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Abstract
The advent of interstitial chemotherapy has significantly increased therapeutic 
options for patients with malignant glioma. Interstitial chemotherapy can deliver 
high concentrations of chemotherapeutic agents, directly at the site of the brain 
tumor while bypassing systemic toxicities. Gliadel, a locally implanted polymer 
that releases the alkylating agent carmustine, given alone and in combination 
with various other antitumor and resistance modifying therapies, has significantly 
increased the median survival for patients with malignant glioma. Convection 
enhanced delivery, a technique used to directly infuse drugs into brain tissue, 
has shown promise for the delivery of immunotoxins, monoclonal antibodies, and 
chemotherapeutic agents. Preclinical studies include delivery of chemotherapeutic 
and immunomodulating agents by polymer and microchips. Interstitial chemotherapy 
was shown to maximize local efficacy and is an important strategy for the efficacy 
of any multimodal approach.
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INTRODUCTION

The introduction of interstitial chemotherapy has 
dramatically changed the therapeutic and prognostic 
prospects of patients with malignant glioma  (MG). The 
main features of MGs, which include the World Health 
Organization  (WHO) Grade  III gliomas  (anaplastic 
astrocytoma, AA) and Grade  IV gliomas  (glioblastoma 
multiforme, GBM), are an aggressive growth pattern, their 
refractory nature, and an especially poor prognosis. MGs are 
locally aggressive within the central nervous system (CNS), 
and very rarely metastasize to other locations.[41,69]

Due to their invasiveness and high proliferation ratio, 
as shown by histological and clinical evidence,[25,37] 

the complete surgical resection of a MG mass, even 
when supported by intraoperative magnetic resonance 
imaging  (iMRI), only has limited beneficial impact on 
patient survival.[41] The efficacy of postoperative adjuvant 
therapies on the residual tumor cells is undermined by 
the unique anatomical environment surrounding the 
brain and the tumor‑related physio‑anatomic barriers 
within the brain.[1]

Interstitial chemotherapy delivers localized administration 
of drugs using polymer implants directly at the site 
of the brain tumor. As such, interstitial chemotherapy 
plays a crucial role in the context of present and future 
multimodal approaches to MG.[46] Since the completion 
of randomized trials demonstrating the value of 
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Gliadel®  (biodegradable polymeric wafers that deliver 
carmustine), temozolomide  (TMZ) has been shown to 
induce responses in recurrent high‑grade glioma and 
to improve median survival and results in relatively 
longer‑term survival when used in the initial management 
of newly diagnosed patients.[24,62,70] Nonetheless, the 
combination with local implantation of carmustine‑loaded 
wafers, which is capable of boosting survival, forms an 
essential part of the treatment for this disease, especially 
considering its extraordinarily poor prognosis.

Maximal therapy for patients with MGs consists of 
surgical debulking followed by multimodal therapy 
approaches with radiation therapy and a combination 
of systemic and local chemotherapy. This had led 
to a 9‑month improvement in survival resulting in 
19.8–21.5 months median survival.[38]

GLIADEL®: CLINICAL EXPERIENCE

Carmustine, or BCNU 1‑3‑bis (2‑chloroethyl)‑1‑nitrosourea 
effect, is mediated by its chloroethyl moieties, which 
can alkylate reactive sites on nucleoproteins[72] and 
interfere with DNA synthesis and repair.[67] This agent 
forms intrastrand crosslinks in DNA, thus impairing 
DNA transcription and replication[29] (the high alkylating 
activity of BCNU is also the cause of its main side 
effect, interstitial pneumonitis, due to DNA injury to the 
alveolar lining cells[68] and suppression of hematopoiesis.[35] 
Another mechanism of activity is the carbamoylation of 
nucleoprotein lysine residues, with subsequent decrease in 
RNA and protein synthesis.

