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Abstract: Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease is a global rapidly
spreading virus showing very high rates of complications and mortality. Till now, there is no effective
specific treatment for the disease. Aloe is a rich source of isolated phytoconstituents that have an
enormous range of biological activities. Since there are no available experimental techniques to
examine these compounds for antiviral activity against SARS-CoV-2, we employed an in silico
approach involving molecular docking, dynamics simulation, and binding free energy calculation
using SARS-CoV-2 essential proteins as main protease and spike protein to identify lead compounds
from Aloe that may help in novel drug discovery. Results retrieved from docking and molecular
dynamics simulation suggested a number of promising inhibitors from Aloe. Root mean square
deviation (RMSD) and root mean square fluctuation (RMSF) calculations indicated that compounds
132, 134, and 159 were the best scoring compounds against main protease, while compounds 115, 120,
and 131 were the best scoring ones against spike glycoprotein. Compounds 120 and 131 were able
to achieve significant stability and binding free energies during molecular dynamics simulation. In
addition, the highest scoring compounds were investigated for their pharmacokinetic properties and
drug-likeness. The Aloe compounds are promising active phytoconstituents for drug development
for SARS-CoV-2.

Keywords: COVID-19; SARS-CoV-2; Aloe; docking; MD simulation; main protease; spike glycoprotein

1. Introduction

SARS-CoV-2, a novel coronavirus disease caused by Severe Acute Respiratory Syndrome
Coronavirus 2, an RNA β-coronavirus, poses an increasing threat to human health. To date,
SARS-CoV-2 has infected 105 million people worldwide (https://www.worldometers.info/,
accessed on 20 February 2021). The disease is manifested by fever, cough, dyspnea and
pneumonia with unknown etiology that worsens over time and can lead to death [1,2].
In addition, SARS-CoV-2 patients develop low levels of neutralizing antibodies leading to
prolonged disease [3]. Entry of SARS-CoV-2 into host cells is a critical factor in its pathogenesis.
The surface-anchored spike proteins of SARS-CoV-2 are key determinants of viral entry. They
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bind to surface receptors on host cells, then the virus enters endosomal pathway followed by
fusion of viral and lysosomal membranes [4,5]. SARS-CoV-2 spike protein has N-terminus S1
domain, a receptor binding domain (RBD) that recognizes and binds angiotensin-converting
enzyme 2 (ACE2) [6–8]. Proteolytic activation of SARS-CoV-2 spike proteins is mediated by
the cell surface protease TMPRSS2, a process crucial for membrane fusion and viral entry [9].
Recent studies have shown that viral entry depends on the component of the head spike
that recognizes the ACE2 receptor. In addition, structural and energetic analysis have shown
that high-frequency contacts between ACE2 and SARS-CoV-2 spike protein lead to local
conformational stability and large energetic cost was required for virus-cell collision at early
stage facilitating cell entry [8,10,11].Coronavirus main protease (Mpro, also known as 3CLpro),
is the best characterized drug target, with no known human protease having the same cleavage
pattern, so its inhibition leads to specific blockade of viral replication [12]. Spike glycoprotein
(S protein) and its RBD are important targets for therapeutic intervention that target host cell
recognition and the membrane fusion process [13]. As a global health emergency, abundant
collaborative efforts have rapidly emerged to investigate the effectiveness of different therapies
as antiviral, monoclonal antibodies, immune-therapies, and vaccines [14]. Current antiviral
therapies for other viruses as SARS-CoV-1, MERS-CoV and HIV as well as antimalarial drugs
have been inspected for their activity against SARS-CoV-2. For instance, the antimalarial
drug hydroxychloroquine blocks viral cell entry by inhibiting glycosylation of host receptors
and proteolytic processing. In addition, the antiviral Favipiravir inhibits RNA polymerase
and is involved in entry blocking. Both drugs showed potential in vitro activity against
SARS-CoV-2 [15].

Although at least six SARS-CoV-2 vaccines have been developed and licensed for
emergency use, the safety, efficacy, durability and availability to large populations have not
been established, so it is too early to know if COVID-19 vaccines will provide long-term
protection. In addition, there is still no effective drug therapy for SARS-CoV-2. The current
therapeutic strategies depend on supportive therapy and symptomatic management. Natu-
ral products can serve as prophylactic agents, halt virus progression, inhibit inflammatory
cytokines secretion, and reduce infection, complications and mortality of SARS-CoV-2 [16].

Natural products have been a valuable source of therapeutic agents, molecules with
therapeutic potentials, and an important source of more efficient drugs that are based
on the chemical structure of natural products. For example, flavonoids have shown
significant antiviral activities [17]. Curcumin and luteolin also show therapeutic potential
against HIV targeting viral protease and HIV-1 transactivator of transcription [18,19].
Kaempferol also exhibits anti HSV-1 and 2 activities [20,21] Aloe is an ancient common
plant species used as a medicinal plant. The genus Aloe comprises about 581 species.
Its pharmacological properties and phytochemical characteristics have been extensively
studied and evaluated [22]. Previous studies have shown that natural products from Aloe
possess anti-inflammatory, immunostimulant, anti-cancer, antioxidant, anti-ageing, wound
healing, antifungal, antibacterial and antiviral activities [23]. Natural products from Aloe
showed antiviral and inhibitory activities against HSV-1 and 2, human cytomegalovirus
(HCMV), influenza A, polio and other hemagglutinating viruses [23–25]. Aloin, a major
compound of Aloe species, significantly reduces influenza viruses replication including
oseltamivir-resistant (H1N1) influenza virus [26]. This indicates that Aloe genus offer a rich
source of potential anti-viral compounds.

Virtual screening and molecular modeling studies showed potential therapeutic ac-
tivities of some natural products in inhibiting SARS-CoV-2 proteins including the main
protease (Mpro), spike glycoprotein (S) and angiotensin converting enzyme-2 (ACE2) re-
ceptor which are promising potential therapeutic targets [22,27]. In the present study, we
conducted computational screening and molecular dynamics study on a library of isolated
molecules from Aloe genus, investigated the binding affinity of these compounds with
SARS-CoV-2 main protease (Mpro), spike glycoprotein (S) through molecular docking anal-
ysis. We found six potential inhibitors from Aloe genus that effectively bind to SARS-CoV-2
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main protease (Mpro), and three inhibitors that effectively bind spike glycoprotein receptor
binding domain-ACE2 interface.

2. Results and Discussion
2.1. Phytochemical Constituents of Aloe

The tested library of active constituents from Aloe genus comprised phytochemicals
that cover major classes of natural products (Figure 1). Phytochemical studies of the genus
Aloe plants showed the presence of anthraquinones, chromones, coumarins, flavonoids,
simple phenolic compounds, phenyl pyrans and phenyl pyrones, benzofurans, naph-
thalene derivatives, alkaloids and fatty acid derivatives (Table A1 and Figures S1–S18).
Out of 237 compounds compiled in the library; anthraquinones were the most abundant
constituents, with a percentage of 36.29%, followed by chromones (27.43%) and simple phe-
nolic compounds (7.17%), while alkaloids, coumarin and fatty acid derivatives constituents
were less abundant.
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Figure 1. The percentage of different classes of phytochemicals reported from the genus Aloe. An-
thraquinones 36.3%, chromones 27.4%, coumarin 0.8%, flavonoids 4.2%, simple phenolic compounds
8%, phenyl pyran and phenyl pyrone derivatives 7%, benzofurans 2%, naphthalene derivatives 5.9%,
alkaloids 1.2%, fatty acid derivatives 1.2% and miscellaneous compounds 5.5%.

