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Abstract: Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome, also known
as drug induced hypersensitivity (DiHS) syndrome is a severe delayed hypersensitivity reaction
with potentially fatal consequences. Whilst recognised as T cell-mediated, our understanding of the
immunopathogenesis of this syndrome remains incomplete. Here, we discuss models of DRESS,
including the role of human leukocyte antigen (HLA) and how observations derived from new
molecular techniques adopted in key studies have informed our mechanism-based understanding of
the central role of Herpesviridae reactivation and heterologous immunity in these disorders.
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1. Introduction

Adverse drug reactions (ADRs) represent a significant cause of iatrogenic clinical
morbidity in patients and contribute to a major burden of healthcare related costs [1–5].
Whilst the majority of ADRs are attributed to “on-target”, predictable pharmacological
mechanisms of the drug, up to 20% of ADRs are referred to as Type B reactions, arising
from “off-target” immune mediated mechanisms [6,7]. Immune mediated (IM) ADRs were
often thought to be idiopathic and unpredictable, and include syndromes associated with
immunological memory, driven by antibodies (Gell–Coombs types I-III) or T cell-mediated
(Gell–Coombs type IV) effector cells.

T cell-mediated delayed drug hypersensitivity reactions (DHRs) form a clinically
diverse group of entities. These include cutaneous restricted syndromes (e.g., maculopapu-
lar exanthem (MPE), acute generalised exanthema pustulosis (AGEP), Stevens–Johnson
syndrome (SJS), toxic epidermal necrolysis (TEN)), organ specific syndromes (e.g., drug-
induced liver injury (DILI)) and systemic syndromes (e.g., drug reaction with eosinophilia
and systemic symptoms (DRESS)) [8].

DRESS, also known as drug induced hypersensitivity syndrome (DiHS), is a rare,
severe delayed drug-induced hypersensitivity reaction that carries high morbidity and risk
of death. DRESS is more commonly seen in adults but has no gender predilection. The
frequency varies depending on the specific drug. As an example, the frequency of DRESS
following carbamazepine or phenytoin exposure ranges between one to five per patients,
whilst a rate as high as 1 in 300 patients has been observed in patients receiving lamotrig-
ine [9,10]. The clinical presentation is variable and often challenging to initially diagnose.
Typically, patients present with fever, lymphadenopathy, widespread erythema and fa-
cial oedema. Presentation is generally noted between two weeks and three months after
commencing an offending drug. Systemic involvement may include hepatitis, interstitial
pneumonia, interstitial nephritis, and eosinophilic myocarditis. Haematological mani-
festations include lymphadenopathy, striking blood and tissue eosinophilia, peripheral
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lymphopaenia, or atypical lymphocytosis (see Table 1). The broad differential, diverse skin
manifestations, and latency from offending drug commencement to clinical presentation,
necessitates a high index of clinical suspicion to correctly secure a diagnosis.

Table 1. RegiSCAR drug reaction with eosinophilia and systemic symptoms (DRESS) inclusion
criteria *** [11].

1 Hospitalisation

2 Skin eruption

3 Fever >38 ◦C

4 Lymphadenopathy at least 2 sites

5 Involvement of at least one internal organ

6a Lymphocytosis (>4 × 103/µL) or lymphopenia (<1.5 × 103/µL)

6b Eosinophilia >10% or >700/µL

6c Thrombocytopaenia (<120 × 103/µL)
*** At least 3 criteria must be fulfilled.

Although there are similarities in the clinical findings and presumptive pathogenesis
between DRESS and other forms of delayed hypersensitivity, there are clear clinical dif-
ferences. In SJS/TEN, skin detachment is a key clinical finding, as is the relatively short
onset from commencement of offending drug to presentation. Notably, Herpesviridae
reactivation is not typical of SJS/TEN, whilst in DRESS, it has formed part of the diagnostic
clinical criteria in some countries (see Table 2) [12]. Haematological parameters in DRESS
are also unique amongst drug hypersensitivity reactions, particularly the striking finding
of peripheral and tissue eosinophilia, atypical lymphocytosis or lymphopaenia. Questions
remain unanswered regarding the drivers that result in the recruitment of different effector
mechanisms and yield distinct clinical phenotypes between DRESS and other DHRs. We
summarise the most recent literature, including observations derived from single cell RNA
sequencing (scRNAseq) that strengthen the hypothesis that Human Herpesviridae (HHV)
reactivation is an early and critical event in DRESS pathogenesis.

Table 2. Diagnostic criteria for drug-induced hypersensitivity syndrome (DiHS) established by the
Japanese Consensus Group *** [13].