After both oral and intravenous administration, BCNU 
has a very short life, with the parent drug not being 
detectable after 5 min[42] and its active metabolites being 
detected in urine up to 72 h after the initial dose. Systemic 
delivery of this drug is associated with hematopoetic 
suppression  (leukopenia, thrombocytopenia), pulmonary 
toxicity  (pulmonary fibrosis), hepatic toxicity, and renal 
failure, with low levels resulting in the brain.[72] The local 
delivery of carmustine makes it possible to have a peak 
of approximately 19.4  ng/mL BCNU 3 h after Gliadel® 
insertion, which is lower than 1/600 of the peak BCNU 
level recorded after intravenous injections. Its levels 
decrease to less than the detection limit  (2.00  ng/mL) 
after 24 h.[44]

The polymer currently used in patients is composed 
of polyanhydride poly[1,3‑bis (carboxyphenoxy) 
propane‑co‑sebacic‑acid] (PCPP‑SA) and incorporates 
the chemotherapeutic drug, carmustine.[8‑10] In earlier 
studies, other types of materials were examined for 
polymeric design, including ethylene‑vinyl acetate 
copolymer  (EVAc),[59,60] fatty acid dimer‑sebacic 
acid  (FAD‑SA) copolymer, poly  (lactide‑co‑glycolide) 
polymers or microspheres,[62] and poly (lactide‑co‑glycolide) 

nanospheres, among others.[18,19,50] These different types 
of polymers have different abilities to incorporate a 
variety of drugs. Polymers composed of EVAc have been 
used to incorporate carmustine;[21,22] FAD‑SA have been 
used for hydrophilic drugs, such as carboplatin;[43] and 
poly  (lactide‑co‑glycolide) for larger molecular weight 
compounds, such as 5‑fluorouracil.[39] Despite these 
varying biomaterials, only Gliadel®, BCNU‑impregnated 
pCPP‑SA, has been used in patients.[8‑10,62,70]

Interstitial chemotherapy with Gliadel® has been shown 
in randomized trials to improve outcome when used 
either as multimodality initial therapy in patients with 
newly diagnosed MG[62,70] or as an adjunct to surgery for 
recurrence.[8,70]

Interstitial chemotherapy via sustained‑released polymer 
wafer involves the implantation in the surgical cavity 
of chemotherapeutic drugs loaded in biodegradable 
polymers. After implantation into the surgical cavity, the 
wafers undergo a constant degradation, thereby providing 
a sustained release of drug into the tumor cavity and 
surrounding brain parenchyma. These drug‑impregnated 
polymers bypass the blood–brain barrier and are able to 
achieve high local chemotherapeutic concentrations, 
while minimizing systemic toxicity. Unlike local delivery, 
systemic administration of drugs requires long distance 
transport of higher systemic drug levels; hence, it entails 
more toxicity, and a significant portion of the drug is 
degraded before reaching its target site.[8‑10]

In 1987, a Phase I/II clinical trial was conducted to identify 
the best‑tolerated carmustine dose, where carmustine doses 
of 1.9%, 3.8%, and 6.4% per weight were used, and there 
were no significant side effects in any of the dosing groups. 
The median survival was 65, 64, and 32 weeks for the 1.9%, 
3.8%, and 6.4% concentration groups, respectively. Because 
of the increased survival at 3.8% concentration as compared 
with 6.4%, a carmustine dose of 3.8% was selected for 
further clinical trials.[9] However, in 2003, a dose‑escalation 
clinical study was conducted to evaluate higher 
concentrations of carmustine in patients with MGs.[44] 
Polymers with 6.5%, 10%, 14.5%, 20%, and 28% carmustine, 
by weight, were assessed, and the maximum tolerated 
dose was 20%  (approximately five times the standard 
dose) without an increase in side effects.[44] Furthermore, 
the serum level of BCNU at the highest concentration of 
20% serum was 27  ng/mL at 4 h. Regardless, the standard 
carmustine concentration remains 3.8% by weight.