2.2. Structure-Based Virtual Screening and Molecular Docking of Aloe Phytochemicals on
SARS-CoV-2 Spike Glycoprotein and Main Protease

High-throughput virtual screening of compounds from Aloe, was followed by molecu-
lar docking and MD simulation. Since ligand binding to a protein of interest is the first step
in drug discovery, molecular docking is widely used to predict and identify ligands that fit
into the binding pocket of a protein of interest [28]. Our screening was performed against
two major drug discovery and therapeutic targets of SARS-CoV-2, spike glycoprotein and
Mpro proteins [7,12]. SARS-CoV-2 main protease Mpro is critical for the life cycle of the virus.
Approximately, two thirds of the SARS-CoV-2 genome is translated into polyproteins pp1a
and pp1ab, that are cleaved with Mpro into nonstructural proteins that are involved in the
production of viral membrane, spike and nucleocapsid proteins [29]. Mpro is a dimer that
has cysteine and histidine in the active site which form a catalytic dyad, conserved among
coronaviruses making it an ideal therapeutic target [12]. In molecular docking studies, the
ligand-receptor interaction with protein active site residues is established by formation
of some interactions including hydrogen bonds, Van der Waal force interaction, π-sigma
bond, π–π interaction, electrostatic interaction, and many other hydrophobic interactions.
Hydrogen bonds are essential for interaction, lowering the binding energy and stabilizing
the ligand-receptor docked complex. Pharmacologically, it is well-known that blockade
of a receptor active site by a ligand terminates its functional activity [30]. Our molecular
docking approach was validated by docking of hydroxychloroquine, a potent inhibitor of
SARS-CoV-2 Mpro. Hydroxychloroquine acts as a lysomotropic agent that inhibits viral
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entry and viral endocytosis. Viral entry and replication are highly dependent on the acidic
pH of lysosomes and endosomes, and some host proteases which are also active in acidic
pH (pH 5–5.5) [31]. Chloroquine and its analogues are diprotic weak bases that in their
unprotonated forms, readily diffuse through cellular and organelle membranes such as
lysosomes, endosomes and Golgi vesicles increasing pH from 6.3 to 6.7 [32–34]. In addition
to disruption of endocytic pathway pH, chloroquine and hydroxychloroquine have been
recently found to be potent inhibitors of SARS-CoV-2 Mpro but not viruses that belong to
Rhabdoviridae [35]. In our study, the compounds previously isolated from Aloe plants were
virtually screened against SARS-CoV-2 main protease Mpro (PDB ID: 6LU7) (Figure 2) and
spike glycoprotein (PDB ID: 6M0J) (Figure 2) to find potential inhibitors for SARS-CoV-2.
Using our docking approach, hydroxychloroquine interacted with SARS-CoV-2 protein
Mpro and docked hydroxychloroquine bound to the active site with and RMSD of 1.2 Å.
Molecular docking data were filtered to remove compounds with scores > −6.5 for both
SARS-CoV-2 main protease Mpro (Figure 3 and Table A1) and spike glycoprotein (Figure 4
and Table A1). Molecular docking was performed by examining the interactions of these
compounds with the active site residues of these proteins and analysis of results.
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Figure 2. Three-dimensional crystal structure of the therapeutic targets of SARS-CoV-2 Mpro main
protease (PDB ID: 6LU7, cyan) and spike glycoprotein (PDB ID: 6M0J, magenta).

Compounds scoring lower than −5.00 kcal/mol are expected to be active. These
compounds were then filtered by RMSD value [30], to evaluate experimental stability of
the docked ligand conformers. RMSD values around 1.5 Å, are considered successful and
stable while those beyond 2 Å indicate instability of ligand conformation and docking
parameters [36]. For SARS-CoV-2 protein Mpro, the binding energy observed for these
compounds ranged from−7.950 to −0.339 kcal/mol while for spike glycoprotein, binding
energy ranged from −8.088 to −5.437 kcal/mol. The top three scoring compounds for
SARS-CoV-2 protein Mpro were compound 132 (2′-oxo-2′-O-(3,4-dihydroxy-E-cinnamoyl)-
(2′R) aloesinol-7-methyl ether), compound 134 (2′-oxo-2′-O-(4-hydroxy-3-methoxy-(E)-
cinnamoyl)-(2′R)-aloesinol-7-methyl ether) and compound 159 (rutin), (Table 1 docking
scores and Figure 5, top panel). These three compounds showed the strongest interaction
with the active site of SARS-CoV-2 protein Mpro. Molecular 2D and 3D interactions com-
plexes of compounds 132, 134 and 159 with SARS- SARS-CoV-2 protein Mpro are shown in
Figure 6.

On the other hand, the top three scoring compounds for SARS-CoV-2 spike gly-
coprotein were compounds compound 115 (2”-O-(4-methoxycinnamoyl)-(S)-aloesinol),
compound 120 (rabaichromone), and compound 131 (aloeribide), (Table 1 docking score,
and Figure 5, lower panel).
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These three compounds showed the strongest interaction with SARS-CoV-2 RBD.
Molecular 2D and 3D interactions complexes of compounds 115, 120 and 131 with SARS-
SARS-CoV-2 protein spike glycoprotein receptor binding domain are shown in Figure 7. In
depth analysis showed that chromone derivatives 132 and 134 had high binding affinity
as lead compounds for developing SARS-CoV-2 Mpro inhibitors. These compounds had a
score of −7.683 kcal/mol (RSMD = 1.37) and −7.951 kcal/mol (RSMD = 1.72), respectively
(Table 1).
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Table 1. Molecular docking results and interactions of the three top scoring compounds of Aloe species with SARS-CoV-
2 proteins.

Protein No. Docking
Score (kcal/mol)

RSMD 1

Refine CLogP Receptor Interaction Distance E
(kcal/mol)

main Protease
(PDB ID: 6LU7)

132 −7.68 1.37 0.25 ASN142A H-donor 3.01 −1.9
ASN142A H-donor 2.81 −2.5
HIS163A H-acceptor 3.35 −0.7

GLN189A H-acceptor 3.03 −1.4
GLU166A pi-H 4.42 −0.7
GLN189A pi-H 3.62 −0.6

134 −7.95 1.72 0.69 ASN142A H-donor 3.44 −0.6
ASN142A H-donor 2.78 −2
HIS163A H-acceptor 3.29 −1.2

159 −7.72 1.40 −1.36 THR190A H-donor 2.94 −0.8

Spike Glycoprotein
(PDB ID: 6M0J)

115 −8.05 1.49 1.21 TRP566A H-acceptor 2.93 −2.4
LYS562A H-acceptor 3.11 −12.2
LYS562A Ionic 3.11 −3.8
VAL209 pi-H 4.17 −0.6
VAL209 pi-H 4.27 −0.6

131 −8.08 1.13 1.02 GLN102A H-donor 3.01 −1.2
ASN210A H-acceptor 3.31 −0.8
ASP206A pi-H 4.26 −0.7

120 −7.87 1.17 0.46 ALA396A H-donor 2.56 −0.5
ASP206A H-donor 2.78 −3.0
GLU208A H-donor 2.77 −1.1

1 RMSD; Root mean square deviation.
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The interacting residues of SARS-CoV-2 Mpro involved in interactions with com-
pound 132 were ASN142A, ASN142A, HIS163A, GLN189A, GLU166A and GLN189A
(Figure 6A1,B1 and Table 1), while compound 134 interacted with ASN142A, ASN142A
and HIS163 (Figure 6A2,B2 and Table 1). In addition, the flavonoid compound 159 forms a
hydrogen bond with the Mpro protein THR190A amino acid residue with −7.728 kcal/mol
as scoring value (Figure 6A3,B3 and Table 1). Regarding the interaction of the com-
pounds with SARS-CoV-2 spike glycoprotein, this was mainly supported by hydrogen
bonds, π-H, ionic and hydrophobic interactions. The highest scoring compounds were the
chromone derivatives 115 (2”-O-(4-methoxycinnamoyl)-(S)-aloesinol), 120 (rabaichromone)
and 131 (aloeribide) with binding energies −8.057, −7.871 and −8.088 kcal/mol, respec-
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tively. Compound 115 interacted with SARS-CoV-2 RBD TRP566A, LYS562A, LYS562A and
VAL209 (Figure 7A1,B1 and Table 1). Moreover, compound 131 interacted with GLN102A,
ASN210A and ASP206A (Figure 7A2,B2 and Table 1) by π i- H bond while compound 120
formed hydrogen bonds with ALA396A, ASP206A and GLU208A amino acid residues
(Figure 7A3,B3 and Table 1).
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Figure 7. 2D and 3D docking interactions complexes of compounds 115 (A1,B1), 131 (A2,B2), and
120 (A3,B3) with SARS-CoV-2 spike glycoprotein. Solid red line: Hydrogen bonds. Dashed pink line:
Hydrophobic interactions.

2.3. Molecular Dynamics Simulation

Conventional docking approaches do not account for the inherent protein binding
site flexibility and the many protein conformational rearrangements [37]. Computational
tools for drug discovery such as molecular dynamics take into account structural flexibility
and entropic effects which produce accurate predictions of small molecule-protein bind-
ing thermodynamics and kinetics [38]. Hence dynamical docking considers flexibility of
drug-protein binding and conformational changes, solvation of drug-protein complex and
temperature [38,39]. Unbiased millisecond-long can predict spontaneous drug-protein en-
tire binding [40]. In addition, recent developments in dynamical docking such as enhanced
sampling for dynamical docking, path-based and alchemical transformations have greatly
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impacted drug discovery [38]. To validate molecular docking results, we subjected the top
scoring compounds to unbiased molecular dynamics simulation experiments. The three
top scoring Mpro inhibitor hits 132, 134, and 159 were able to achieve stable binding inside
the active site with low deviations across the course of simulations (Average RMSD = 3.22,
3.32, and 3.86 Å, respectively) and convergent binding free energies (∆G = −6.9, −6.8, and
−6.5 kcal/mol, respectively), (Figure 8A).
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Figure 8. Analysis of the molecular dynamics (MD) simulations for top scoring compounds from
Aloe genus. (A) RMSD analysis for Mpro and the ligands 132, 134 and 159. (B) RMSD analysis for
spike glycoprotein and the ligands 115, 120 and 131. (C) RMSF analysis for Mpro and the ligands 132,
134 and 159. (D) RMSF analysis for spike glycoprotein and the ligands 115, 120 and 131.

