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Amajor factor in the failure of central nervous system (CNS) axon regeneration is the formation of glial scar after the injury of CNS.
Glial scar generates a dense barrier which the regenerative axons cannot easily pass through or by. In this paper, a mathematical
model was established to explore how the regenerative axons grow along the surface of glial scar or bypass the glial scar. This
mathematical model was constructed based on the spinal cord injury (SCI) repair experiments by transplanting Schwann cells as
bridge over the glial scar.TheLattice BoltzmannMethod (LBM)was used in thismodel for three-dimensional numerical simulation.
The advantage of this model is that it provides a parallel and easily implemented algorithm and has the capability of handling
complicated boundaries. Using the simulated data, two significant conclusions were made in this study: (1) the levels of inhibitory
factors on the surface of the glial scar are the main factors affecting axon elongation and (2) when the inhibitory factor levels on the
surface of the glial scar remain constant, the longitudinal size of the glial scar has greater influence on the average rate of axon growth
than the transverse size.These results will provide theoretical guidance and reference for researchers to design efficient experiments.

1. Introduction

Spinal cord injury (SCI) is the damage to the spinal cord
that results in a loss of function such as mobility or feeling.
An injured spinal cord has a poor intrinsic capacity for
regeneration, although some functional recovery does occur.
The failure to regenerate is caused by a combination of factors,
including neuroinflammation, axonal disruption, death of
neurons, glial scar formation, the release ofmyelin-associated
inhibitory molecules, and the lack of growth promoting
molecules. It is clear that effective treatment will require a
multifaceted combination of strategies. A lot of effort has
been made to promote CNS regeneration but with only
limited success [1–6].

Trauma or disease of a nerve in a mature mammal may
result in a massive multiplication of glial cells around the
damaged region, which eventually form a dense scar. This
glial scar plays a dual role as chemical and mechanical
barriers to the axonal regeneration of injured neurons [7–
10]. Many chemical factors from glial scars have been identi-
fied, including Nogo-A, Nogo-B, Nogo-C, myelin-associated

glycoprotein, and oligodendrocyte-myelin glycoprotein, to
inhibit axonal growth [11–13]. On the other hand, the size,
shape, and hardness of the glial scars represent the mechani-
cal aspects that resist the extension of the regenerative axons.

Some experimental strategies have been employed to
improve the CNS regeneration. These strategies include (1)
complementing favorable promoting factors in CNS (such as
nerve growth factor (NGF)) [14]; (2) decreasing expression
of the inhibiting factors such as Nogo-neutralizing antibody
(IN-1) and chondroitinase ABC (Chase-ABC) [15, 16]; and (3)
repairing or reconstructing myelin. For example, transplant
of Schwann cell into the SCI site provides a permissive cellular
substrate which may enable axons to pass through the scar
area andfind their targets [17].However, experimental studies
to examine many factors simultaneously are often time-
consuming, costly, and laborious. The optimal concentration
ratios of various factors for growth of regenerating axons
in a suitable microenvironment are valuable information
for researchers in experimental design. The technologies of
mathematical modeling could provide an opportunity to elu-
cidate the ratio and distribution law of various impact factors.
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Several mathematical models have been developed to
describe axonal growth [18–25]. These models generally
consist of two parts: (1) the reaction-diffusion equation
describes the transmission of nerve factors and other guid-
ance molecules during development and (2) the axonal
“growth equation” (based on the cell chemotaxis principle)
describes the growth of axons determined by the concentra-
tion gradient of the guidancemolecules. By allowing for noise
in axonal guidance cues and randomized changes in axon
growth substrates, a stochastic component has been included
in the growth equation [19]. A previous study showed a two-
dimensional finite difference in the solution and calculation
program of “parabolic equations with a gradient term”
[23]. Another study obtained a large-scale, two-dimensional
simulation result using parallel computing [20]. One of our
previous studies used a three-dimensional finite difference
method and reported simulation result [22]. The Lattice
Boltzmann Method (LBM), a numerical method commonly
used for fluid simulation [26–29], directly describes problems
and is convenient for implementing parallel computing.
Nevertheless, these studies did not consider regenerating
axonal growth in a deprived environment.

