

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

MONO, DI and TRI SSRs data extraction & storage from 1403 virus genomes with next generation retrieval mechanism

K.V.S.S.R. Murthy^{a,*}, K.V.V. Satyanarayana^b

^a Department of CSE, SRKR Engineering College, Bhimavaram, AP 534204, India
^b Department of CSE, K L University, Vaddeswaram, Guntur, AP 522502, India

ARTICLE INFO

Article history: Received 24 April 2017 Received in revised form 19 May 2017 Accepted 1 June 2017 Available online 10 June 2017

ABSTRACT

Now a day's SSRs occupy the dominant role in different areas of bio-informatics like new virus identification, DNA finger printing, paternity & maternity identification, disease identification, future disease expectations and possibilities etc., Due to their wide applications in various fields and their significance, SSRs have been the area of interest for many researchers. In the SSRs extraction, retrieval algorithms are used; if retrieval algorithms quality is improved then automatically SSRs extraction system will achieve the most relevant results. For this retrieval purpose in this paper a new retrieval mechanism is proposed which will extracted the MONO, DI and TRI patterns. To extract the MONO, DI and TRI patterns using proposed retrieval mechanism in this paper, DNA sequence of 1403 virus genome data sets are considered and different MONO, DI and TRI patterns are searched in the data genome sequence file. The proposed Next Generation Sequencing (NGS) retrieval mechanism extracted the MONO, DI and TRI patterns without missing anything. It is observed that the retrieval mechanism reduces the unnecessary comparisons. Finally the extracted SSRs provide the useful, single view and useful resource to researchers.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.

E-mail address: kvssrmurthy75@gmail.com (K.V.S.S.R. Murthy).

http://dx.doi.org/10.1016/j.dib.2017.06.008

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications '	Table
------------------	-------

Subject area	Bio-informatics
More specific subject area	Genomes of VIRUSES
Type of data	Tables, figures
How data was acquired	VIRUS SSR markers extraction with NGS string matching
Data format	Analyzed
Experimental factors	MONO, DI and TRI SSRs: <i>A,C,G,T,AC,AG,,ACC,</i> were targeted. NGS retrieval process is applied on genomes VIRUSES. MONO, DI and TRI SSR markers to be used in various detection purposes are extracted with this approach.
Experimental features	Each of the MONO, DI and TRI markers are extracted from genomes of VIRU-SES. All the SSRs showed the 1,2,3-bp in allele size. These differences showed that there are some polymorphisms among the genomes to the number of SSR repeats.
Data source location	BHIMAVARAM, INDIA
Data accessibility	The data is provided with this article

Value of the data

- Data sets obtained from genomes of VIRUSES with NGS retrieval process have shown the high specificity.
- These data suggest that SSR extraction is an useful method for providing information for various applications related to studies in VIRUSES.
- Access to the raw sequencing data in VIRUSES allows researchers to perform further bioinformatics analysis based on their own computational algorithms.

1. Data

Database has been developed using MySQL. The information stored in the database includes virus names, genome id, A,C,G,T percentages, tract length, category, motif types (MONO, DI and TRI), the sequences of the motifs and frequencies of occurrence in the entire genome. The actual process of database is shown in Fig. 1.

virus_name	genome_id	category1	category2	category3	category4	category5
Carrot_torradovirus_1_uid267137	NC_025480	Carrot torradovirus	Viruses	ssRNA viruses	ssRNA positive- strand viruses, no DNA	stage
Casphalia_extranea_densovirus_uid14222	NC_004288	Casphalia extranea	Viruses	ssDNA viruses	Parvoviridae	Densovirinae
Cassava_associated_cicular_DNA_virus_uid242943	NC_023844	Cassava associated	Viruses	ssDNA viruses	unclassified ssDNA viruses.	NULL
Cassava_brown_streak_virus_uid38085	NC_012698	Cassava brown	Viruses	ssRNA viruses	ssRNA positive- strand viruses, no DNA	stage
Cassava_common_mosaic_virus_uid14705	NC_001658	Cassava common	Viruses	ssRNA viruses	ssRNA positive- strand viruses, no DNA	stage
Cassava_Ivorian_bacilliform_virus_uid267136	NC_025484	Cassava Ivorian	Viruses	ssRNA viruses	ssRNA positive- strand viruses, no DNA	stage
Cassava_mosaic_Madagascar_alphasatellite_uid175666	NC_018628	Cassava mosaic	Viruses	Satellites	Satellite Nucleic	Single stranded DNA

Fig. 1. virus_category table actual data.

Table 1 virus_category.

Type Collation virus_name genome_id varchar(100) varchar(20) category1 varchar(20) category2 varchar(20)		
virus_namevarchar(100)genome_idvarchar(20)category1varchar(20)category2varchar(20)	Туре	Collation
	virus_name genome_id category1 category2 -	varchar(100) varchar(20) varchar(20) varchar(20) -

Table	2
virus_	category.