With respect to SARS-CoV-2 spike glycoprotein, both compounds 120 and 131 were
stable inside the binding site during MD simulation, with scoring average RMSDs of 2.81 Å
and 3.96 Å, respectively, and ∆G of −7.4 and −6.8 kcal/mol, respectively (Figure 8B). On
the other hand, compound 115 was significantly less stable (average RMSD = 6.2 Å) inside
the SARS-CoV-2 spike glycoprotein binding site, and this instability was further translated
into a low binding free energy (∆G = −4.5 kcal/mol) compared to compounds 120 and 131
(Figure 8B). RMSF is an expression of the average residual mobility throughout simulation
in a structure and a higher RMSF value indicates more flexibility during MD simulation.
We calculated the RMSF value for the top scoring compounds from Aloe genus with SARS-
CoV-2 Mpro and SARS-CoV-2 spike glycoprotein and plotted RMSF value versus residue
number (Figure 8C,D). The results indicate that compounds 159 and 120 had high RMSF
values compared to other compounds. The RMSD and RMSF values indicate that the top
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scoring compounds from Aloe genus were stable and had greater random motion during
the simulation. The inhibitors identified in in our docking analysis that showed interaction
with SARS CoV-2 spike protein and MPro are in agreement with previously reported
results [41]. Arokiyaraj et al. found that several polyphenolic compounds from Geranii
Herba, including geraniin, kaempferitrin, quercitin, gallic acid, and kaempferol interacted
with amino acid residues in the SARS-CoV-2 RBD active site inhibiting the interaction
of SARS-CoV-2 RBD with ACE2. Arokiyaraj et al. also reported that these polyphenolic
compounds interacted strongly with amino acids in the active site of SARS-CoV-2 Mpro and
its proximity leading to blockade of the nucleophilic attack toward His 41 and blockade
of proteolytic activity. In agreement with this, we found that quercetin interacted with
SARS CoV-2 RBD and Mpro with binding energies of −5 Kcal/mol and −5.5 Kcal/mol
respectively, similar to the results reported by Arokiyaraj et al. for quercetin interaction
with RBD and Mpro −5.71 Kcal/mol and −6.49 kcal/mol, respectively. In addition, we
found that gallic acid interacted with SARS CoV-2 RBD and Mpro with binding energies
of −4.19 Kcal/mol and −3.56 Kcal/mol, respectively, similar to the binding energies
reported by Arokiyaraj et al. for the gallic acid interaction with SARS CoV-2 RBD and Mpro,
−4.21 kcal/mol and −4.46 kcal/mol, respectively. These finding indicate that phenolic
compounds from Aloe are potential inhibitors for SARS CoV-2 RBD and Mpro [41].

2.4. Drug like Properties, and Pharmacokinetic Prediction of the Ligands

Drug-like properties and pharmacokinetic properties are intrinsic characteristics of
drugs that may need to be optimized independently from pharmacodynamics properties
during drug development. It is a balance among molecular properties affecting phar-
macodynamics and pharmacokinetics of small molecules. These molecular properties
such as membrane permeability and bioavailability are always connected to some basic
molecular descriptors such as lipophilicity log P, (Tendency of a compound to partition into
an aqueous matrix versus lipid matrix), molecular weight (MW), topological polar surface
area (TPSA), or hydrogen bond acceptors and donors count in a molecule. Lipophilicity
impacts drug’s absorption, distribution, metabolism, elimination (ADME) and plasma
protein binding properties. In addition, the number of hydrogen bond donors and hy-
drogen bond acceptors influence drug’s pKa (−log Ka). The solubility of small molecules
impacts their bioavailability and the need for frequent dosing, hence we investigated the
ADME properties, inhibition of cytochrome P450 (CYP), modulation of P-glycoprotein
(Pgp), solubility, plasma protein binding and permeability of the top scoring compounds
in our analysis. The best scoring compounds for both SARS-CoV-2 Mpro and spike gly-
coprotein were tested for obeying Lipinski’s rule of five parameters, which states that
drugs having log P ranging from 0 to 5, have high possibility of oral absorption [42]. Data
(Table 2) showed that the compounds have log P values that ranged from −1.06 to 2.8 that
does not exceed 5.0 indicating reasonable probability of their good absorption. The number
of hydrogen bond donors was variable and ranged from 4 to10 that is more than 5 and also
hydrogen bond acceptors were 11–16 that is more than 10. All compounds have number of
atoms that ranged from 40 to 43 which is within 20–70. In addition, the topological polar
surface area (TPSA) of the compounds as parameter for the prediction of drug transport
properties showed TPSA value greater than 140 Å2 tend to be poor at permeating cell
membranes. Despite violation of some rules, approved anticancer and anti-infective drugs
from natural products or their semisynthetic derivatives such as taxol and amphotericin
B have also some violations but are biologically effective as drugs. Therefore, these re-
sults don’t interfere with the development of these compounds as potential SARS-CoV-2
therapeutic agents [43].
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Table 2. Drug-likeness and molecular properties of top scoring compounds predicted at molinspira-
tion server. miLogP: Molinspiration LogP (Octanol-water partition coefficient); TPSA: Total polar
surface area (drug transport properties); natoms-Number of atoms; Mol.Wt (g/mol): Molecular
weight; nON: number of hydrogen bond acceptors; nOHHN: number of hydrogen bond donors;
nviolations: Number of Lipinski’s rule of five parameters violations; nrotb: Number of Rotatable
Bonds (molecular flexibility).

115 120 131 132 134 159

miLogP 2.8 1.84 2.15 1.66 1.96 −1.06
TPSA 176.12 196.35 172.97 193.19 182.2 269.43

natoms 40 41 40 41 42 43
MW 556.56 572.56 554.55 570.55 584.57 610.52
nON 11 12 11 12 12 16

nOHNH 5 6 4 5 4 10
nviolations 2 3 2 2 2 3

nrotb 9 9 9 9 10 6
volume 486.85 494.87 480.99 489.01 506.53 496.07
%ABS 48.23 41.25 49.32 42.34 46.14 16.04

Data resulting from Prediction of ADME server (Table S1) revealed that compounds
115, 120, 131, 132, 134 may be better absorbed from the intestinal tract upon oral admin-
istration as they showed good human intestinal absorption (HIA) (77.110857, 57.614849,
82.803611, 66.184384 and 79.978975, respectively). Caco-2 cell permeability is a model for
selecting drug candidates for oral administration [44]. All compounds showed medium
Caco-2 predicted permeability and medium MDCK predicted cell permeability [45]. More-
over, all compounds showed moderate predicted plasma protein binding (PPB) (Table S1)
except for compound 159, which showed weak predicted PPB, which indicates predicted
decreased excretion and increased predicted half-life. It is important to consider drug’s
interaction with plasma proteins, transporters and CYP450s for the successful selection of
drug candidate. CYP2C19 and CYP2C9 inhibition leads to increased drug plasma concen-
tration, leading to potential side effects [46,47]. All top scoring compounds were predicted
to inhibit CYP2C19 and CYP2C9. CYP2D6 metabolizes many drugs and toxins [48]. None
of the top scoring compounds showed predicted inhibitory activity to CYP2D6. CYP3A4
is also involved in metabolism of xenobiotics and is highly expressed in the liver and
intestine [49]. The six top scoring compounds were predicted to inhibit CYP3A4. Drug
resistance is a major concern in drug development. Multidrug resistance is regulated by
a network of ATP-binding cassette (ABC) proteins that detoxify xenobiotics and act as
drug transporters and efflux pumps. P glycoprotein (Pgp; ABCB1) is the most popular and
well-studied efflux pump [50,51]. Pgp has intrinsic ATPase activity to drive active transport
and generate a concentration gradient leading to transport of drugs to the extracellular
space and inhibition of drug activity [51]. Pgp is highly expressed in blood-brain barrier
cell, liver, intestine and kidney. Thus, it is important to predict drug’s binding to Pgp. Only
compound 115 was predicted to inhibit Pgp and hence it may affect the activity or excretion
of other Pgp substrates. Compound 159 had the highest water solubility (217.207 mg/L)
while the other five compounds had low water solubility, hence this should be considered
during drug development. In addition, skin permeability is an important factor to consider
during drug development for the potential of dermal drug delivery and risk assessment of
drugs that may contact skin [52]. Skin permeability also increases drug’s plasma concen-
tration and activity. It has been reported that logP between −3 to +6 predict drug’s skin
permeability [53]. SKlogD, SKlogP and SKlogS are related to drugs’ skin permeability and
lipophilicity. All the six top scoring compounds had skin permeability values ranging from
−4.6 to −3.6, indicating that they may not be absorbed through skin and thus should not
pose a dermal exposure risk. Finally, all compounds did not have predicted ability to pass
the blood brain barrier (BBB) and are not expected to be neurotoxic.
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3. Materials and Methods
3.1. Phytochemical Review of Genus Aloe

Intensive review of the literatures in ScienceDirect, PubMed, SciFinder and has been
conducted to identify compounds from Aloe genus.