1 Maculopapular rash developing >3 weeks after starting with a limited number of drugs

2 Prolonged clinical symptoms 2 weeks after discontinuation of the causative drug

3 Fever >38 ◦C

4 Liver abnormalities (alanine aminotransferase >100 U/L)

5 Leucocyte abnormalities (at least one present)
a Leucocytosis (>11 × 109/L)
b Atypical lymphocytosis (>5%)
c Eosinophilia (>1.5 × 109/L)

6 Lymphadenopathy

7 HHV-6 reactivation
*** The diagnosis is confirmed by the presence of the seven criteria (typical DiHS) or of five criteria
(atypical DiHS).

2. Models of T Cell-Mediated Hypersensitivity

Whilst the central role of T cell-mediated immunity in delayed hypersensitivity is
undisputed, our understanding of the underlying mechanisms underpinning these re-
actions remains limited. Three models by which small molecules interact to elicit T cell
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responses have been proposed: the hapten model, the pharmacologic-interaction (p-i)
model, and the altered peptide repertoire model.

The hapten model results from covalent interactions between an endogenous carrier
protein and the drug or metabolite. This creates an altered endogenous molecule which can
undergo intracellular processing to create a neopeptide. When presented by major histo-
compatibility complex (MHC), the T cell recognises these neoantigens as “foreign”, thereby
eliciting T cell proinflammatory effector activity [14–16]. A well-recognised example
includes the alteration of the nitroso sulphamethoxazole metabolite of sulphamethoxa-
zole [14]. Similarly, β-lactam hypersensitivity can be mediated by interactions with the
carrier molecule albumin [17]. Penicillin derivates bound to serum albumin lysine residues
have been shown to stimulate drug specific T cell clones in in vitro lymphocyte proliferation
assays [18], evidencing the molecular mechanism of the hapten model.

In the p-i model, non-covalent binding by the drug to a T cell receptor (TCR) directly
activates drug-specific T cells in a peptide-independent setting [19]. The observation that T
cells can be activated by an offending drug following the fixation of antigen-presenting
cells (APCs), supports this hypothesis [20,21], and also may provide a rationale for in vitro
studies that demonstrate rapid T cell proliferation following the first drug exposure [19].

The altered peptide repertoire model requires that the binding of the drug alters
the chemical structure of the peptide binding groove of the MHC, resulting in new TCR
specificity [22,23]. An example of the altered peptide repertoire model is abacavir hypersen-
sitivity. Abacavir is a nucleoside reverse transcriptase inhibitor, used in the management
of chronic human immunodeficiency virus (HIV)-1 infection. Abacavir hypersensitivity
syndrome, characterised by fever, gastrointestinal and respiratory symptoms, was seen in
up to 8% of patients commencing abacavir, with typical onset within six weeks [24,25]. In
abacavir hypersensitive patients, CD8+ T cells are activated following exposure to human
leukocyte antigen (HLA)-B*57:01 MHC in ex vivo settings [26]. Abacavir naïve T cells
from HLA-B*57:01 positive patients also demonstrate proliferation and activation follow-
ing abacavir exposure [27]. Direct evidence of the altered peptide repertoire in abacavir
hypersensitivity was demonstrated by visualisation of the crystal structure of HLA-B*57:01
peptide complexed to abacavir [28]. Direct, non-covalent interactions between abacavir and
the binding cleft of HLA-B*57:01 were observed. Up to 45% of the peptides from abacavir-
exposed HLA-B*57:01 APCs were altered compared to abacavir naïve cells, confirming
chemical alteration of the MHC repertoire [28].

The recognition of the HLA class I allele HLA-B*57:01 and its association with the
abacavir hypersensitivity syndrome [29,30], culminated in the widespread uptake of phar-
macogenomic testing prior to abacavir commencement and has now become the standard
of care [26,31]. Indeed, it was demonstrated that HLA-B*57:01 testing carried a 100%
negative predictive value for the abacavir hypersensitivity syndrome [31]. Similar pharma-
cogenomic studies have identified the clinical utility of HLA testing in carbamazepine and
vancomycin [32,33]. The former’s association with HLA-A*31:01 was the first identified
HLA association specifically predisposing to DRESS [34]. Importantly, this observation
further supports the assertion that antigen-specific T cell responses are central to DRESS
pathogenesis.