In this study a numerical simulation method, which was
based on the experiment for the SCI repair by Schwann cell
transplantation [17], was used to explore the regenerative
axons growing along the glial scar surface. In this model,
glial scar was simplified to a rotating ellipsoid in which
circular target cells and axons were arranged around the
upper and lower part, respectively (see Figure 1). The release
rate of the regeneration inhibitors on the scar surface and
the neurotrophic factors (NTFs) at the target and the size
and the shape of the glial scars were controlled in the
simulation, respectively. Concentration gradients of three
types of diffusible molecules were tested in this model: (1)
Type 1 factors, that is, attractive molecules that are released
by the target tissues after nerve injury (such as neurotrophic
factor-1 and NGF); (2) Type 2 factors, that is, chondroitin
sulfate proteoglycans (CSPGs) that are not neutralized by
the Chase-ABC on the surface of glial scar; and (3) Type
3 factors, that is, a variety of growth promoting molecules
produced by the transplanted Schwann cells on the surface
of glial scar (such as laminin, fibronectin, and neural cell
adhesion molecules). Type 1 factors played a leading role in
axonal regeneration. Types 2 and 3 factors exhibited balanced
and coordinated effects. In addition, cross talk between
Type 1 factors and Type 2/3 factors took place through
signal transduction [30]. Concentrations of all three types of
molecules were denoted as 𝜌

1
, 𝜌
2
, and 𝜌

3
. Coupled reaction-

diffusion equations represented concentrations of these three
types of molecules varying in space and time, in which they
were key parameters coaffecting the growth rate and whether
regenerating axons grew or stopped elongating. The “growth
equation” of regenerating axons was designed using gradient
parameters according to the cell chemotaxis principle. Using
a mouse model of spinal cord transaction [4, 5, 17, 31], a
boundary condition was established. Numerical simulations
were performed using the three-dimensional LBM to deter-
mine the quantitative relationship between growth velocity
of regenerating axons and concentrations of promoters and

inhibitors in a deprived environment. This study provides a
theoretical reference for designing the related experiments.

2. Materials and Methods

2.1. Evolution Equations for the Concentration of Promot-
ing and Inhibiting Factors in Microenvironment. From the
physical and mathematical point of view, three types of
diffusible molecules after SCI, the same as nervous system in
developmental stages, should be subjected to the first law of
Fick [18, 20–22]. The equations are
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Expressions (1)–(3) are multicomponent nonstationary
reaction-diffusion equations with nonlinear coupling point
sources, where ∇2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 + 𝜕2/𝜕𝑧2 (the Laplace
operator) and r = 𝑥i+𝑦j+𝑧k (𝑥,𝑦, and 𝑧 are coordinates, and
i, j, and k are unit vectors in Cartesian coordinate system). 𝜌

1
,

𝜌
2
, and 𝜌

3
, the function for diffusible molecules at position

r (𝜇m) at time 𝑡 (s), are the concentration of Types 1, 2, and
3 of diffusible molecules, respectively. 𝐷
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corresponding diffusion coefficients (constants, 𝜇m2s−1).
𝑘
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are the linear attenuation coefficients

(constants, s−1). All ∑s are treated as point sources, and 𝛿(r)
is the Dirac delta function. 𝑁
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the target cells and axons, respectively. r𝑇
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(usually nonlinear) in several specific forms to reflect
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, a dimensionless quantity, is the associativity formula

of receptor-ligand. 𝑅
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and (1 − 𝑅

𝐿
) reflect the competitive

relationship of succeeding each other between enhancing
and inhibitory factors. 𝐾

𝑑
is the dissociation constant.