Туре	Collation
<u>virus_name</u> <u>genome id</u> A_count_and_per C_count_and_per G_count_and_per T_count_and_per tract_length category	varchar(100) varchar(20) varchar(20) varchar(20) varchar(20) varchar(20) int(15) varchar(20)

1.1. Structure of the database

In this paper, we consider three tables from database and changed the structure to our own format so that additional analysis can be done easily. They are

- 1. virus_category
- 2. virus_acgt_count

3. virus_ssrs

1.1.1. Virus category

This table has the information related to virus categories from virus files. The structure is as shown in the Table 1 and actual data was shown in Fig. 1.

1.1.2. Virus ACGT count

This table has the information related to virus A,C,G and T count, its percentage, tract length. The structure is as shown in the Table 2 and actual data was shown in Fig. 2.

1.1.3. Virus SSRs

This table has the information related to virus_name, genome_id, motif, frequency and its position. The structure is as shown in the Table 3 and actual data was shown in Fig. 3.

1.2. Description

In this section we give detailed description of the 1403 virus genomes

1.2.1. Category wise description

We used a total of 1403 virus genome sequences. We categorized these genomes as shown in the Table A1(presented in Appendix A). From this categorization (according to Table A1), we observe that virus genomes are further sub grouped into 49 categories. They are Amalgaviridae, Ampullaviridae, Anelloviridae etc., Among the 1403 genomes, 566 genomes belong to ssRNA positive-strand viruses,

virus name	genome id	A count and per	C count and per	G count and per	T count and per	tract length	category
Euphorbia_yellow_mosaic_virus_uid36655	NC_012554	690(27.15%)	545(21.45%)	585(23.02%)	721(28.37%)	2541	Geminiviridae
Euprosterna_elaeasa_virus_uid14737	NC_003412	1367(24.34%)	1335(23.77%)	1596(28.42%)	1318(23.47%)	5616	ssRNA positive-strand viruses, no DNA
European_bat_lyssavirus_1_uid19757	NC_009527	3409(28.9%)	2527(21.42%)	2753(23.34%)	3106(26.33%)	11795	ssRNA negative-strand viruses
European_brown_hare_syndrome_virus_uid15087	NC_002615	1855(25.29%)	1739(23.71%)	1890(25.77%)	1851(25.24%)	7335	ssRNA positive-strand viruses, no DNA
European_elk_papillomavirus_uld15453	NC_001524	2132(26.72%)	1787(22.4%)	2017(25.28%)	2043(25.6%)	7979	Papillomaviridae
European_mountain_ash_ringspot_associated_virus_ui	NC_013105	2547(36.71%)	1080(15.56%)	1151(16.59%)	2161(31.14%)	6939	ssRNA negative-strand viruses
Dahlia_mosaic_virus_uid175589	NC_018616	2888(37.02%)	1489(19.08%)	1448(18.56%)	1977(25.34%)	7802	Caulimoviridae
Dalechampia_chlorotic_mosaic_virus_uid176616	NC_018718	683(26.68%)	503(19.65%)	585(22.85%)	789(30.82%)	2560	Geminiviridae
Danaus_plexippus_iteravirus_uid242944	NC_023842	1725(34.96%)	997(20.21%)	997(20.21%)	1215(24.63%)	4934	Parvoviridae
Daphne_mosaic_virus_uid16794	NC_008028	2930(31.13%)	1857(19.73%)	2319(24.64%)	2305(24.49%)	9411	ssRNA positive-strand viruses, no DNA
Daphne_virus_S_uid16749	NC_008020	2373(27.55%)	1675(19.45%)	2206(25.61%)	2360(27.4%)	8614	ssRNA positive-strand viruses, no DNA
Dasheen_mosaic_virus_uid15388	NC_003537	3154(31.88%)	1952(19.73%)	2284(23.08%)	2504(25.31%)	9894	ssRNA positive-strand viruses, no DNA
Datura_leaf_distortion_virus_uid176617	NC_018717	634(24.76%)	555(21.67%)	611(23.86%)	761(29.71%)	2561	Geminiviridae
Deer_papillomavirus_uid14073	NC_001523	2158(26.14%)	1843(22.33%)	2081(25.21%)	2172(26.31%)	8254	Papillomaviridae
Deformed_wing_virus_uid14891	NC_004830	2935(29.57%)	1569(15.81%)	2230(22.47%)	3192(32.16%)	9926	ssRNA positive-strand viruses, no DNA
Dendrolimus_punctatus_densovirus_uid14546	NC_006555	1763(35.49%)	916(18.44%)	951(19.15%)	1337(26.92%)	4967	Parvoviridae
Dengue_virus_1_uid15306	NC_001477	3378(31.93%)	2212(20.91%)	2732(25.82%)	2259(21.35%)	10581	ssRNA positive-strand viruses, no DNA
Desmodium_leaf_distortion_virus_uid17991	NC_008495	617(24.9%)	544(21.95%)	575(23.2%)	742(29.94%)	2478	Geminiviridae
Diaporthe_ambigua_RNA_virus_1_uid14962	NC_001278	634(15.64%)	946(23.33%)	1224(30.19%)	1250(30.83%)	4054	ssRNA positive-strand viruses, no DNA
Diascia_yellow_mottle_virus_uid30795	NC_011086	1213(19.56%)	2334(37.65%)	1204(19.42%)	1449(23.37%)	6200	ssRNA positive-strand viruses, no DNA

Fig. 2. virus_acgt_count table actual data.