The first randomized efficacy trial was conducted in 
patients with recurrent MGs. In this Phase III study of 
222 patients from 27 institutions, patients were randomized 
to receive carmustine wafers impregnated with either 3.8% 
carmustine or no carmustine.[10] The median survival for 
the carmustine wafer cohort was 31  weeks as compared 
with 23  weeks for the placebo cohort  (P  =  0.006). 
Following Food and Drug Administration  (FDA) approval 
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for recurrent MGs, carmustine wafers were also tested in 
newly diagnosed MGs.[62,70,71] In a Phase III study that was 
prematurely stopped because of lack of access to the wafers, 
32  patients  (16 per group) with newly diagnosed MGs 
were randomized to receive carmustine wafers or empty 
wafers.[29] The treatment group had a significantly longer 
median survival compared with the placebo group (58.1 vs. 
39.9 weeks).[62] A larger Phase III clinical trial of 240 total 
patients was subsequently conducted. The median survival 
for the treatment group was significantly longer than the 
placebo group (13.9 vs. 11.6 months).[70,71]

GLIADEL: COMBINATION STUDIES 
WITH RADIOTHERAPY AND SYSTEMIC 
TEMOZOLOMIDE

More recently, the survival advantage of carmustine 
wafers in combination with radiotherapy and systemic 
TMZ was validated in retrospective, multiinstitutional 
French and Japanese studies for both newly diagnosed 
and recurrent MGs.[15,40] The French retrospective study 
showed improved survival compared with the Phase 
III, reporting a median survival of 16  months for newly 
diagnosed MGs and 7  months for recurrent MGs. This 
study also demonstrated the impact of total and subtotal 
resection on survival for both de novo and recurrent MGs 
and demonstrated that the combination of Gliadel® and 
radiochemotherapy with TMZ was well tolerated and 
could increase survival without increasing adverse 
events  (AEs).[42] Another retrospective study carried out 
in Japan proved comparable to those of previous studies 
in the United States and Europe. The study showed 
overall survival rates of 100.0% and 68.8% at 12 and 
24  months, and a progression‑free survival rate of 62.5% 
at 12  months in newly diagnosed MGs and of 37.5% at 
6  months in recurrent MGs.[2] The wafers in this study 
were shown to be safe with no AEs.

Another recent study, conducted prospectively and 
multicentrically on 92  cases, reported a median of 
10.5  months progression‑free survival and a median 
of 18.8  months of overall survival.[15] This study 
further confirms that the multimodal treatment of 
implanted carmustine chemotherapy and concomitant 
radiochemotherapy with TMZ yield better survival 
rates than those where carmustine or TMZ are used 
alone and independently from one another.[15] Another 
study conducted in the United  Kingdom showed that 
multimodal treatment with carmustine wafers was 
associated with a median survival of 15.3 months.[3]

GLIADEL: COMBINATION STUDIES WITH 
OTHER CHEMOTHERAPEUTIC AGENTS

The efficacy of the Gliadel® implantation has been 
investigated in combination with both local and 

systemic chemo‑immunotherapy. The combination of 
Gliadel® and permanent I‑125 Seeds was addressed 
in four different clinical trials enrolling recurrent 
MG patients. The combination, apart from radiation 
necrosis  (seen in up to 24% of the patients), was safe 
and resulted in favorable overall survival compared with 
Gliadel® monotherapy.[6,14,74] In the most recent study, 
conducted on a small subset of 17 patients with recurrent 
glioblastoma, the concomitant treatment of local 
iodine‑125 and Gliadel® yielded an overall survival rate 
higher than Gliadel® alone (60 vs. 31 weeks).[28]

Gliadel® and radiation have safely been combined 
with various systemic chemotherapeutic agents, such 
as carboplatin in a Phase I trial on patients newly 
diagnosed with MGs[34]); PVC  (procarbazine, lomustine, 
and vincristine) chemotherapy in newly diagnosed 
patients with MG in the context of a Phase I/II clinical 
trial;[32] and multiagent chemotherapy  (TMZ, CCNU, 
CPT‑11).[51] Gliadel® was also explored in combination 
with intravenous irinotecan,[52] and was reported to 
be well tolerated and possibly more effective than 
monotherapy in patients with recurrent GBM.