2.2. Equations for Axonal Growth. The movement of an
axonal growth cone is chemotactic and biased towards
(attractive chemotactic) or away (repulsive chemotactic)
from the chemical source [32, 33]. The attractive or repulsive
action on a growth cone is referred to as a chemotactic force,
which is proportional to the gradient of diffusible molecules
from the chemical source. If a growth cone is regarded
as a particle, the growth rate of the axon depends on the
velocity of the particle. Since axonal growth is very slow
(∼0.01–0.05 𝜇ms−1) [32, 33], acceleration or inertia forces can
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Figure 1:The effects of the release rate of growth inhibitory factors on regenerating axons growing along glial scar (𝜂

2
= 3%, 5%, and 7%). (a) 𝜂

2

= 3%; 𝑟
𝑎

= 𝑟
𝑧

= 0.26×𝐿. When the release rate of growth inhibitory factors was relatively low (𝜂
2
= 3%), regenerating axons could successfully

navigate across the glial scar and connect to their target cells with the support of Schwann cells and the guidance of NTFs concentration
gradients of the target cells. (b) 𝜂

2
= 5%; 𝑟

𝑎
= 𝑟
𝑧

= 0.26 × 𝐿. When the release rate of growth inhibitory factors was relatively high (𝜂
2
= 5%),

some axons could grow successfully to reestablish connections with their target cells, whereas others stopped growing when they reached
halfway. (c) 𝜂

2
= 7%; 𝑟

𝑎
= 𝑟
𝑧

= 0.26 × 𝐿. All regenerating axons immediately stopped growing when they encountered the glial scar when the
release rate of growth inhibitory factors was over 7%.

be negligible. Therefore, the velocity of the growth cone is
directly proportional to the chemotactic force:
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three types ofmolecules acting on the 𝑘th growth cone at time
𝑡 (s), 𝑖 is the number of molecular types, and the variables and
parameters with subscript 𝑖 relate to the 𝑖th type ofmolecules.
We defined a dimensionless vector p
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with proportionality
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scalar quantity of difference of r𝐴
𝑘
, and 𝜌

Σ
is the sum of 𝜌
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over all three types of molecules. The scalar quantity of p
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|. In

practice, one can take |Δr𝐴
𝑘

| ∼ 20 𝜇m as an average diameter
of growth cone. Therefore, a bridge between gradient and
relative difference of concentration is established through p

𝑖

mathematically, and the corresponding proportionality con-
stant 𝜆

𝑖
is given a clear physical meaning whose dimension is

equal to [force]/[length]. Using thismodel, the rate distortion
of the growth cone is greatly reduced when the growth cone
is close to the target cells. In addition, for one-dimensional
single-component problems [34–36], p

𝑖
can be reduced to

𝑝 = (𝜕𝜌/𝜕𝑥)⋅(Δ𝑥/𝜌) or𝑝 = Δ𝜌/𝜌which is consistent with the
definition of gradient of concentration in some biophysical
areas.

2.3. The Curved Surface Equation and Condition of Glial Scar
Surface. Neural cell adhesionmolecule L1 can be synthesized
by Schwann cells [37], and this is considered to be one of
the major reasons why axons can grow firmly attached to
the surface of glial scars. In order to reflect this performance
of Schwann cells, a constraint equation, the curved surface
equation of glial scar surface, was included in the present
model.

Due to the hypothesis that glial scar is simplified to a
rotating ellipsoid, where the horizontal rotation radius 𝑟 =

√𝑥2 + 𝑦2 (𝑥, 𝑦, and 𝑧 are coordinates in Cartesian system),
the lengths of horizontal half axle and vertical half axle are
𝑟
𝑎
and 𝑟
𝑧
, respectively, and the sphere center coordinate is

𝑂(𝑥
0
, 𝑦
0
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), and the constraint equation of scar surface can

be expressed as
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Thus, the movement of regenerating axons’ growth cones
is transformed into a particle motion along the surface of the
rotation ellipsoid.The constraint relations for the velocity can
be obtained by taking the time derivative of both sides of (5);
we can get the constraint relations for the velocity:
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where 𝑉
𝑧
is the drawing speed, a longitudinal component of

velocity of an axon growing along the scar surface, and can

be used to represent a growth rate of axons. Using growth
equations (4), 𝑉
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in 𝑘th axon can be rewritten as
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Themeanings of symbols in these equations can be found
in Section 2.2.

2.4. Development of the Mathematical Model and Numerical
Methods. This paper created a mathematical model which
included (1)–(7). Based on the experiment for the SCI repair
by transplanting Schwann cells [17], a numerical simulation
method was used to explore the regenerative axons growing
along the glial scar surface.