Table 3

virus_ssrs.

Туре	Collation
<u>virus_name</u>	varchar(100)
<u>genome_id</u>	varchar(20)
motif	varchar(20)
frequency	int(10)
position	int(10)

	virus_name	genome_id	motif	frequency	position
	Tianjin_totivirus_uid157251	NC_017084	A	2	3
	Tianjin_totivirus_uid157251	NC_017084	Т	2	5
	Tianjin_totivirus_uid157251	NC_017084	С	2	10
	Tianjin_totivirus_uid157251	NC_017084	G	2	13
1	Tianjin_totivirus_uid157251	NC_017084	т	2	15
l	Tianjin_totivirus_uid157251	NC_017084	А	3	24
I.	Tianjin_totivirus_uid157251	NC_017084	т	2	27
l	Tianjin_totivirus_uid157251	NC_017084	С	2	30
ı.	Tianjin_totivirus_uid157251	NC_017084	G	3	32
l	Tianjin_totivirus_uid157251	NC_017084	А	2	35
I.	Tianjin_totivirus_uid157251	NC_017084	G	3	37
I	Tianjin_totivirus_uid157251	NC_017084	С	3	40
l	Tianjin_totivirus_uid157251	NC_017084	A	2	45
l	Tianjin_totivirus_uid157251	NC_017084	С	3	51
	Tianjin_totivirus_uid157251	NC_017084	G	2	58
	Tianjin_totivirus_uid157251	NC_017084	G	2	66
	Tianjin_totivirus_uid157251	NC_017084	G	2	69
	Tianjin_totivirus_uid157251	NC_017084	А	2	72

Fig. 3.	virus	_ssrs	table	actual	data.
---------	-------	-------	-------	--------	-------

no DNA, 151 belong to ssRNA negative-strand viruses, 141 belong to Geminiviridae etc.,. From the Fig. 4, observed that ssRNA positive-strand viruses, no DNA (566), ssRNA negative-strand viruses (151), Geminiviridae (141) occupies the major role among the others.

 Table 4

 Virus genome overall frequency, MONO, DI and TRI frequencies.

FREQUENCY			
	MIN	AVG	MAX
OVERALL	1	1.2482250811894526	99
MONO	10	2.4448562907955393	99
DI	1	1.0749041913092998	9
TRI	1	1.0247784693226274	9

Fig. 5. average tract length analysis.

1.2.2. Frequency description

We extracted the overall frequency, MONO, DI and TRI frequencies from the virus_ssrs those are shown in Table 4. From these extracted information MONO has shown the max frequency that is 99, so it has high impact.

1.2.3. Virus size description

In this section, we described SSRs by executing SQL queries on virus_category for category wise counts and the results are shown in the Table A2 (presented in Appendix A). Table A2 gives a

summary of the total number of genomes categorized based on genome sizes of various virus categories. Two of the Mimiviridae genomes are found to be very high (greater than 1 Mb), 81 ssRNA negative-strand viruses and 89 ssRNA positive-strand viruses, no DNA are found to be between the 10 Kb and 50 Kb. 31 virus genomes have shown size less than < 1 Kb.

1.2.4. MIN, MAX and AVG tract length description

We did a preliminary study on the genome sizes of all viruses as shown in the Table A3 (presented in Appendix A). From the Table A3, we observed that, the smallest Mitochondrial genome is Satellite Nucleic Acids of length 216 bp whereas the largest virus genome is Mimiviridae of length 1,241,026 bp. When the average genome sizes of viruses are considered with respect to their category, it has been observed that the average lengths of Mimiviridae genomes are much higher when compared to those of Herpesvirales and Baculoviridae (Refer Fig. 5). The virus genomes of Mimiviridae are around 6 times larger than those of Herpesvirales and 7 times larger than Baculoviridae genomes.

1.2.5. MONO MOTIF description

We extract the total of 4,692,149 continues MONO, DI and TRI SSRs are extracted from 1403 genomes. Table A4 (presented in Appendix A) shown the max frequency of the MONO motifs.

1.2.6. DI MOTIF description

We extract a total of 12853740 continues DI SSRs are extracted from 1403 genomes. Table A5 (presented in Appendix A) shown the max frequency of the DI motifs.

1.2.7. TRI MOTIF description

We extract a total of 14469215 continues TRI SSRs are extracted from 1403 genomes. Table A6 (presented in Appendix A) shown the max frequency of the TRI motifs.