The tumor’s ability to develop resistance mechanisms has 
been another obstacle for chemotherapeutic agents to 
overcome. One manner of resistance is the over‑expression 
of O6‑alkylguanine‑DNA alkyltransferase  (AGT), 
which protects the tumor from the mutagenic and 
toxic lesions induced by the BCNU. To obviate this, 
Gliadel® in combination with systemic delivery of 
O6‑benzylguanine  (O6BG), an inactivator of AGT able 
to suppress the AGT activity, has been investigated.[17,23] 
The initial trial of O6BG in patients with brain tumors 
demonstrated suppression of AGT activity when O6BG 
was administered at a dose of 120  mg/m2  18 h before 
surgery[23] This study was followed by a Phase I trial of 
Gliadel® combined with a well‑tolerated concentration 
of O6BG administrated as a 120 mg/m2 bolus 1 h before 
surgery as well as by continuous infusion at 30 mg/m2/day 
for up to 7 days.[66] The Phase II clinical trial of Gliadel® 
plus O6BG in recurrent GBM patients showed an 80% 
6‑month survival with 47  weeks median survival; A 
significant improvement compared with Gliadel® alone, 
which had a median survival of 56% 6‑month survival 
and 31 weeks.[6,47]

FUTURE PROSPECTS

Interstitial chemotherapy, besides playing an 
important role in a regimen of radio and multi‑agent 
chemotherapy, holds significant promise in emerging 
radio‑immunotherapy strategies.

The relationship between the immunosuppressive effect 
of MGs and tumor progression as well as patient survival 
has been established.[21] As yet, immunomodulating 
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agents such as IL2 have only been evaluated in 
combination with BCNU in animal models. The 
combination of IL2 and BCNU, both locally delivered, 
has shown higher survival compared with those animals 
that received either one of the two drugs alone or the 
placebo implants.[50] However, recently, in a Phase I study, 
BCNU wafer implants combined with Dendritic Cell 
vaccination was shown to be safe and feasible with only 
one grade 3 AEs.[73]

The use of bevacizumab was recently approved by 
the FDA as second line in monotherapy for recurrent 
glioblastoma and, in Japan, for newly diagnosed 
glioblastoma. This is evidence of the wide recognition 
of the crucial role of antiangiogenic agents in the 
treatment of MGs. In this view, some preclinical studies 
deserve particular mention. One set of studies has shown 
the efficacy of local delivery of bevacizumab either 
alone or in combination with radiation and TMZ.[20] 
Other studies indicate that an antiangiogenetic agent, 
minocycline, originally used for its antibiotic effects, may 
be used as an effective antitumor agent when locally 
delivered.[7] Minocycline has also been shown to have a 
synergistic effect in combination with BCNU, resulting 
in significant extension of the median survival  (82%) 
compared with BCNU alone  (P  <  0.0001) in an animal 
model of glioma.[16] This study, similarly to many other 
promising preclinical animal models, is further evidence 
that intracranially implanted polymers can successfully 
deliver various chemotherapeutic agents.

Interestingly, preclinical animal studies have shown 
polymers impregnated with TMZ have a significantly 
extended median survival as compared with oral TMZ[11] 
and improved efficacy with the combination of TMZ 
polymer, BCNU polymer, and radiotherapy.[49] As shown 
in multiple preclinical studies in animal models, the 
efficacy of BCNU and TMZ‑impregnated polymers are 
representative of the effectiveness of the multimodal 
approach of interstitial chemotherapy.

ALTERNATIVE STRATEGIES

Convection‑enhanced drug delivery
Convection‑enhanced drug delivery  (CED) is an 
alternative local drug delivery technique for the treatment 
of MGs. Since CED was introduced by Bobo et  al., in 
1994,[5] CED has evolved greatly and been part of several 
clinical trials.