Equations (2) and (3) revealed that the source terms
nonlinearly related to (4) through point r𝐴

𝑘
, and the point

source wasmoving. So (1)–(4) were a set of coupled nonlinear
partial differential equations which could only be solved
numerically.

The solution of thismodel contained three steps and three
methods: the first step, using the LBM [26–29] to solve for
the concentration field of various factors determined by the
reaction-diffusion equations (1)–(3); the second step, using
the central differencemethod to solve for gradients of various
factors surrounding the growth cone, and axon growth rates
would be solved when the solution for the gradient was
then inserted into (4); and, finally, using Euler’s method to
numerically integrate (4) and solving for the axonal growth
path.

The simulation was implemented in two ways: one was to
change the release rate of inhibitory factors, and the other was
to change the scar diameter. Axonal growth rates were sim-
ulated and recorded in simulations. Whether regenerating
axons could grow across or around the scar tissue to connect
with the target cells was also tested.

In nerve cells, there were reliable data in the order of
magnitude obtained from in vitro experiments as follows
[34–36]: the width of the growth cone 10–20𝜇m, the rate
of axon growth 0.01–0.05𝜇ms−1, the diffusion coefficient of
NGF𝐷

1
≈ 100 𝜇m2 s−1, and dissociation constant𝐾

𝑑
≈ 1 nM

in which NGF bind with receptors of the growth cone mem-
brane. In addition, the concentration range was at 0.01Kd–
10Kd and minimum relative concentration difference was 1%
which would work on the growth cone. However, there were
many data which had not been recognized, including point
source release rates of NGF 𝜎

1
, attenuation coefficient 𝑘

−1
,

constant growth rate of axon 𝜆
𝑖
, and viscosity coefficient 𝜇.

For the above reason, the principle that the diffusion velocity
of NGF 𝑘

−1
√𝐷
1
/𝑘
−1

should be greater than the growth
cone velocity was used to calculate attenuation coefficient
𝑘
−1
. Then, using the numerical method, how much point

source release rate was needed to generate a concentration
range of 0.01Kd–10Kd and a minimum relative concentration
difference of 1% could be calculated. How much 𝜆

𝑖
/𝜇 was
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Table 1: Comparison of the calculation results.

Release rate of growth inhibitory
factors, 𝜂

2
(%)

Average drawing speed of axons,
𝑉
𝑧 ave. (𝜇ms−1)

The number of axons successfully connected to the target
cells

3 0.0400 12
4 0.0320 10
5 0.0272 8
6 0.0148 3
7 0.0045 0

needed to achieve an axon growth of 0.01–0.05 𝜇ms−1 in this
concentration field could also be extrapolated. Parameters of
Type 2 and Type 3 factors were given by the relative ratio of
NGF.

3. Results and Discussion

3.1. Influence of Inhibitor Release Rate onAxonal Regeneration.
In this section, the following hypothesis was tested through
numerical simulation: although glial scar exists, it does not
affect the growth of regenerating axons as long as the inhibitor
level on the surface of the glial scar is below a threshold.

In the simulation, the size and shape of the glial scar
were set to a fixed value and inhibitor release rates from
their surface were varied. Growth rates of regenerating
axons and the concentration of influencing factors near
growth cones were recorded to quantitatively analyze the
relationships between them. To simplify the process, a cubical
compartment with a side length of 𝐿 = 6720 𝜇m(see Figure 1)
was considered. The central portion of the compartment
was an ellipsoidal obstruction composed of glial scar (take
spherical glial scar as an example; the radius is 0.26 × 𝐿).
The equidistant distribution of small stars at the bottom of
the sphere represented a cluster of axons regrown by the
remnants of neurons (there were 12 branched axons). Tiny
bubbles nearby the top of the sphere represented target cells
that could release the NTFs. In all cases in this section, the
time step size (dt) was one. Various values of parameters
in (1)–(3) and (4) were the characteristic diffusion distance
(√𝐷
1
/𝑘
−1

= 1000 𝜇m) of chemoattractant molecules based
mainly on NTFs and dissociation constant 𝐾