2. Experimental design, materials and methods

2.1. SSR extraction

Availability of next-generation sequencing techniques leads to the accessibility of genome sequences including that of organelles like virus, fungi, bacteria etc. Studying the hyper-mutating SSRs [1–6] repeats in virus genomes using Bioinformatics approach would be very interesting and informative as SSRs mining not only helps in understanding and addressing biological questions but also helps in making the best use of these repeats in various diverse applications. Earlier, few studies have attempted to analyze the distribution of SSR repeats in virus genomes but they are confined to a single or a small set of genomes. So far, there are no comprehensive reports in literature that show the distribution of microsatellite repeats in all sequenced virus genomes. In the remaining part of this study, we analyzed SSR repeats in more than 1403 virus genomes and a brief note on the distribution and frequency of these repeats has been presented.

This approach scans the input virus genome sequence file and pattern files for MONO, DI and TRI patterns to find all occurrences of these patterns within this file using next generation retrieval mechanisms [7–9]. If repeat occurs then the successive logic is applied. The successive logic means continuous occurrence of similar patterns. If the successive pattern size > 1 then the successive occurrence of pattern information is stored in the database. The process is shown in Fig. 6. The database is constructed in MySQL using JAVA.

SSR NGS retrieval algorithm has shown the detailed explanation about the Next Generation Sequencing(NGS) retrieval algorithm. It consists of five segments called I/O, Main, search, tandem repeat checking and database insertion. In input segment virus and pattern files are considered as input. In output segment, the extracted mechanism provides the number of occurrences, positions of MONO, DI and TRI patterns. In Main segment the length of file and pattern are read, for each pattern, *ngs_search, check_for_tandem_repeat and ngs_database_insertion* segments are called for entire length of input file. In search segment, the pattern is searched in the input file, if match occurs then increments the occurrence count. In tandem repeat checking segment, the different between the occurrence positions are measured, if they are equal to length of the pattern then it is considered one tandem repeat. In database insertion segment, virus name, genome id, pattern, count and position is stored in the database.

SSR NGS RETRIEVAL ALGORITHM

Input: Virus files and MONO, DI and TRI pattern files Output: The number of occurrences and the positions of the MONO, DI and TRI pattern /* Main */ $n \leftarrow T.length, m \leftarrow P.length$ 1 2 for each MONO, DI & TRI patterns 3 for $i \leftarrow 0$ to n-m do 4 begin 5 $count \leftarrow ngs_search(T,P,i,count);$ 6 tandem_repeat_count ← check_for_tandem_repeat(T,P,i,count); 7 ngs_database_insertion(P,i,tandem_repeat_count) 8 end for end for 9 /* Search */ int ngs_search(Char[] T, Char[] P, int i, int count) 18 19 begin 20 $j_1 \leftarrow P.length;$ while $(j_1 > = 0 \&\& T[i - j_1] = = P[j_1])$ 21 22 do 23 $j_1 \leftarrow j_1 - 1;$ 24 done; if $(j_1 = -1)$ 25

26	count++;
27	end if
28	return count;
29	end ngs_search;
/* Tande	m repeat checking */
30	<pre>int check_for_tandem_repeat(Char[] T, Char[] P, int i, int count)</pre>
31	begin
32	if $(diff_of_two_repeats = -P.length)$
33	<pre>tandem_repeat_count++;</pre>
34	else
35	<pre>tandem_repeat_count= tandem_repeat_count;</pre>
36	end if
37	return tandem_repeat_count;
38	end check_for_tandem_repeat;
39	/* Database insertion */
40	ngs_database_insertion(Char[] P, int i, int tandem_repeat_count)
41	begin
42	<pre>insert into virus_ssrs(virus_name, genome_id, P, tandem_repeat_count,i);</pre>
43	end ngs_database_insertion;

Appendix A

See Tables A1–A6 here

Table A1

Category wise virus genome sequences.

Amalgaviridae 4	
Ampullaviridae 1	
Anelloviridae 6	
Aumaivirus. 1	
Bacilladnavirus 4	
Baculoviridae 1	
Bicaudaviridae 1	
Birnaviridae 4	
Botybirnavirus. 1	
Caudovirales 14	ł
Caulimoviridae 34	ŀ
Chrysoviridae 2	
Circoviridae 35	5
Corticoviridae 1	
Endornaviridae 8	
Fuselloviridae 4	
Geminiviridae 141	1
Hepadnaviridae 10)
Herpesvirales 2	
Hypoviridae 3	
Inoviridae 7	
Lavidaviridae 1	
Ligamenvirales 6	
Microviridae 5	
Mimiviridae 2	
Nanoviridae 5	

Table A1 (continued)

CATEGORY	COUNT
Papanivirus.	1
Papillomaviridae	85
Partitiviridae	21
Parvoviridae	40
Polyomaviridae	39
Poxviridae	1
Reoviridae	3
Retroviridae	42
Salterprovirus	2
Satellite Nucleic Acids	75
Satellites	4
ssRNA negative-strand viruses	151
ssRNA positive-strand viruses, no DNA	566
Totiviridae	26
Turriviridae	1
unassigned ssRNA viruses	1
unclassified dsDNA phages.	1
unclassified dsDNA viruses.	2
unclassified Gemycircularvirus.	7
unclassified ssDNA viruses.	30
unclassified ssRNA viruses.	2
Total	1403

Table A2

Ligamenvirales

Virus genome sizes and their classification based on different size ranges.