Several key factors affect the distribution of solutes 
delivered using CED, including infusion rate, cannula 
shape and size, infusion volume, interstitial fluid pressure, 
particle characteristics, and tumor tissue structure.[48] 
Data from animal studies have shown that CED allows 
for uniform distribution of infusate covering distances of 
up to 3 cm from the site of catheter placement.[5]

However, the distribution of solutes becomes more 
complex within the brain of patients with MGs due 
to the effects that surgery, edema and leakage of 
drug into the subarachnoid space have on the tissue 
pressure gradients.[54] The advent of computer models 
and algorithms that predict drug distribution, the 
development of new catheter designs and the utilization 
of tracer models and nanocarriers have led investigators 
to refine and improve this delivery method.[54,55]

Recent clinical trials using CED for treating MGs have 
involved the delivery of different agents. These agents 
include: Targeted immunotoxins,[4,22] such as Tf‑CRM107 
and mutated forms of Pseudomonas exotoxin combined 
with IL‑4; IL‑13 ligands and EGFR‑binding ligands; 
iodine‑labeled chimeric monoclonal antibodies, such as 
Cotara®; and systemic chemotherapeutic agents, such 
as topotecan, carboplatin, and paclitaxel. Paclitaxel 
has shown to have acceptable safety profiles in Phase 
I/II clinical trials and, currently, recruitment for 
dose‑escalation analysis for Phase III clinical trials is 
underway.[45]

TP‑38 is a recombinant chimeric targeted toxin containing 
the EGFR binding ligand, transforming growth factor 
alpha  (TGF‑α), and a genetically engineered form of 
the Pseudomonas exotoxin, called PE‑3n8. In 2001, 
a Phase I/II clinical trial examined the toxicity and 
response of TP‑38 delivered by CED and revealed an 
acceptable safety profile.[53] The overall median survival 
after TP‑38 was 23  weeks  (range: 1.1–83.1  weeks). The 
median survival for patients with residual disease was 
18.7  weeks, whereas those without radiographic evidence 
of residual disease had a median survival of 32.9 weeks.[53] 
A subsequent Phase III trial was planned, but has not yet 
opened.

Another targeting toxin delivered via CED is Tf‑CRM107, 
a mutant diphtheria toxin linked to transferrin.[64] A Phase 
III study was conducted on Tf‑CRM107, also known as 
TransMID, in 40 centers in the USA and Europe, but 
later aborted because an intermediate analysis showed 
less than 20% chance of positive outcome.

Interleukin‑4‑Pseudomonas exotoxin chimeric fusion 
protein, IL‑4  (38‑37)‑PE‑38KDEL also called cpIL4‑PE 
or IL‑4 cytotoxin, has demonstrated cytotoxic effects 
on glioma cells due to inhibition of cell proliferation, 
regulation of adhesion molecules, and induction of signal 
transduction through the JAK/STAT pathway.[26] IL‑4 
cytotoxin was successfully examined with a multicenter 
dose‑escalation Phase I/II trial and showed an increase 
in overall median survival in 31  patients with recurrent 
MG.[65] Currently, another multicenter Phase II is in 
progress using the same fusion protein.[36]

Particularly interesting are the studies of the protein 
containing IL13 and the comparison study with 
Gliadel®. Three Phase I clinical trials were performed 
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using cintredekin besudotox  (CB), a protein containing 
IL‑13 combined with a truncated form of Pseudomonas 
exotoxin  (PE38QQR) delivered via CED.[30] This was 
followed by MRI to check the catheter position, which 
allowed for the optimization of the catheter placement 
and assessment of the safety of CB.[54,56] Next, a Phase III 
randomized evaluation of convection‑enhanced delivery 
of IL13‑PE38QQR with survival end point  (PRECISE) 
trial, which involved 52 centers in North America, Europe, 
and Israel, compared the efficacy of IL13‑PE38QQR 
with Gliadel®  wafers in patients with first‑occurrence 
resectable glioblastoma.[31] CB demonstrated longer 
progression‑free survival (17.7 vs. 11.4 weeks; P = 0.008). 
However, there was no significant improvement in 
median survival  (36.4  weeks with CB, compared with 
35.3 with Gliadel®), hence CB was not determined to 
be superior to Gliadel® wafers. Importantly, however, 
this study was found to be statistically powered to 
show a 50% improvement in survival compared with 
Gliadel®  (despite the fact that no new therapy has ever 
shown more than a 25% improvement in this disease). 
Therefore the relative comparability of CB to Gliadel® 
was not considered a statistically valid conclusion and 
the study failed to provide sufficient support for US 
FDA approval of CB.[4,31]