3.2. Molecular Docking, Data Software and Visualization
3.2.1. Preparation of Protein and Active Site Prediction

In this study, two SARS-CoV-2 proteins which facilitate viral–host interaction and
replication were selected from the RCSB protein databank (https://www.rscb.org/pdb, ac-
cessed on 20 February 2021). The proteins are SARS-CoV-2 main protease (PDB ID: 6LU7,
resolution = 2.16 Å) [54] and spike glycoprotein (PDB ID: 6M0J, resolution = 2.45 Å) [42]. The
3D protein structures were prepared using Molecular Operating Environment software (MOE
2014.0901) Ligx option. The site finder function used to calculate and predict possible active
potential site of selected proteins for ligand binding in the receptor. PyMol 2.3 software was
used for visualization.

3.2.2. Preparation of Ligand

Reviewing the available literatures identified 237 phytochemical compounds that were
isolated from genus Aloe (Table A1 and Figures S1–S18). All these molecular structures
were imported to MOE and subjected to 3D protonation and energy minimization using
MMFF94s force field and ligand database was constructed. Ligand coordinate files were
extracted from PDB files and used as reference structures for root mean square deviation
(RMSD) calculations.

3.2.3. Docking Analysis

Flexible ligand-rigid receptor docking was performed with MOE-DOCK for molecular
docking. The parameters of scoring were Triangle Matcher, scoring was set at London
dG with 30 output poses and rescoring at GBVI/WSA dG retaining 10 refined poses.
The docking score, root mean square deviation (RSMD), 2D and 3D interactions were
recorded [55]. The results of docked ligands are chosen based on the most negative docking
score. The docking score represents the best-bound ligand conformations and relative
binding affinities. The best-docked conformations for comparison of the binding of the
drugs and targets of SARS-CoV2 were selected based on number of hydrogen bonds,
binding energy (kcal/mol), upper and lower bound RMSD, number of interacting residues,
and forces which stabilized the receptor-ligand complex. RMSD and RMSF of the ligand
interaction with the target protein were calculated using the following formulas:

RMSDx =

√
1
N ∑n

i=1

(
rt

i (tx)
)
− ri(tre f ))

2 (1)

RMSFi =

√
1
T ∑T

t=1 <
(
rt

i (t)
)
− ri(tre f ))

2 > (2)

where N is the number of atoms, tref is the reference time, r′ is the position of the selected
atoms in frame x after superimposing on the reference frame, frame x recorded at time tx,
T is the trajectory time over which the RMSF was calculated, r is the position of an atom.
Poses of docked compounds are automatically calculated by docking function in Molecular
Operating Environment software.

3.3. Molecular Dynamics Simulation

MD simulation experiments were performed as previously described [43]. Briefly,
the Molecular Dynamics (NAMD) 2.6 software [45], employing the CHARMM27 force
field [56] was used for simulations. Hydrogen atoms were added to initial coordinates of
proteins using the psfgen plugin included in the Visual Molecular Dynamics (VMD) 1.9
software [57]. Subsequently, the protein systems were solvated using TIP3P water particles

https://www.rscb.org/pdb
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and 0.15 M NaCl. The equilibration procedure comprised 1500 minimization steps followed
by 30 ps of MD simulation at 10 K with fixed protein atoms. Then, the entire systems were
minimized over 1500 steps at 0 K, followed by gradual heating from 10 to 310 K using
temperature reassignment during the initial 60 ps of the 100 ps equilibration MD simulation.
The final step involved NTP simulation (30 ps) using the Nose–Hoover Langevin piston
pressure control at 310 K and 1.013 bars for density (volume) fitting [58]. Thereafter, the
MD simulation experiments were continued for 25 ns for the entire systems (20 ns for the
enzyme–ligand complexes). The trajectory was stored every 0.1 ns and further analyzed
with the VMD 1.9 software. The MD simulation output over 25 ns provided several
structural conformers that were sampled every 0.1 ns (250 poses) to evaluate conformational
changes of the entire protein structure to analyze the RMSD. All parameters and topologies
of the compounds selected for MD simulation were prepared using the online software
Ligand Reader & Modeler [59] and the VMD Force Field Toolkit (ffTK) [57]. Binding free
energy calculations (∆G) were performed using the free energy perturbation (FEP) method
through the web-based software Absolute Ligand Binder [60] together with MD simulation
software NAMD 2.6 [45]. Hydrogen bonds and hydrophobic interactions between protein
and ligand were also analyzed using Protein-Ligand Interaction Profiler [61].

3.4. Drug Like Properties, and ADME Prediction of the Ligands

The drug likeliness of best pose scoring compounds is specified by the Lipinski’s
rule and molecular properties prediction was calculated by the free access website https:
//www.molinspiration.com/cgi-bin/properties, accessed on 20 February 2021. ADME
Prediction were determined by PreADMET estimation server website [62].

4. Conclusions

In recent years, advances in computational resources and software tools led to emer-
gence of molecular dynamics (docking and scoring tool), as the first phase in drug screening
and discovery. In addition, absence of new cell culture models for working safely with
highly pathogenic viruses makes virtual screening, docking and dynamics of great im-
portance. Aloe genus is a rich source of phytochemicals with a wide range of therapeutic
activity. Several natural products from Aloe have shown strong antiviral activity, inhibiting
replication and entry and of HSV-1 and 2, human cytomegalovirus (HCMV), influenza A
and polio. Aloin significantly reduces replication of oseltamivir-resistant (H1N1) influenza
virus. In our study, we applied computational screening of 237 natural product compounds
from Aloe genus and identification of six compounds as stable potential inhibitors of SARS-
CoV-2 main protease and spike glycoprotein. Our molecular docking analysis showed that
theses six compounds are stable and safe. Compounds 132, 134 and 159 were the top three
scoring potential inhibitors of for SARS-CoV-2 main protease. These compounds interacted
strongly with amino acids in the active site of SARS-CoV-2 main protease. Rutin (154) is
known to have antiviral activity against influenza virus [63]. Compounds 115, 120 and
compound 131 were the top scoring potential inhibitors of SARS-CoV-2 spike glycoprotein.
The results highlighted chromone derivatives as potential inhibitors for SARS-CoV-2 ac-
cording to their best scores of binding affinities to the mentioned target proteins among
the examined compounds. The results of this in-silico investigation (docking and molec-
ular dynamics simulation) should have a great impact for drug repurposing studies. In
the future, in vitro, in vivo and clinical studies shall be conducted to further validate the
effectiveness of these compounds as potential treatments for COVID-19 and to identify
compounds with best pharmacokinetic profiles. In addition, it will be of great importance
to apply newly-developed algorithms and utilize the development of steered molecular
dynamics for evaluating the binding of the top scoring compounds to SARS-CoV-2 target
proteins [64].

https://www.molinspiration.com/cgi-bin/properties
https://www.molinspiration.com/cgi-bin/properties
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Supplementary Materials: The following are available online. Figures S1–S18: Compounds isolated
from genus Aloe, Table S1: Predicted pharmacokinetics of top scoring compounds.
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Appendix A

Table A1. Docking score of isolated compounds from Aloe plants against selected SARS CoV-2 proteins.