Genome size range	No. of genomes
SIZE < 1 Kb	
CATEGORY	COUNT
Circoviridae	1
Nanoviridae	3
Papanivirus.	1
Partitiviridae	2
Satellite Nucleic Acids	20
ssRNA negative-strand viruses	2
ssRNA positive-strand viruses, no DNA	2
> = 1 Kb and < 2 Kb	
Category	Count
Aumaivirus.	1
Circoviridae	27
Nanoviridae	2
Partitiviridae	12
Reoviridae	1
Satellite Nucleic Acids	55
Satellites	4
ssRNA negative-strand viruses	15
ssRNA positive-strand viruses, no DNA	12
unclassified ssDNA viruses.	6
> = 10 Kb $<$ 50 Kb	
Category	Count
Ampullaviridae	1
Caudovirales	8
Endornaviridae	7
Fuselloviridae	4
Hypoviridae	1
Lavidaviridae	1

6

Table A2 (continued)

Genome size range	No. of genomes
Retroviridae	8
Salterprovirus	2
ssRNA negative-strand viruses	81
ssRNA positive-strand viruses, no DNA	89
Totiviridae	1
Turriviridae	1
unclassified dsDNA viruses.	1
unclassified ssDNA viruses.	1
> =50 Kb $<$ 100 Kb	
Category	Count
Bicaudaviridae	1
Caudovirales	2
> =100 Kb < 500 Kb	
Category	Count
Baculoviridae	1
Caudovirales	3
Herpesvirales	2
Poxviridae	1
Size > 1 Mb	
Category	Count
Mimiviridae	2

Table A3

Virus ggenome sizes of Mitochondria category wise.

Category	Smallest	Largest	Average
Amalgaviridae	3110	3387	3314.0000
Ampullaviridae	23471	23471	23,471.0000
Anelloviridae	2109	3720	2782.8333
Aumaivirus.	1151	1151	1151.0000
Bacilladnavirus	5472	5914	5668.2500
Baculoviridae	152844	152844	152,844.0000
Bicaudaviridae	61833	61833	61,833.0000
Birnaviridae	2744	3380	3203.5000
Botybirnavirus.	6126	6126	6126.0000
Caudovirales	7203	165318	58,854.2857
Caulimoviridae	6845	9073	7683.9706
Chrysoviridae	2860	3203	3031.5000
Circoviridae	846	2883	1920.8286
Corticoviridae	9935	9935	9935.0000
Endornaviridae	9620	17236	13,734.1250
Fuselloviridae	14634	23840	17,159.0000
Geminiviridae	2456	3588	2664.9504
Hepadnaviridae	2974	3328	3115.7000
Herpesvirales	131808	208496	170,152.0000
Hypoviridae	9406	12552	10,526.0000
Inoviridae	5721	8339	6957.4286
Lavidaviridae	17029	17029	17,029.0000
Ligamenvirales	24302	40582	36,293.8333
Microviridae	4070	6360	5200.4000
Mimiviridae	1006757	1241026	1,123,891.5000
Nanoviridae	965	1083	1010.2000
null	928	9877	4157.1429
Papanivirus.	814	814	814.0000

Table A3 (continued)

Category	Smallest	Largest	Average
Papillomaviridae	6919	8484	7556.4353
Partitiviridae	303	2315	1730.7143
Parvoviridae	3726	6243	5048.6000
Polyomaviridae	4629	6130	5056.7692
Poxviridae	142509	142509	142,509.0000
Reoviridae	1646	2752	2333.0000
Retroviridae	3120	13056	8384.5238
Salterprovirus	14255	15837	15,046.0000
Satellite Nucleic Acids	216	1457	1127.6133
Satellites	1326	1342	1335.2500
ssRNA negative-strand viruses	800	18688	8945.1523
ssRNA positive-strand viruses, no DNA	944	19901	7476.2845
Totiviridae	2066	11394	5663.6538
Turriviridae	16382	16382	16,382.0000
unassigned ssRNA viruses	4312	4312	4312.0000
unclassified dsDNA phages.	8059	8059	8059.0000
unclassified dsDNA viruses.	7966	14914	11,440.0000
unclassified Gemycircularvirus.	2059	2218	2139.1429
unclassified ssDNA viruses.	1788	10503	3369.4333
unclassified ssRNA viruses.	5916	6195	6055.5000

Table A4 MONO SSRs.