3. T Cell Repertoire Ontogeny and the Role of Human Herpesviridae (HHV)

The T cell repertoire is required to recognise a broad range of antigens, corresponding
to potential pathogens. Traditionally, the clonal selection theory is predicated on the
concept that one T cell clone is able to recognise one epiptope [35]. Challenging this
theory is the limitation in the combinatorial TCR specificity able to be generated by VDJ
rearrangement [35]. Indeed only ~108 human clonotypes can be generated through VDJ
rearrangement alone, whilst a host might be expected to recognise and respond to 1015

peptides over the course of a lifetime [35].
One concept allowing increased diversity is the creation of TCRs that can respond

to multiple epitopes. This results in polyspecific TCRs capable of recognising peptides
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from more than a single pathogen. This paradigm refers to heterologous immunity and is
thought to be an important driver of memory T cell pool ontogeny, derived from human
herpesvirus (HHV)-specific T cells [36,37]. Plasticity of the TCR, particularly at the site of
complementarity-determining regions (CDR) flexible hinges, enable alterations in MHC
docking, through induction of small physicochemical and thermodynamic changes to the
relevant contact residues and CDRs [38]. In this way, TCRs may interact with epitopes with
little or even no overlap in contact residues, and can account for the ability for one TCR
clonotype to ligand up to 106 different peptide–MHC combinations [35].

Though clearly important for pathogen recognition, heterologous immunity has also
been postulated as responsible for the development of class I restricted alloimmunity [39–41],
as well as the formation of drug-specific T cells. T cells primed by common candidate
pathogens have the potential to be stimulated by neoantigens created following drug expo-
sure. Notably, the ability to activate either naïve or memory T cells may assist in accounting
for the differences in latency of clinical reactions in DRESS. Activation of memory T cells
with pre-existing infrastructure that obviates the need for intracellular processing and even
MHC may yield more rapid acquisition of effector posturing by the T cell [42,43].

HHVs are likely candidate pathogens for the development of a TCR repertoire that
may subsequently interact with drug-induced neopeptide–MHC. HHVs establish lifelong
infection with the ability to periodically replicate, thereby repriming and expanding virus-
specific memory T cells [44–47]. Indeed, in cytomegalovirus (CMV) seropositive patients,
CMV-specific memory T cells form up to 40% of the total memory CD4+ T cell pool [44–47].

4. HHV Replication and DRESS

Viral replication of latent HHV has been identified in the majority of patients exhibiting
DRESS, and may be an important step in its pathogenesis [48–52]. Notably, Ebstein-
Barr virus (EBV) and HHV-6 are capable of inducing a syndrome characterised by fever
and rash [13]. Whilst memory T cells capable of engaging neoepitope created by drug–
peptide–MHC are present irrespective of viral replication, the presence of pathogens
may contribute to persistence of inflammation and drug-specific T cell activation through
continuous de novo priming of pathogenic CD8+ T cells [53]. Indeed, DRESS patients
can exhibit clinical features and relapses several weeks after the offending drug has been
withdrawn and completely metabolised [54]. Notably, HHV-6 replication in peripheral
blood mononuclear cells (PBMCs) has been identified as long as 800 days after the initial
DRESS reaction [55], suggesting a role in the persistent immune dysregulated state. An
observation that has challenged the inciting role of HHV reactivation in DRESS is that not
all patients have detectable viral PCR in peripheral blood during clinical reaction or, if
present, develop detectable levels several weeks after presentation [49]. High resolution
viral RNA sequencing techniques can identify early stages of viral replication through the
presence of small non-coding RNAs (sncRNAs), well before the presence of detectable
viral replication by PCR [56]. Supporting this observation, CD4+ T cells in patients with
DRESS harbouring HHV-6 demonstrated increased gene transcripts associated with HHV-6
reactivation, however did not achieve fold increases in HHV-6 antibody titres [55]. Single
cell sequencing techniques may substantially improve the sensitivity of viral replication
detection, assist in attributing a diagnosis of DRESS, and further establish pathogenesis [56].

Another key observation is the finding that drugs commonly implicated in DRESS
are capable of inducing viral replication of latent EBV in patients’ B lymphocytes cultured
in vitro [57]. This phenomenon seems unique to DRESS and may contribute to the phe-
notypic posture of effector cells recruited [12]. Furthermore, in one study, EBV-specific
CD8+ T cells were massively expanded such that they represented up to 200× the normal
proportion of circulating EBV specific CD8+ T cells [12]. These effector cells can be found in
DRESS patients including in the liver, lung, and skin [12]. This mechanism may also help
to explain the finding of sequential induction of DRESS in patients administered drugs
structurally distinct to a previous offending agent, such as carbamazepine or valproic acid.
In this example, carbamazepine represents an aromatic amine, whilst valproic acid does not.