No. Name of the Compound
Main Protease

(PDB ID: 6LU7)
Spike Glycoprotein

((PDB ID: 6M0J) Plant Source Ref.
Score RSMD Score RSMD

I-Anthraquinones:

1 Chrysophanol −5.4584 0.8734 −5.4447 0.8709 A. pulcherrima, A. dawei, A.
megalacantha, A. vera [65–68]

2 8-O-Methylchrysophanol −5.0678 0.4878 −4.8406 0.9352 A. dawei [66]

3 Aloe-emodin −5.3348 0.8782 −6.0546 0.9449 A. megalacantha, A. arborescens
A. vera, A. ferox [67–72]

4 7-Hydroxy-aloe-emodin −5.3660 1.3842 −4.8938 0.9332 A. succotrina [73]

5 Nataloe-emodin −5.5017 0.7836 −5.2599 0.4924 A. nyeriensis [74]

6 Mono-O-methyl-nataloe-
emodin −4.8059 1.2584 −4.6113 0.9158 A. speciosa [74]

7 Emodin −4.4060 0.9758 −4.8558 1.3623 A. vera, A. spp [72,75–77]

8 Saponarin II −4.7520 1.0190 −5.1119 1.3501
A. megalacantha, A.

pulcherrima, A. dawei, A.
saponaria.

[65–67,78–80]

9 Saponarin I −5.5636 0.8416 −5.2625 1.3226 A. megalacantha, A.
pulcherrima, A. saponaria. [65,67,78,81]

10 Saponarin III −5.5941 0.9280 −5.9907 0.9256 A. megalacantha [67]

11 Helminthosporin −5.2698 0.6476 −5.3963 1.3211 A. megalacantha, A. dawei, A.
Saponaria [66,67,79]

12 5-O-Methylziganein −5.6054 0.8884 −3.3209 0.8923 A. hijazensis [82]

13 Isoxanthorin −4.7748 1.2234 −3.9051 0.9124 A. Saponaria [79,80]

14 Deoxyerythrolaccin −4.7968 1.3812 −5.2572 1.2640 A. ferox, A. Saponaria [71]

15 Laccaic acid D Methyl ester −6.1620 0.9956 −5.3786 0.8172 A. Saponaria, A. dawei [66,78]

16 Madagascin −4.2212 1.1677 −4.0269 0.9379 A. vera [83]

17 3-Geranyloxyemodine −5.4161 1.4882 −4.8861 1.1771 A. vera [83]

18 Aloetinic acid. −5.6006 1.6111 −2.8968 1.3504 A. vera [84]

19 Nataloe-emodin-2-O-β-D-
Glucopyranoside −5.3915 0.9107 −4.4116 1.4211 A. nyeriensis [85]

20 Aloe-emodin-11-O-rhamnoside −6.5513 1.1442 −6.3233 1.2130 A. vera [72,86]
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Table A1. Cont.

No. Name of the Compound
Main Protease

(PDB ID: 6LU7)
Spike Glycoprotein

((PDB ID: 6M0J) Plant Source Ref.
Score RSMD Score RSMD

I-Anthraquinones:

21

1,1′,8,8′-Tetrahydroxy-3,3′-
dimethyl-4,7′-bianthracene-

9,9′,10
(10′H)-trione

−6.2519 0.8628 −3.7287 1.2329 A. Saponaria [81]

22 Asphodelin −5.8474 0.9813 −6.1966 1.2760 A. megalacantha, A. Saponaria [67,81]

23
(1,1′,8,8′,10-Pentahydroxy-3,3′-
dimethyl-10,7′-bianthracene-

9,9′,10′-trione)
−5.2521 1.3390 −6.4419 1.2682 A. Saponaria [81]

24
10-(chrysophanol-7′-yl)-10-

hydroxychrysophanol-9-
anthrone

−6.0946 1.6603 −5.7400 1.2765 A. megalacantha [67]

25 Chrysalodin −6.3819 1.4365 −5.8787 1.3680 A. megalacantha [67]

26 10-O-Methylchrysalodin −5.1180 0.9839 −5.1616 1.0078 A. megalacantha [67]

27 Elgonica-dimer A −6.6933 1.1067 −2.5862 1.4349 A. elgonica, A. vera [87–89]

28 Elgonica-dimer B −6.4416 1.2142 5.4378 1.6013 A. elgonica, A. vera [87–89]

29
1,4′,5′,8,9′-Pentahydroxy-2′,6-
dimethyl[2,9′-bianthracene]-

9,10′(9′H,10H)-dione
−6.1595 1.1344 −6.2983 1.4995 A. Saponaria [81]

30 Aloin A −6.1758 1.0225 −5.8047 1.3500
A. calidophila, A. schelpei, A.

vera, A. perryi, A. ghibensis, A.
gilbertii, A. trigonantha

[68,69,90–96]

31 Aloin B −7.2794 1.3710 −6.3227 1.1594 A. vera, A. perryi, A. ghibensis,
A. gilbertii,A. trigonantha [68,69,90–92]

32 7-Hydroxy-8-O-methylaloin A −6.4555 1.4506 −6.1034 1.1466 A. vera [97]

33 7-Hydroxy-8-O-methylaloin B −3.3579 1.4722 −5.1135 1.1263 A. vera [97]

34 Nataloin −3.1203 0.9706 −7.1048 1.2243 A. nyeriensis [85]

35 6′-O-Malonylnataloin −6.1541 1.3288 −3.4142 1.0014 A. ellenbeckii [98]

36 Homonataloin A −3.4695 1.0697 −5.4443 1.4948 A. lateritia, A. distans, A.
cremnophila, A. citrina, A. vera [92,99,100]

37 Homonataloin B −4.9349 1.4914 −4.9807 0.8487 A. lateritia, A. excelsa, A. vera,
A. perryi [92,99,101,102]

38 5-Hydroxyaloin A −4.8766 1.1457 −6.6159 1.1690 A. nobilis, A microstigma [99,103,104]

39 7-Hydroxyaloin A −3.0164 1.4360 −5.5526 0.9072 A. ghibensis, A. succotrina [73,91]

40 3′-Acetyl-5-hydroxyaloin A −6.6767 1.3118 −5.1832 1.2296 A. nobilis [104]

41 6′-Acetylglucosyl-5-
hydroxyaloin A −5.3535 1.3456 −5.4990 1.1070 A. marlothii,Aloe rupestris [105]

42 7-Hydroxy
(6′-acetylGlucosyl)-aloin −5.2629 1.2352 −6.4008 1.4160 A. succotrina [73,106]

43 7-hydroxy
(6′-acetylglucosyl)-barbloine −4.2565 1.4076 −7.2279 0.8115 A. succotrina [73]

44 2′,6′-Diacetylglucosyl-5-
hydroxyaloin A. −6.7157 1.5569 −5.8313 1.3241 A. nobilis [104]

45 4′,6′-Diacetylglucosyl-5-
hydroxyaloin A −4.9825 1.7716 −5.7746 1.0670 A. nobilis [104]

46 8-O-Methoxy-7-hydroxyaloin A −5.2694 0.8441 −1.2609 1.3127 A. vera, A. trigonantha [92,93]

47 4′,6′-O-diacetate-7-
Hydroxyaloin A −1.0169 1.1487 −3.6664 1.1714 A. succotrina [73]



Molecules 2021, 26, 1767 17 of 29

Table A1. Cont.

No. Name of the Compound
Main Protease

(PDB ID: 6LU7)
Spike Glycoprotein

((PDB ID: 6M0J) Plant Source Ref.
Score RSMD Score RSMD

I-Anthraquinones:

48 4′,6′-O-diacetate-7-
Hydroxyaloin B −5.9283 1.8131 −3.8189 1.1443 A. succotrina [73]

49 Aloinoside A −5.5327 1.6795 −7.3722 1.6129 A. ferox, A. spp. [92,94,95,107]

50 Aloinoside B −4.2386 2.0931 −6.1225 0.9157 A. vera, A. perryi [69,72,86,92,
107,108]

51 Aloinoside C −6.7035 1.3302 −7.0975 1.2894 A. spp. [69]

52 Homonataloside B −7.4548 0.9307 −7.0966 1.3986 A. spp. [109]

53 Microdontin A −5.3854 1.8687 −3.0568 1.3618
A. gilbertii, A. microdonta, A.

calidophila, A. vera, A. perryi, A.
schelpei

[92,94–96,110]

54 Microdontin B −6.4459 1.4075 −6.2021 1.4041 A. vera, A. perryi, A.
microdonta [92,110]

55 Microstigmin A −6.2212 1.2076 −6.7073 1.1774 A. microstigma, A. broomii [103]

56 Desoxyaloin −5.1323 1.4371 −5.4503 1.1224 A. spp. [69]

57 8-O-Methoxy-7-hydroxyaloin B −4.9067 1.2985 −6.6635 1.4981 A. vera, A. trigonantha [92,93]

58 7-Hydroxyaloin B −5.7138 1.6502 −6.2245 0.5540 A. ghibensis, A. vera, A.
succotrina [73,91]

59 6′-O-Acetyl-aloin B −6.2829 1.1810 −6.2769 1.2832 A. vera,A. trigonantha [93,111]