VIRUS_NAME	genome_id	MOTIF	MAX FREQUENCY	Number of times occurred
Feline_astrovirus_2_uid218014	NC_022249	G A	99 9	1 313
Abalone_herpesvirus_Victoria_AUS_2009_uid177933	NC_018874	А	9	3
Eupatorium_yellow_vein_virus_satellite_DNA_beta_ui	NC_004515	Α	9	3
Hedyotis_uncinella_yellow_mosaic_betasatellite_uid	NC_023015	А	9	2
Honeysuckle_yellow_vein_mosaic_disease_associated	NC_009571	А	9	2
Malvastrum_yellow_mosaic_virus_satellite_DNA_beta	NC_ 008560	А	9	2
Mamestra_configurata_NPV_A_uid14168	NC_ 003529	A	9	4
Megavirus_chiliensis_uid74349	NC_016072	А	9	118
Moumouvirus_uid186430	NC_020104	А	9	71
		С	9	57
Abalone_herpesvirus_Victoria_AUS_2009_uid177933	NC_018874	С	9	2
Canine_papillomavirus4_uid28243	NC_010226	С	9	2
Feline_leukemia_virus_uid14686	NC_001940	С	9	7
Potato_mop_top_virus_uid14789	NC_003723	С	9	3
Tolypocladium_cylindrosporum_virus_1_uid61451	NC_014823	С	9	2
Trichechus_manatus_latirostris_papillomavirus_2_ui	NC_016898	С	9	2
		Т	9	268
Trematomus_polyomavirus_1_uid282773	NC_ 026944	Т	9	2
Canine_oral_papillomavirus_uid14326	NC_001619	Т	9	2
Chaetoceros_lorenzianus_DNA_Virus_uid63565	NC_015211	Т	9	2
Citrus_chlorotic_dwarf_associated_virus_uid170854	NC_018151	Т	9	2
Ferret_papillomavirus_uid218024	NC_022253	Т	9	2
Megavirus_chiliensis_uid74349	NC_016072	Т	9	115
Mamestra_configurata_NPV_A_uid14168	NC_ 003529	Т	9	4
Moumouvirus_uid186430	NC_020104	Т	9	78
Abalone hernesvirus Victoria AUS 2009 uid177933	NC 018874	Т	9	2

Table A5
DI SSRs.

VIRUS_NAME	genome_id	MOTIF	MAX FREQUENCY	Number of times occurred
		AC	9	1
Sauropus_leaf_curl_disease_associated_DNA_beta_uid	NC_018671	AC AG	9 7	1 1
Vanilla_distortion_mosaic_virus_uid263828	NC_025250	AG AT	7 9	1 2
Moumouvirus_uid186430 Zalophus_californianus_papillomavirus_1_uid65277	NC_020104 NC_015325	AT CG CT	9 7 7	2 1 3
Baboon_endogenous_virus_M7_uid222253 Cowpea_mosaic_virus_uid15283	NC_022517 NC_003549	CT CT CA	7 7 9	2 1 1
Sauropus_leaf_curl_disease_associated_DNA_beta_uid	NC_018671	CA GT	9 8	1 3
Spleen_focus_forming_virus_uid14641 Norway_rat_hepacivirus_1_uid267736 Human_papillomavirus_type_26_uid15507	NC_001500 NC_025672 NC_001583	GT GT GT GA	8 8 6	1 1 1 2
Vanilla_distortion_mosaic_virus_uid263828 Oat_golden_stripe_virus_uid15093	NC_025250 NC_002358	GA GA GC	6 6 6	1 1 1
Zalophus_californianus_papillomavirus_1_uid65277	NC_015325	GC TA	6 9	1 1
Moumouvirus_uid186430	NC_020104	TA TC	9 7	1 1
Cowpea_mosaic_virus_uid15283	NC_003549	TC TG	7 NULL	1 NULL

Table A6

TRI SSRs.

VIRUS_NAME	genome_id	MOTIF	MAX FREQUENCY	Number of times occurred
		AAC	7	1
Penicillium_chrysogenum_virus_uid16141	NC_007540	AAC	7	1
Santeuil_nodavirus_uid62547	NC_015069	AAG	6	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	AAT	7	1
Penicillium_chrysogenum_virus_uid16141	NC_007540	ACA	7	1
		ACC	4	16
Zamilon_virophage_uid230580	NC_022990	ACC	4	1
-				
Human_papillomavirus_type_49_uid15455	NC_001591	ACC	4	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	ACG	5	1
Microviridae_phi_CA82_uid70009	NC_015785	ACT	6	1
Santeuil_nodavirus_uid62547	NC_015069	AGA	7	1
Ursus_maritimus_papillomavirus_1_uid29915	NC_010739	AGC	6	1
		AGG	6	4

Table A6 (continued)