𝑑
= 1 nM. The

relative values of diffusion coefficient of each factor were
𝐷
1
/𝐷
2

= 𝐷
1
/𝐷
3

= 10/3. The relative values of attenuation
coefficient were 𝑘

−1
/𝑘
−2

= 𝑘
−1

/𝑘
−3

= 3 × 10−3. The ratios of
the growth rate coefficient of the axonal growth cones were
𝜆
1
/(−𝜆
2
) = 𝜆

1
/𝜆
3

= 1, 𝜆
1
/𝜇 = 1 𝜇ms−1. The ratio of the

basic release rate of Type 1 factors was 𝜎
1

= 6 × 10−3 𝜇Ms−1.
The ratios of the basic release rate of Type 2 and Type 3
factors (release ratio) were 𝜂

2
= 𝜎
20

/𝜎
1
, 𝜂
3

= 𝜎
30

/𝜎
1
, and

𝜂
3

= 3%. The values of these parameter were chosen based
on the previous work [34–36] and calculations discussed in
Section 2.4.

From Figure 2 and Table 1, it is clear that the average
drawing speed of axons (𝑉

𝑧𝑘
defined by (7)) decreased

gradually with the increase of the release rate of growth
inhibitory factors. When 𝜂

2
was 3%, all axons were success-

fully connected to their target cells (see Figure 1(a)). So when
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Figure 2: The trend of changes in the average drawing speed of
axons with changes in the release rate of growth inhibitory factors
(𝜂
2
). The average drawing speed of axons decreases with increase in

the value of 𝜂
2
.

𝜂
2
was less than 3%, inhibitory factor did not affect axonal

regeneration along the glial scar. When 𝜂
2
was at 4%, 5%,

or 6%, the number of axons successfully connected to the
target cell gradually reduced and the average drawing speed of
axons slowed significantly (see Figure 1(b)). No axons could
regenerate when 𝜂

2
was equal to 7% (see Figure 1(c) and

Table 1).These results showed that Type 2 factorwas increased
gradually and making a greater impact to hinder axonal
regeneration with the increase value of 𝜂

2
when diffusion

coefficients, dissipation coefficients, and other parameters
remained unchanged.

3.2. Influence of Size and Shape of Glial Scar on Axonal
Regeneration. In this section, axon growth behavior along
glial scars with different sizes and shapes was explored. For
illustration purpose, five different glial scars (five cases),
whichwere named number 1, number 2, number 3, number 4,
and number 5, were used. Here, number 1 is horizontal half-
axle (defined in Section 2.3) 𝑟

𝑎1
= 0.26 × 𝐿 and vertical half-

axle 𝑟
𝑧1

= 0.2×𝐿; number 2 is 𝑟
𝑎2

= 0.2×𝐿 and 𝑟
𝑧2

= 0.26×𝐿;
number 3 is 𝑟

𝑎3
= 𝑟
𝑧3

= 0.26×𝐿; number 4 is 𝑟
𝑎4

= 0.32×𝐿 and
𝑟
𝑧4

= 0.26×𝐿; and number 5 is 𝑟
𝑎5

= 0.26×𝐿 and 𝑟
𝑧1

= 0.32×𝐿.
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Figure 3: Longitudinal sections for three-dimensional concentration field of Type 1 factors. The concentration of the dark blue area equals
zero and the red area represents the highest concentration. The target cells were located in two red circular domains nearby the top of glial
scar. (a, c, e) The horizontal half axle of number 1, number 3, and number 5 remains constant at a value of 0.26 × 𝐿 and their vertical half axle
increases from 0.2 × 𝐿 to 0.32 × 𝐿 (increasing 0.06 × 𝐿 each time). (b, c, d)The vertical half axle of number 2, number 3, and number 4 remains
constant at a value of 0.26 × 𝐿 and their transverse radius increases from 0.2 × 𝐿 to 0.32 × 𝐿 (increasing 0.06 × 𝐿 each time).
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Figure 4: Axonal growth rate varied with size and shape of glial scars. (a) Histograms for the average drawing speed of the regenerating axons
in different sizes and shapes of glial scars. (b) Time-history curves of the drawing speed of the regenerating axons. Data of one representative
axon from each case was collected to plot the curve.