Int. J. Mol. Sci. 2021, 22, 1127 5 of 11

However, both inhibit histone deacetylase, which can result in EBV replication [12,58,59].
Notably, in the case of a patient with trimethoprim/sulfamethoxazole-induced DRESS, TCR
sequencing did not demonstrate a restricted TCR repertoire [60]. Rather, a large proportion
of skin homing (CCR4+, CCR10+) central memory T cells harboured significant HHV-6
DNA, possibly leading to activation via non-classical mechanisms [60]. Fascinatingly, ex
vivo drug-induced T cell proliferation could be inhibited by treatment with ganciclovir [60].
This observation might be explained by the finding that DRESS patients upregulate OX40
(also known as CD134) on CD4+ T cells, an HHV-6 cellular receptor, which, when restricted
by its ligand, promotes persistent T cell activation [61]. The administration of potent
anti-viral therapy may reduce the stimulatory burden of HHV-6 which otherwise subverts
this immune checkpoint pathway.

Another mechanism by which viral reactivation may occur relates to the cytokine
environment established by activated inflammatory cells. Activated T cells in DRESS pro-
duce significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)γ and interleukin
(IL)-2 [12,62]. TNF-α has been demonstrated to induce CMV and HHV-6 reactivation by
upregulating the expression of CMV immediate early (IE) genes and the R3 region of
HHV-6, respectively [63,64]. Promotor regions for the CMV IE genes and R3 region of
HHV-6 carry binding sites for key pro-inflammatory transcription factors such as NF-κB
and cAMP response element-binding protein (CREB), which in turn, are key mediators
of TNFα signalling [63,64]. Observational data demonstrate that TNF-α is particularly
elevated in DRESS patients where evidence of HHV-6 reactivation has occurred [65,66].

5. T Cell Effectors Are Context-Specific and Correspond to the Stage of DRESS

It is increasingly apparent that the natural history of DRESS involves multiple clinical
stages that correspond to alterations in T effector cell populations [67,68]. The role of
Treg cells is likely central to the pathogenesis of DRESS. Unlike SJS/TEN, expansion of
Treg cells in peripheral blood and skin compartments is a striking feature of the acute
stage of DRESS [57,67,68]. In upregulating the activity of Treg in the skin, DRESS patients
mitigate the pro-inflammatory posture of effector cells that result in epidermal necrosis
in SJS/TEN. Counterintuitively, DRESS demonstrates features of immunodepression, in-
cluding hypogammaglobulinaemia, increased IL-10, and reduced B cell numbers [69–71].
Consequently, the induced Treg response may promote and perpetuate viral reactivation of
latent HHV within the skin and other organ-specific locations. This contributes to clinical
latency from the commencement of the offending drug, to the onset of clinical reactions in
DRESS as well as subsequent clinically apparent flares [57].

Notably, DRESS is also associated with propensity towards subsequent development
of autoimmunity [67,68]. Longitudinal immunophenotyping from the peripheral blood of
DRESS patients demonstrates Treg population contraction and exhaustion over time [57].
Furthermore, as our understanding of peripheral Treg ontogeny has grown, we know that
Treg exhibits significant plasticity and can adopt TH17 phenotypic characteristics in an
appropriate pro-inflammatory environment, including the presence of IL-6 [67,72,73]. In
the acute stage of DRESS, classical monocytes are found in excess of proinflammatory
monocytes and produce high levels of IL-10 in addition to transforming growth factor
(TGF)-β, thereby expanding Treg populations [67]. Over time, recruited proinflammatory
monocytes, with anti-viral activity, produce cytokines including IL-6, leading to a shift
towards TH17 responses, and increased risk of subsequent autoimmunity. In future, im-
proved characterisation through the use of single cell RNA sequencing (scRNAseq) and
transcriptomic analysis will help to establish the key gene expression driving immune
responses and assist in selection of targeted therapies [60].