VIRUS_NAME	genome_id	MOTIF	MAX FREQUENCY	Number of times occurred
Procyon_lotor_papillomavirus_1_uid15468	NC_007150	AGG	6	1
_ Epsilonpapillomavirus_1_uid14220	NC_004195	AGG	6	1
Mamestra configurata NDV A uid1/168	NC 003520	AGI	6	1
Abalana harmaguirus Victoria AUS 2000 uid177022	NC_003329	AGI	6	1
Abalolie_lierpesvirus_victoria_AOS_2009_ulu177955	NC_018874	AGI	0	1
Memoretus configurate NDV A wid14100	NC 002520	AGI	0	2
Mamestra_configurata_NPV_A_uid 14168	NC_003529	AIA	6	1
Himetobl_P_virus_uid 14801	NC_003782	AIA	6	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	AIC	9	1
		ATG	5	2
Potato_yellow_dwarf_virus_uid74995	NC_016136	ATG	5	1
Puumala_virus_uid14930	NC_005225	ATG	5	1
		ATT	4	11
Mamestra_configurata_NPV_A_uid14168 -	NC_003529	ATT	4	3
		CAA	6	2
Penicillium_chrysogenum_virus_uid16141	NC_007540	CAA	6	1
Cucumber_green_mottle_mosaic_virus_uid14681	NC_001801	CAA	6	1
		CAC	4	9
Zamilon_virophage_uid230580 _	NC_022990	CAC	4	1
Magnaporthe oryzae chrysovirus 1 uid51685	NC 014465	CAC	4	1
wagnaportite_oryzae_ciirysovirus_1_uus1005	NC_014405	CAG	6	3
Ursus_maritimus_papillomavirus_1_uid29915	NC_010739	CAG	6	1
Mamestra configurata NPV A uid14168	NC 003529	CAG	6	1
Mamestra_configurata NPV A uid14168	NC 003529	CAT	8	1
Mamestra_configurata_NPV_A_uid14168	NC 003529	САТ	8	1
Wallestra_colligurata_IVI v_//_ulu14100	NC_005525		4	1
Zamilan vironhaga vid220580	NC 022000	CCA	4	13
	NC_022990	CCA	4	I
Abalone_herpesvirus_Victoria_AUS_2009_uid177933	NC_018874	CCA	4	1
		CCG	4	5
Phlebiopsis_gigantea_mycovirus_dsRNA_1_uid46855	NC_013999	CCG	4	1
Halastavi arva RNA virus uid77030	NC 016418	CCC	4	1
	NC_010418	CCT	4	2
Curiopopolis virus vid264020	NC 025254	CCT	6	J 1
-	NC_025554	CC1	0	I
Abalone_herpesvirus_Victoria_AUS_2009_uid177933	NC_018874	CCT	6	1
		CGA	5	2
Mamestra_configurata_NPV_A_uid14168	NC_003529	CGA	5	1
Human_papillomavirus_109_uid36519	NC_012485	CGA	5	1
		CGC	4	9
Phlebiopsis_gigantea_mycovirus_dsRNA_1_uid46855	NC_013999	CGC	4	1
- Horseshoe_bat_hepatitis_B_virus_uid253463	NC_024444	CGC	4	1
		CGG	4	6
Woolly_monkey_sarcoma_virus_uid19547	NC_009424	CGG	4	1
- Abalana harnesvirus Victoria AUS 2000 uid 177022	NC 019974	CCC	1	1
Mamorita configurata NDV A wid14100	NC 002520	CGG	т С	1
Minestra_configurata_NPV_A_UI014168	INC_003529	CGI	0	1
wicroviridae_phi_CA82_uid/0009	INC_015785	CIA	0	1
wamestra_configurata_NPV_A_uid14168	INC_003529	CIC	/	1
		CTG	4	9
Saguaro_cactus_virus_uid14981 -	NC_001780	CTG	4	1
Abalone_herpesvirus_Victoria_AUS_2009_uid177933	NC_018874	CTG	4	1
Abalone herpesvirus Victoria AUS 2009 uid177933	NC_018874	CTT	7	1

Table A6 (continued)

VIRUS_NAME	genome_id	MOTIF	MAX FREQUENCY	Number of times occurred
Santeuil_nodavirus_uid62547	NC_015069	GAA	6	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	GAC	5 5	2
Procyon_lotor_papillomavirus_1_uid15468	NC_007150	GAG GAG	/ 7	3 1
- Crocuta_papillomavirus_1_uid174774	NC_018575	GAG	7	1
December views widt 4020	NC 005335	GAT	5	2
Acidianus bottlo shanod virus uid10605	NC_005225	GAI	5	
Actualitus_bottle_sitaped_virus_utd19605	NC_009452	CCA	5	1
orsus_martinus_papinomavirus_1_uu23315	NC_010755	GCC	4	7
Raphanus_sativus_cryptic_virus_1_uid17127	NC_008190	GCC	4	1
- Mycobacterionbage Velveteen uid215123	NC 022060	CCC	4	1
Halorubrum pleomorphic virus 3 uid157259	NC 017088	GCG	5	1
.a.s.asrum_preomorphic_virus_s_utris/255	110_01/000	GCT	5	3
Saguaro cactus virus uid14981	NC 001780	GCT	5	1
_	0		-	
Mamestra_configurata_NPV_A_uid14168	NC_003529	GCT	5	1
		GGA	6	5
Procyon_lotor_papillomavirus_1_uid15468 _	NC_007150	GGA	6	1
Human_papillomavirus_type_103_uid17119	NC_008188	GGA	6	1
Halorubrum_pleomorphic_virus_3_uid157259	NC_017088	GGC	4	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	GGT	5	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	GTC	6	1
		GTG	4	7
Periplaneta_fuliginosa_densovirus_uid14091 -	NC_000936	GTG	4	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	GTG	4	1
		GTT	5	3
Cherry_rasp_leaf_virus_uid15131 -	NC_006271	GTT	5	1
Ovine_enzootic_nasal_tumour_virus_uid15410	NC_007015	GTT	5	1
		TAA	6	2
Mamestra_configurata_NPV_A_uid14168	NC_003529	TAA	6	1
Himetobi_P_virus_uid14801	NC_003782	TAA	6	1
Microviridae_phi_CA82_uid70009	NC_015785	TAC	6	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	TAG	5	1
		TAT	4	9
Yaba_like_disease_virus_uid14595 -	NC_002642	TAT	4	1
Human_papillomavirus_54_uid15466	NC_001676	TAT	4	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	TCA	8	1
-		TCC	6	4
Curionopolis_virus_uid264939 _	NC_025354	TCC	6	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	TCC	6	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	TCG	6	1
		TCT	5	3
Mamestra_configurata_NPV_A_uid14168 _	NC_003529	TCT	5	1
Nyamanini_virus_uid38109	NC_012703	TCT	5	1
		TGA	5	2
Puumala_virus_uid14930	NC_005225	TGA	5	1
Cycas_necrotic_stunt_virus_uid15397	NC_003791	TGA	5	1
		TGC	5	2
Chicken_gallivirus_1_uid259980	NC_024770	TGC	5	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	TGC	5	1
		TGG	4	12