60 6′-O-Acetyl-aloin A −7.0170 1.3290 −6.7174 1.4200 A. vera, A. trigonantha [93,111]

61 6′-O-Acetyl-10-hydroxyaloin B −5.4305 1.3206 −5.1675 1.1849 A. claviflora [112]

62 10-Hydroxyaloin A −5.5235 1.2517 −5.3937 0.9974 A. vera [68,72,86,97]

63 10-Hydroxyaloin B −4.5207 1.1644 −6.2037 1.4416 A. vera,A. littoralis [68,72,97,113]

64 Aloinoside D −4.0281 1.5439 −5.7067 1.6872 A. sp. [69]

65 Deacetyllittoraloin −5.4766 0.8960 −3.2865 1.2900 A. littoralis [114]

66 Littoraloin −6.7095 1.9848 −6.6415 1.4619 A. littoralis [114]

67 Littoraloin −5.4568 1.3628 −1.6450 1.3238 A. littoralis [113]

68 Deacetyllittoraloin −4.6536 1.4897 −3.4045 1.2748 A. littoralis [113]

69 Littoraloside −5.1344 1.6895 −5.7699 1.5576 A. littoralis [114]

70 6,8-Dihydroxy-4-
methylbenzanthrone −4.8093 0.9928 −3.6017 1.1112 A. vera [115]

71 Anthrone; Enol-form −3.7149 1.7269 −3.3277 1.7661 A. vera [116]

72 3,4-Dihydro-3,5,7-trihydroxy-9-
methyl-1(2H)-anthracenone −5.3077 0.5534 −5.5367 1.5708 A. vera [117]

73 Aloesaponol II −5.5596 0.9169 −4.0884 1.1997 A. saponaria [78,80]

74 Aloesaponol II-6-methyl ether −5.4278 0.8931 −5.6829 0.8923 A. dawei [66]

75 Aloesaponol IV −5.3144 1.0041 −5.8792 1.2443 A. saponaria [79]

76 Aloesaponol I −6.2731 0.6260 −5.5268 1.1253 A. megalacantha, A. dawei, A.
saponaria [66,67,78,80]

77 Aloesaponol III −5.2375 1.6252 −2.8273 0.5258 A. saponaria [79,80]

78 8-O-Methyl-aloesaponol III −4.7557 2.6159 −5.4051 0.7606 A. saponaria [79]

79 Aloesaponol
III-8-O-β-D-Glucopyranoside −7.1900 0.9527 −4.9331 1.1900 A. saponaria [79,80]

80 Aloesaponol
IV-8-O-β-D-Glucopyranoside −6.4329 0.9875 −6.1878 1.0722 A. saponaria [79]

81
O-de-Methylaloesaponol

IV-4-Epimer,
4-O-β-D-glucopyranoside

−5.2621 1.6257 −6.0435 1.6168 A. vera [118,119]
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Table A1. Cont.

No. Name of the Compound
Main Protease

(PDB ID: 6LU7)
Spike Glycoprotein

((PDB ID: 6M0J) Plant Source Ref.
Score RSMD Score RSMD

I-Anthraquinones:

82 Aloesaponol IV-4-Epimer,
4-O-β-D-glucopyranoside −5.5878 1.4697 −4.4875 1.2372 A. vera [118,119]

83 Aloesaponol II-6-glucoside −5.5097 1.6405 −6.3430 1.7211 A. saponaria [78,80]

84 Aloesaponol
I-6-O-β-D-Glucoside −6.4018 1.0686 −6.4720 0.8722 A. saponaria [78,80]

85 Prechrysophanol −5.0097 1.3074 −4.9503 0.9273 A. graminicola [120]

86 Aloechrysone −5.5183 1.0812 −5.2203 1.1941 A. berhana [121]

II-Chromones:

87 2,7-Dihydroxy-5-
methylchromone −4.1044 1.5749 −4.3380 2.1225 A. arborescens [122]

88 Altechromone A −4.3964 1.3753 −4.0177 2.5253 A. vera, A. ferox [76]

89 7-Hydroxy-5-(hydroxymethyl)-
2-methylchromone −4.6654 1.0133 −4.0034 1.0116 A. vera, A. spp. [68,69,123]

90 5-(Hydroxymethyl)-7-methoxy-
2-methylchromone −5.0942 1.7087 −4.3604 0.6077 A. vera [68]

91 Aloesone −5.3434 0.8671 −4.4459 1.6654 A. spp. [124]

92 Aloesol −5.4824 1.1217 −4.5119 1.3491 A. spp. [124]

93 Saikochromone A −4.0246 1.1592 −4.6675 0.8802 A. vera [68]

94 2−Carboxyethenyl-5,7-
dihydroxychromone −5.4560 0.8633 −4.3033 1.4776 A. cremnophila [125]

95 5-((4E)-2′-Oxopentenyl)-2-
hydroxymethylchromone −5.2408 1.2458 −4.6543 0.9525 A. vera [68]

96
2-Acetonyl-7-hydroxy-8-(3-

hydroxyacetonyl)-5-
methylchromone

−6.1295 1.1673 −5.6294 0.8828 A. ferox [126]

97
5-((S)-2′-Oxo-4′-

hydroxypentyl)-2-
hydroxymethylchromone

−5.6533 0.8672 −4.5742 1.0536 A. spp., A. vera [68,69,123]

98 7-O-methyl-(R)-aloesinol −5.7749 1.3751 −6.3349 1.0728 A. capensis, A. rubroviolacea, A.
spicata

[69,123,127,
128]

99 7-O-methyl-(S)-aloesinol −4.9862 1.0634 −6.5826 1.3861 A. vera [129–131]

100 Aloesinol; (2′S)-form −6.5412 1.3314 −5.9231 0.9830 A. vera [129–131]

101 8-C-Glucosyl-7-O-
methylaloediol −6.5616 1.4702 −6.1983 1.3370 A. vera [130–132]

102 C-2′-Decoumaroyl-aloeresin G −6.3203 2.2082 −5.6674 0.6253 A. vera, A. spp. [69,123,132]

103 Deacetylaloesin −5.4580 1.4439 −5.6769 0.7237 A. vera var. chinensis [133]

104 Isobiflorin −4.3917 1.0141 −5.5361 1.3146 A. vera [131]

105 8-C-Glucosyl-noreugenin −6.0155 0.9498 −5.3311 1.2871 A. vera [132]

106 Neoaloesin A −4.1314 1.4402 −5.3727 1.2553 A. vera [132,134]

107 Aloesin (Aloeresin B) −5.1920 1.4721 −6.0011 0.9641
A. vera, A. monticola, A.

trigonantha A. saponaria, A.
arborescens

[68,92,93,132,
135–137]

108 7-O-Methylaloesin −6.5211 1.0562 −4.7873 0.7405 A. vera, A. rupestris [92,105]

109 2-Acetonyl-8-(2-furoylmethyl)-
7-hydroxy-5-methylchromone −5.5785 1.2539 −5.9486 1.4100 A. ferox [126]

110 8-C-Glucosyl-(R)-aloesol −6.9810 1.2199 −6.5885 1.2379 A. vera [68,92,132,136]

111 8-C-Glucosyl-(S)-aloesol −5.9979 1.2224 −3.0178 1.2511 A. vera [132]

112 8-C-Glucosyl-7-methoxy-(R)-
aloesol −6.9122 1.5762 −5.2251 0.8301 A. vera [132]

113 8-C-Glucosyl-7-methoxy-(S)-
aloesol −6.2867 1.2856 −4.9903 0.9918 A. vera [68,132,136]
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Main Protease

(PDB ID: 6LU7)
Spike Glycoprotein

((PDB ID: 6M0J) Plant Source Ref.
Score RSMD Score RSMD

I-Anthraquinones:

114 2”-O-p-Coumaroyl-(S)-
aloesinol −6.4949 1.1099 −6.3880 1.7012 A. nobilis [138]

115 2”-O-(4-methoxycinnamoyl)-
(S)-aloesinol −6.8222 0.9924 −8.0574 1.4996 A. nobilis [104]

116 2”-O-Cinnamoyl-8-C-glucosyl-
7-O-methyl-aloediol A −6.9842 0.9200 −7.4491 1.1903 A. vera [131]

117 4”-Deoxyaloeresin D −1.9659 1.4660 −7.3969 1.4416 A. vera [139]