The mechanism that leads to classical monocyte and Treg cell recruitment and expan-
sion in DRESS remains uncertain, although the role of thymus and activation regulated
chemokine (TARC) may be relevant [74]. TARC is a member of the CC chemokine family
and is the ligand for CCR4 which is expressed by a range of immune and non-immune cells,
including CD4+ T cells, endothelial cells, and monomyelocytes. It has a key role in TH2
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homeostasis [75] and possibly Treg recruitment [76]. TARC has been shown to be relevant
to the pathogenesis of eczema [77]. In DRESS, TARC levels are significantly elevated
relative to SJS/TEN and correspond to the acute phase of DRESS including cutaneous
eruption [74]. Notably, higher levels of TARC are significantly associated with increased
severity of DRESS [78–80]. TARC elevation also predicts the presence of HHV-6 reactiva-
tion [74,78] and seems to be produced by dermal dendritic cells in DRESS. TARC is also
likely to be responsible for peripheral and tissue eosinophilia in DRESS. TARC is a potent
chemoattractant for eosinophils, promotes IL-5 and eotaxin production [74,77]. Increased
TARC elevations promote cutaneous lymphocyte homing via the recruitment of cutaneous
lymphocyte antigen (CLA) carrying CD4+ and CD8+ T cells and expand circulating IL-13+
T cells [81]. In this way, it is likely that TARC is an early signal that stimulates a TH2 and
Treg bias. How, if at all, TARC interacts with innate immune cells including classical or
proinflammatory monocytes is yet to be determined, but could act as a danger molecule in
concert with others such as thymic stromal lymphopoietin (TSLP) and IL-33 to promote
innate lymphoid cell and myeloid activation in DRESS [82,83] (see Figure 1). Indeed, TARC
levels correlate with peripheral eosinophil counts and likely play an orchestrating role in
the recruitment of key effector cells, including Treg and eosinophils, in the early phases
of DRESS. Certainly, whilst IL-5 and IL-13 have been assessed as targets for treatment in
DRESS, clinical responses to therapy have achieved normalisation of circulating TARC
levels [84,85].
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It should be noted that specific drugs have been shown to exhibit clinically distinct
findings in DRESS. As an example, lamotrigine DRESS yields lower alanine transferase
(ALT), TARC, and HHV-6 levels [86]. This suggests that different drug metabolites may
possess differing potential for the upregulation of TARC and HHV viral replication. In-
terestingly, specific drugs can induce tissue stromal cells to upregulate transcriptional
factors that promote biased T cell responses. In the case of the proton pump inhibitors,
omeprazole and esomeprazole, aryl hydrocarbon receptor signalling is promoted, thereby
inducing a regulatory T cell phenotype which may be exploited therapeutically in immune
dysregulated states [87,88]. Whether a drug related effect promotes HHV reactivation
and/or TARC production by the tissue microenvironment, remains an unanswered ques-
tion that may assist in establishing the early cascade of events that trigger DRESS pathology.
Nonetheless, increasing evidence suggests a role for type 2 biased inflammatory pathways
in DRESS, of which TARC and potentially TSLP and IL-33 are central [60,82].

6. Conclusions

DRESS is a clinically heterogeneous entity that results from delayed hypersensitivity
to an offending drug. Whilst a member of the DHRs that are mediated by T cells, the role of
HHV reactivation, anti-viral immune responses and heterologous immunity is likely to be
central to the pathophysiology of DRESS. Relative changes in the recruitment of different
T cell subpopulations including Treg likely contributes to the distinguishing phenotype
seen in DRESS from other DHRs, including SJS/TEN. Many further questions remain,
including the mechanisms that determine why certain HLA alleles (e.g., carbamazepine and
HLA*B15:02) carry risk for SJS/TEN but not DRESS; why high-risk HLA carriage and drug
exposure is not sufficient in developing DHR; and why, in settings of established DRESS,
patients can accrue reactions to structurally distinct drugs. An improved model of the
sequential mechanisms that lead to HHV reactivation may yield a better understanding of
the paradox of immune activation, inflammation and immune deficiency that characterises
DRESS.

There are two parallel pathways to cytotoxic T cell activation and proliferation:

(1) Generation of specific anti-drug effector T cells via recognition through MHC and
TCR interactions;

(2) Direct drug-mediated HHV viral reactivation and replication in host reservoir cells
generating anti-viral cytotoxic T cells.

Pathways leading to eosinophil recruitment and IL-13+CD4+ and IL-10+CD4+ cell
proliferation involve tissue microenvironment signalling via TARC and likely TSLP and
IL-33. Further work is required to establish how these signals are generated in the context
of DRESS.

Author Contributions: Both authors contributed equally to the review. All authors have read and
agreed to the published version of the manuscript.

Funding: This review received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

APC, antigen presenting cell; CCR4, C-C chemokine receptor type 4; CLA, cutaneous lymphocyte-
associated antigen; DC, dendritic cell; EBV, Ebstein Barr Virus; HHV-6, human herpesvirus-6; IFNγ,
interferon γ; IL, interleukin; ILC-2, innate lymphoid-like cell 2; TARC, thymus and activation reg-
ulated chemokine; TGF-β, transforming growth factor β; TNF-α, tumour necrosis factor α; TSLP,
thymic stromal lymphopoietin.
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