CB has also been evaluated in newly diagnosed MGs. 
A  Phase I clinical trial with CB, following radiation 
therapy with and without TMZ, demonstrated that CB 
combined with standard radiochemotherapy was well 
tolerated in patients with newly diagnosed GBM.[63]

Other systemically administered chemotherapeutics have 
also been evaluated for use by CED. A Phase I/II clinical 
study using CED of paclitaxel to recurrent gliomas 
showed, despite the positive response rate, significant 
complications associated with the intratumoral delivery 
of paclitaxel, including chemical meningitis, infections, 
and neurological deterioration.[33] In recurrent MGs a 
Phase I dose escalation trial on topotecan delivered by 
CED demonstrated a median survival of 45  weeks and a 
median time to progression of 20  weeks. A  multicenter 
Phase II trial is planned.[12]

Convection‑enhanced delivery is an excellent option for 
the local chemotherapy of inoperable brainstem gliomas. 
This was most recently shown in a study investigating 
the delivery of carboplatin via CED in an experimental 
brainstem animal model.[61] Currently, there are clinical 
trials underway of the CED delivery of carboplatin for 
the treatment of recurrent glioma and the CED delivery 
of another promising agent, 124I‑8H9, for the treatment 
of diffuse intrinsic pontine glioma  [clinical trials: 
NCT01502917 NCT01644955].

Microchips
Convection‑enhanced delivery has demonstrated that 
broad distribution has great potential, but is also 

limited by uncertain spatial distribution and serious side 
effects. Microchips  –  miniaturized depot devices  –  are 
a viable method of controlled delivery of drugs in brain 
cancer, and could achieve a broad aggregate distribution 
profile.[13,57,58] These devices are capable of delivering 
multiple drugs with independent drug release profiles 
following a single implantation procedure.

There are two types of microchips  –  active and passive 
microchips. Active microchips allow precise temporal 
control over release kinetics and are designed by 
utilizing microelectromechanical systems  (MEMS) 
technology combined with an activation mechanism 
based on thermally induced membrane failure.[13] In an 
experimental study an orthotopic glioma model compared 
the effects of drug release rates and timing with active 
microchips loaded with TMZ, and showed that early 
and rapid delivery of TMZ from the devices resulted in 
longest animal survival.[58]

The microchips with passive mechanism of release are 
the PLLA and liquid crystal polymer  (LCP) microchips, 
produced from poly(L‑lactic) acid  (PLLA) and from LCP, 
respectively. PLLA consists of biodegradable polymers; LCP 
is nonbiodegradable but is biocompatible. An experimental 
study conducted in an orthotopic glioma model using both 
PLLA and LCP microchips loaded with TMZ demonstrated 
that intracranial TMZ delivery via microchips was more 
effective than TMZ systemic administration.[58]

An experimental study using a glioma flank model and 
investigated the effects of release of BCNU from LCP 
microchips and demonstrated that the sustained release 
of BCNU from the microchip was able to inhibit tumor 
growth. Interestingly, the drug remained intact in the 
microchip for much longer than in the polymer.[27] 
Additionally, microchips allow for a larger payload of drug 
than the drug–polymer mix. Also, microchips showed 
a more controlled and slower release of drug as 
compared to polymers, which, especially in acidic tumor 
environments, degrade more rapidly and uncontrollably 
than do microchips.[27,58] Due to these advancements the 
future application of microchip devices for intracranial 
chemotherapy holds a tremendous potential for the 
treatment of MGs.

CONCLUSION

Gliadel® wafers represent an innovative and safe way of 
delivering chemotherapy directly to intracerebral MGs. 
Building on the known activity of BCNU as an alkylating 
agent in MGs, this method allows for drug release in 
a constant and safe manner in the surrounding brain 
tissue. Clinical trials using Gliadel® have shown that it 
is a valid option in patients with either newly diagnosed 
or recurrent MGs. Several multimodal therapies, 
multichemotherapy, and chemo‑immunotherapy are 
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currently at different stages of investigation. Interstitial 
chemotherapy, due to its unique properties, maximizes 
local efficacy and will long remain an important yardstick 
for the efficacy of any multimodal approach.
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