In all cases in this section, the ratios of the basic release rate
of Type 2 and Type 3 to Type 1 factors (release ratio) were
𝜂
2

= 𝜎
20

/𝜎
1

= 𝜂
3

= 𝜎
30

/𝜎
1

= 3%.
Figure 3 shows the longitudinal sections for three-

dimensional concentration field of Type 1 factors when the
axons connected with target cells. It is clear from Figures
3(a), 3(b), and 3(e) that the bypassing glial scar to spread
remote areas by Type 1 factors becomes much more difficult
with the increase of the vertical size of the glial scar. Figures
3(b), 3(c), and 3(d) show the result of a simulation in which
the lateral diffusing capacity for diffusion factors has been
weakened with the increase of the transverse size of the
glial scar, and the concentration-diffusion is also weakened
in the whole computational domain. In comparison to the
impact of changes in the vertical radius, changes in the
transverse size of glial scar have weaker effects on diffusion
of these factors. Figure 4 shows the axonal growth rates
varying with size and shape of glial scars. It is clear from
Figure 4(a) that the average drawing speed of regenerating
axons became slower as the size of glial scar increased.
The increase in transverse sizes of the glial scar did not
cause significant reduction of axon growth rate. However, the
increase in longitudinal size of the glial scar caused significant
reduction of axon growth rate. For Figure 4(b), in these
regenerating axons, one representative was selected and the
time required for the representative axon to reach the target
domainwas calculated; the resulting curves also show that the
longitudinal size of a glial scar had greater influence on the
axon growth rate or the time required for an axon to reach its
target domain.

4. Conclusions

This study focused on the physical point of view to explore
the reasons for inhibition of CNS axon regeneration from the
external microenvironment of the nerve cells. Based on the

experiment for the SCI repair by Schwann cells transplanta-
tion and certain hypotheses, a new mathematical model was
built. This model has two main control parameters: (1) the
diameter of a glial scar and (2) the ratio of release rate of axon
regeneration inhibitors on the scar surface to release rate of
NTF from the target cells 𝜂

2
. From numerical calculations,

simulations, and analyses, the model yielded the following
outcomes: (1) Regenerating axons could successfully navigate
across the glial scar and connect to their target cells with
the support of Schwann cells and the guidance of NTFs
concentration gradients of the target cells when 𝜂

2
was less

than 3%. (2) Changes in the longitudinal size of the glial
scar had greater influence on the average rate of axon growth
and the required time for axon to reach its target domain
compared to the transverse size of the glial scar.

Implantation of Schwann cells and chondroitinase is
now considered to be one of the most promising treatment
strategies for SCI repair [31]. Existing experimental results
show that the regenerating axons can grow along the glial scar
to reach the target cells occasionally [17]. Simulation results in
this study are in satisfactory agreement with existing exper-
imental data in certain conditions. We would like to point
out that, as the initial stage in developing this model, this
study did not take into account the sprouting mechanisms
after neuronal injury, the polymerization of the cytoskeletal
protein within the growth cone of the regenerative axon, and
other internal factors. Additional experimental data could be
integrated to improve this model in the future.

The LBM for a three-dimensional numerical simulation
was adopted in this study. This new method has several
advantages, especially in dealing with complex boundaries,
incorporating of microscopic interactions, and paralleliza-
tion of the algorithm. First, there is no problem in principle if
the impact factors are divided into more components and the
glial scars with more complex shapes are taken into account.
Although using onlymathematical method does not discover
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and identify what is a promoting factor and inhibitory factor,
it provides an important complement to experimental work
to elucidate the ratio and distribution law of the impact
factors. Second, this model provides a means of integrating
data obtained fromdifferent experiments and laboratories. As
illustrated in the last few sections of Results and Discussion,
mathematical models can also have considerable predictive
capabilities. After a model has been developed and carefully
validated, it can be used to predict the inhibitory factor
levels and the size of the glial scar that allow regenerating
axons to successfully navigate across the glial scar. Ideally,
experimental work andmodel development should be carried
out in close association, using the mathematical model to
guide the design and to evaluate experiments and using
experimental results to improve the model development.
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