118 Aloeresin D −7.3865 1.5512 −6.6808 1.3432 A. ferox, A. vera [69,123,132,
140,141]

119 Isoaloeresin D −5.8280 1.4838 −7.5561 1.2248 A. vera [68,92,129–
132,136]

120 Rabaichromone −7.3914 1.9603 −7.8715 1.1703 A. rabaiensis, A. vera [132,142]

121 Isorabaichromone −7.5470 1.4108 −7.2656 1.4428 A. vera [129–132]

122 Aloeresin J −6.9723 1.9908 −6.4352 1.4979 A. vera [132]

123

8-[C-β-D-[2-O-(E)-cinnamoyl]
glucopyranosyl]-2-[(R)-2-

hydroxypropyl]7-methoxy-5-
methylchromone

−7.3516 0.9022 −5.8935 1.2315 A. vera [132]

124 Aloeresin K −6.2857 1.5121 −6.9020 1.8499 A. vera [111,132]

125 Aloeresin F −7.5814 1.9617 −6.6320 1.4268 A. peglerae [143,144]

126 2”-O-E-cinnamoyl-2′-Ketone
(2′R) aloesinol-7-methyl ether −6.5227 1.6510 −5.7926 1.2582 A. broomii [145]

127 7-O-Methylaloeresin A −7.3061 1.1520 −6.8482 0.9873 A. vera, A. perryi, A. marlothii [92,105,132]

128 Aloeresin A −7.0228 1.1297 −6.1730 1.3563 A. cremnophila, A. jacksonii, A.
arborescens, A. vera [92,132,146]

129 Isoaloeresin A −7.0698 1.8469 −6.9601 1.6099 A. ferox [147]

130 6”-O-p-Coumaroylaloesin −6.1054 1.3654 −5.5547 1.4791 A. vera, A. castanea [143,144]

131 Aloeribide −6.5988 1.1683 −8.0886 1.1338 A. vera, A. monticola [86]

132
2”-O-(3,4-dihydroxy-E-

cinnamoyl) 2′-Ketone, (2′R)
Aloesinol-7-methyl ether

−7.6830 1.3783 −5.1857 0.8784 A. broomii [145]

133 2”-O-Feruloylaloesin −6.3246 1.4172 −7.3571 1.3775 A. arborescens [148]

134
2”-O-(4-hydroxy-3-methoxy-E-

cinnamoyl) 2′-Ketone,
(2′R)-aloesinol-7-methyl ether

−7.9510 1.7236 −6.5096 1.2159 A. africana [145]

135 2”-O-tigloyl-2′-Ketone,
(2′R)-aloesinol −7.0060 1.0927 −1.4865 1.2366 A. cremnophila, A. jacksonii [125]

136
2”,6”-bis-O-(4-hydroxy-E-

cinnamoyl) 2′-Ketone,
(2′R)-aloesinol

−7.6466 1.6059 −6.8589 2.8077 A. speciosa [145]

137 Aloeresin E −6.8483 1.7166 −3.3935 1.5214 A. peglerae [143,144]

138 Aloeresin C −3.1926 1.4036 4.6545 1.2671 A. spp. [140,141]

139
trans-p-coumaroyl-4′-O-
Glucosyl-isoaloeresin

D-I a
−7.3070 1.8254 −5.2510 1.8902 A. vera [129–132]

140
cis-p-coumaroyl-4′-O-
Glucosylisoaloeresin

D-II a
−5.1214 1.9414 −6.9804 1.5954 A. vera [129–132]
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Spike Glycoprotein

((PDB ID: 6M0J) Plant Source Ref.
Score RSMD Score RSMD

I-Anthraquinones:

141
8-C-(2′-O-coumaroylglucosyl)-
7-hydroxy-5-methyl-chromone-

2-carboxylic acid
−7.0093 1.2428 −3.8621 1.2324 A. vera, A. perryi [92]

142 9-Dihydroxyl-2′-O-(Z)-
cinnamoyl-7-methoxy-aloesin −7.6616 1.3432 −6.5510 1.0865 A. vera [132]

143

5-((S)-2′-Oxo-4′-
hydroxypentyl)-2-(β-D-

glucopyranosyloxy-methyl)
chromone

−6.3604 1.6246 −5.6622 0.9999 A. vera [68,123]

144 8-Glucosyl-(2′-O-cinnamoyl)-7-
O-methyl-aloediol A −6.8459 1.3641 −6.1606 1.1397 A. vera [132]

145 Aloeresin G −5.6136 1.0175 −7.2021 1.2832 A. vera [69,123,149]

146 Aloeresin H −7.5738 1.6723 −7.5525 1.2922 A. ferox [150]

147 Aloeresin I −7.4396 2.2729 −7.4337 1.7717 A. ferox [151]

148 Iso-aloesin −6.5817 0.9104 −5.3266 1.3373 A. vera var. chinensis [152]

149 Aloeveraside B −7.0658 1.3476 −5.6113 1.4352 A. vera [72,132]

150 Aloeveraside A −7.1344 1.1636 −4.8353 1.2241 A. vera [72,132]

151 Furoaloesone −5.2765 1.3977 −5.3016 1.0583 A. ferox [153]

III-Coumarins:

152 Coumarin −4.3565 1.3443 −3.5142 0.7049 A. vera [86]

153 7-Demethylsiderin −4.4857 1.2535 −4.6641 1.3044 A. vera, A. megalacantha [72,86]

IV-Flavonoids:

154 Apigenin −4.8832 1.1056 −4.9431 1.4340 A. vera [154]

155 Kaempferol −5.5622 0.6388 −5.2731 1.3518 A. vera [154]

156 Quercetin −5.5045 0.8816 −5.0091 1.3859 A. vera [154]

157 Myricetin −4.3458 1.1650 −5.1872 1.7167 A. vera [154]

158 Quercitrin −5.9830 1.1253 −6.6787 1.2189 A. vera [154]

159 Rutin −7.7285 1.4051 −6.5175 1.7434 A. vera [154]

160

3′,5′,6,7-Tetra-methyl ether,
5-O-[α-L-rhamnopyranosyl-

(1→6)-β-D-galactopyranoside],
3′,4′,5,5′,6,7-

Hexahydroxyflavone

−6.4680 1.4828 −7.2475 1.4030 A. vera [155]

161 Catechin −5.5232 0.7426 −5.0722 0.8989 A. vera [154]

162 Epicatechin −5.3431 1.3310 −5.0829 1.3469 A. vera [154]

163

3′,4′,6-Tri-Me ether,
5-O-[α-L-rhamnopyranosyl-

(1→6)-β-D-glucopyranoside],
3′,4′,5,6,7-

Pentahydroxyisoflavone

0.3390 0.9914 −4.0257 1.8089 A. vera [156]

V-Phenolic Compounds:
a-Simple phenolic compounds:

164 Pyrocatechol −3.9037 0.5358 −3.1988 1.0732 A. ferox [157]

165 Salicylaldehyde −2.6754 1.0693 −3.2178 1.2797 A. vera [72,86]

166 p-Cresol −3.7780 1.1628 −3.5110 1.1472 A. vera [72,86]

167 p-Hydroxyacetophenone −4.0224 1.8629 −3.7773 0.7970 A. ferox [157]
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I-Anthraquinones:

168 p-Hydroxybenzaldehyde −3.1097 0.7939 −3.5440 1.5859 A. ferox [157]

169 p-Anisaldehyde −3.9164 1.3669 −3.4465 1.1778 A. vera [72,86]

170 Phloretic acid −4.3823 1.2905 −4.1107 1.0512 A. vera [72,86]

171 Methyl-3-(4-hydroxyphenyl)
propionate −4.7496 0.8674 −3.9136 0.9518 A. vera [72,86]

172 Coumaric acid −4.5055 1.4107 −3.6587 1.1690 A. vera [154]

173 Caffeic acid −4.1969 1.2736 −3.8859 1.0162 A. vera [154]

174 Ferulic acid −4.3845 0.9040 −4.4689 1.0173 A. vera [154]

175 Sinapic acid −5.1021 1.0097 −4.2763 1.1207 A. vera [154]

176 Orcinol −3.9362 1.2430 −3.7654 1.4027 A. sp. [69]

177 Gentisic acid −3.8595 1.6010 −3.9828 1.3232 A. vera [154]

178 Protocatechuic acid −3.6447 1.5645 −4.1049 1.3881 A. vera [154]

179 Vanillic acid −4.0256 1.0470 −4.0827 0.9452 A. vera [154]

180 Gallic acid −4.1961 0.5757 −3.5679 0.8059 A. vera [154]

181 Syringic acid −4.1467 1.2874 −4.6308 1.2947 A. vera [154]

182
1-(2,4-Dihydroxy-6-

methylphenyl)
ethanone

−3.8183 1.3698 −3.9336 0.9642 A. vera [72]

b-Phenyl-Pyran and Phenyl-pyrone derivatives:

