses the least squares regression model to examine
whether intensive land use contributes to energy efficiency, and then the spatial Durbin
model and the spatial threshold model are used to empirically examine the spatial effects
of intensive land use on energy efficiency and the changes that occur with the process of
spatial integration. The results of our research show that: (1) the intensive use of land can
contribute to the energy efficiency positively, as each percentage point increase in the level
of intensive land use will increase energy efficiency by 1.3 percentage points. (2) Although
the intensive use of land can improve the local energy efficiency of the region, it will have
a negative effect on energy efficiency of the surrounding areas because of the transfer
of energy-intensive industries to the surrounding areas. Space integration can solve this
problem to a large extent. (3) The negative impact of intensive use of land on the energy
efficiency of surrounding cities will be weakened when the level of integration of the city
and its surrounding areas raises.
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