Table A6 (continued)

VIRUS_NAME	genome_id	MOTIF	MAX FREQUENCY	Number of times occurred
Peanut_clump_virus_uid14776 -	NC_003668	TGG	4	1
Acinetobacter_bacteriophage_AP22_uid167576	NC_017984	TGG	4	1
		TGT	5	2
Cherry_rasp_leaf_virus_uid15131	NC_006271	TGT	5	1
Ovine_enzootic_nasal_tumour_virus_uid15410	NC_007015	TGT	5	1
		TTA	5	2
Walleye_dermal_sarcoma_virus_uid14718	NC_001867	TTA	5	1
Mamestra_configurata_NPV_A_uid14168	NC_003529	TTA	5	1
		TTC	5	4
Squash_leaf_curl_China_virusBuid15591	NC_007339	TTC	5	1
-				
Nyamanini_virus_uid38109	NC_012703	TTC	5	1
		TTG	NULL	

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.06.008.

References

- L. Liu, M. Qin, L. Yang, Z. Song, L. Luo, H. Bao, Z. Ma, Z. Zhou, J. Xu, A genome-wide analysis of simple sequence repeats in Apis cerana and its development as polymorphism markers, Gene (2017) 53–59.
- [2] R. Paliwal, R. Kumar, D.R. Choudhury, A.K. Singh, S. Kumar, A. Kumar, K.C. Bhatt, R. Singh, A.K. Mahato, N.K. Singh, R. Singh, Development of genomic simple sequence repeats (g-SSR) markers in Tinospora cordifolia and their application in diversity analyses, Plant Gene (2016) 118–125.
- [3] B.M. Ghebreslassie, S.M. Githiri, T. Mehari, R.W. Kasili, M. Ghislain, E. Magembe, Genetic diversity assessment of farmers' and improved potato (Solanum tuberosum) cultivars from Eritrea using simple sequence repeat (SSR) markers, Afr. J. Biotechnol. (2016) 1883–1891.
- [4] A.A. Rao, K.V. Satyanarayana, G. Lavanya, U.N. Das, Computational biological analysis reveals a role for nitric oxide synthase and adiponectin in the pathobiology of insulin resistance syndrome and coronary artery disease, Curr. Nutr. Food Sci. 4 (3) (2008) 155–157.
- [5] G.V. Padma Raju, P.S. Rao, C. Someswara Rao, V.C. Sekhar, S. Mudunuri, Microsatellite repeats in mitochondrial genomes: a bioinformatic analysis, in: Proceedings of the International Conference on Advanced Research in Computer Science Engineering & Technology, 2015, ACM, pp. 1–5.
- [6] Chinta Someswara Rao, Dr. S. Viswanadha Raju, Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures, Genom. Data 7 (2016) 202–209.
- [7] Chinta Someswara Rao, Dr. S. Viswanadha Raju, Next Generation Sequencing (NGS) database for tandem repeats with multiple pattern 2°-shaft multicore string matching, Genom. Data 7 (2016) 307–317.
- [8] C. rao, S. Raju, A Novel Multi Pattern String Matching Algorithm with While Shift, in: Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, ACM, 2016, pp. 1–5.
- [9] Chinta Someswara Rao, Dr. S. Viswanadha Raju, Concurrent Information Retrieval System (IRS) for large volume of data with multiple pattern multiple (2^N) shaft parallel string matching (Springer), Ann. Data Sci. 3 (2) (2016) 175–203 (ISSN: 2198-5804).