183 Aloenin aglycone. −4.8494 1.2878 −3.8957 1.3574 A. vera, A. spp. [68,69,123,158,
159]

184
6-(2,4-Dihydroxy-6-

pentylphenyl)-4-hydroxy-2H-
pyran-2-one

−3.1749 1.0339 −5.5428 1.0487 A. arborescens [160]

185

6-[[2,4-Dihydroxy-6-[2-(4-
hydroxyphenyl)

ethenyl]-4-hydroxy-2H-pyran-
2-one

−5.9742 1.4002 −5.8852 1.4624 A. arborescens [160]

186 Aloenin A −5.3723 1.3544 −4.5645 1.5586 A. vera, A. arborescens [85,92,123,159]

187 2”-O-trans-p-coumaroyl-
aloenin −7.0328 1.6452 −6.1026 1.2183 A. vera, A. nyeriensis, A. spicata [159]

188 4”,6”-Ethylidenealoenin −6.3221 2.1206 −6.8580 1.0640 A. arborescens, A. hijazensis [82]

189 Aloenin C −4.0535 1.3070 −4.7701 1.7252 A. sp. [123]

190 10-O-β-D-glucopyranosyl-
aloenin −6.1378 1.0013 −6.6976 1.3721 A. sp., A. vera, A. spicata [127,136]

191 Aloenin B −7.0573 1.9426 −4.7766 1.3631 A. hijazensis, A. spicata, A. vera [68,69,82,123,
136]

192

2,4-Dihydroxy-β-(4-
hydroxyphenyl)-5-(4-methoxy-

2-oxo-2H-pyran-6-yl)-6-
methylbenzenepropanoic acid;

Et ester

−6.0558 1.2415 −6.5747 1.4078 A. vera [161]

193

6−[[3,5-Dihydroxy-2-(1-
oxohexyl) phenyl]

methyl]-4-hydroxy-2H-pyran-
2-one

−5.5175 1.3328 −5.1989 1.4473 A. arborescens [160]

194

6-[[3,5-Dihydroxy-2-[3-(4-
hydroxyphenyl)-1-oxo-2-

propenyl] phenyl]
methyl]-4-hydroxy-2H-pyran-

2-one

−3.9537 1.4667 −6.8047 1.2550 A. arborescens [160]
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I-Anthraquinones:

195

3,4-Dihydro-7-hydroxy-4-(4-
hydroxyphenyl)-6-(4-methoxy-
2-oxo-2H-pyran-6-yl)-5-methyl-

2H-1-benzopyran-2-one

−6.0022 1.3606 −6.4475 1.1932 A. vera [161]

196 Feralolide −5.7980 1.8453 −5.4781 1.4521 A. arborescent, A. ferox, A. vera [70,82,86,162,
163]

197 5′-O-Methylferalolide −6.3808 1.3485 −5.9990 1.3806 A. vera [164]

198 Feralolide-3′-O-β-D-
Glucopyranoside −5.6364 1.3200 −4.3041 2.3081 A. arborescens, A. vera [70,165]

199

3,3′-Bi(3,4-dihydro-6-methoxy-
2H-1-benzopyran-4-ol).

3,3′-Bi(3,4-dihydro-4-hydroxy-
6-methoxy-2H-1-benzopyran)

−5.3093 1.7270 −5.2061 1.4071 A. vera [166]

c-Benzofurans:

200
5-Hydroxy-3-

methylnaphtho[2,3-c]
furan-4(1H)-one

−4.3383 1.1118 −4.0958 0.7359 A. ferox [71]

201
5-Hydroxy-3-

methylnaphtho[2,3-c]
furan-4(9H)-one

−4.1346 1.3867 −4.0957 0.7362 A. ferox [71]

202 Isoeleutherol −4.7544 1.2527 −4.5232 0.7749 A. graminicola [167]

203 Isoeleutherol glucoside −6.0044 1.3381 −4.6325 1.4751 A. saponaria [80]

204
8-Hydroxy-1-

methylnaphtho[2,3-c]
furan-4,9-dione

−5.0447 1.3119 −4.3271 0.8506 A. ferox [71]

d-Naphthalin derivatives:

205 Droserone −4.5525 1.0154 −4.1450 1.1420 A. dawei [66]

206 Droserone-5-methyl ether −4.8881 1.1213 −4.2859 1.2524 A. dawei [66]

207 Hydroxydroserone −4.9712 1.0739 −3.7656 1.9742 A. dawei [66]

208 Ancistroquinone C −4.8894 1.4452 −4.2108 0.5425 A. dawei [66]

209 5,8-Dihydroxy-3-methoxy-2-
methyl-1,4-naphthoquinone −5.0591 1.0203 −3.5906 0.8949 A. dawei [66]

210 Malvone A −4.7003 0.6291 −4.7158 1.0717 A. dawei [66]

211 6-Hydroxy-3,5-dimethoxy-2-
methyl-1,4-naphthoquinone −4.8603 1.1151 −4.2108 1.2529 A. dawei [66]

212 1,8-Dimethoxynepodinol −4.8625 1.0642 −4.1478 0.9217 A. megalacantha [67]

213
3-Hydroxy-1-(1,7-dihydroxy-

3,6-dimethoxynaphthalen-2-yl)
propan-1-one

−5.8504 0.7746 −5.2376 1.0515 A. vera [168]

214 Plicataloside −3.4118 1.4389 −5.6793 1.2349 A. plicatilis [169]

215 Kenyaloside −7.2910 1.6098 −4.6954 1.3254 a Kenyan A. spp. [170]

216 Aloveroside A −7.5802 1.8561 −6.8612 1.5133 A. vera, A. spp. [69,123,171]

217 Isoeleutherin −4.3217 1.3635 −3.7234 0.6554 A. graminicola [167]

218

1-(4-Hydroxyphenyl)-6,9-
dihydroxy-7-methyl-8-acetyl-
1,2-dihydro-(3H)-naphtho[2,1-

b]
pyran-3-one

−3.8117 1.5671 −6.9288 0.9758 A. ferox [172]

VI-Alkaloids:

219 4,7-Dichloroquinoline −1.6976 0.2458 −3.5415 1.2153 A. hijazensis [82]

220 N, N-Dimethyl-(+)-coniine −1.9420 0.6273 −1.7066 1.3831 A. sabaea [173]
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Table A1. Cont.

No. Name of the Compound
Main Protease

(PDB ID: 6LU7)
Spike Glycoprotein

((PDB ID: 6M0J) Plant Source Ref.
Score RSMD Score RSMD

I-Anthraquinones:

221 γ-Coniceine −4.2358 0.9461 −3.6823 0.9519 A. sp. [173,174]

VII-Fatty acid derivatives:

222 10-Hydroxyoctadecanoic acid −6.1427 1.4991 −4.4657 1.1518 A. ferox [157]

223 10-Oxooctadecanoic acid -6.3362 1.0628 −5.8079 1.1759 A. ferox [157]

224 Methyl-26-O-feruloyl-
oxyhexacosanate −7.6053 1.7939 −7.2349 1.2702 A. megalacantha [67]

VIII-Miscellaneous compounds:

225 Nilic acid −4.0096 0.9979 −2.3951 0.6370 A. littoralis [113]

226 N-(4-Chlorobutyl) butanamide −4.7596 0.6115 −3.9758 0.9418 A. sabaea [173]

227 3-Furanmethanol −3.9177 0.9518 −3.4939 0.7289 A. arborescens [175]

228
3, 6-Dioxo-3, 3a, 6, 6

a-tetrahydropyrrolo [3, 4-c]
pyrrole-1, 4-dicarboxamide

−4.1012 1.7165 −3.8036 1.0232 A. vera [176]

229

1-(2,4-Dihydroxy-6-
methylphenyl)-1-(4-

hydroxyphenyl)
ethane

−4.7735 2.0838 −2.0969 1.0198 A. ferox [177]

230 Chlorogenic acid −4.1722 1.3907 −5.6761 1.2173 A. vera, A. arborescens [154]

231 Pluridone; (E)-form −4.9712 1.2855 −3.8181 1.0980 A. pluridens [178]

232 Feroxidin −4.3149 1.0601 −3.9958 1.0673 A. ferox, A. arborescens [69,70,72,86,
123,179,180]

233 Feroxin A −5.5313 1.4467 −5.2869 1.0687 A. spp. [181]

234 Feroxin B −6.6446 2.1091 −6.2902 1.7466 A. spp. [181]

235 Veracylglucan A −5.7829 1.2199 −4.7653 0.8308 A. vera [182]

236 Veracylglucan B −3.0836 1.0444 −1.0368 1.0780 A. vera [182]

237 Veracylglucan C −6.3433 2.2092 −7.2512 1.9263 A. vera [182]
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