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A B S T R A C T   

The present study aimed to determine the average concentration of some metals, including cadmium (Cd), 
chromium (Cr), copper (Cu), nickel (Ni) and lead (Pb) in the chicken, hen’s liver, and gizzard in the east of Iran. 
Estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI) and carcinogenic risk (CR) were 
calculated. In this cross-sectional study, fifty one samples including chicken, hen’s liver and gizzard were ob-
tained from Birjand, Iran. Measurement of Cd, Cr, Cu, Ni, and Pb was carried out by using an Inductively Coupled 
Plasma-Optic Emission Spectroscopy (ICP-OES). All of the measured metals were detected in 100 % of the 
samples. The metals had a different distribution pattern. The highest concentration of Cd and Cu was in the liver 
samples while the Cr and Ni had the highest levels in the chicken. Pb concentration was at the highest level in the 
gizzard. The least amount of Cr, Ni, and Pb was found in the liver while Cu had the least content in the muscle. 
EDI had an acceptable level, but the highest daily intake of all studied metals was through muscle. Cr had the 
highest THQ and it was more than one in the meat. HI in chicken was more than one. Liver and gizzard of hens 
had a neglectable HI. CR was neglectable in the case of both Cd and Pb, but it was considerable for Cr and Ni. The 
consumption of chicken in both adults and children may pose a significant health risk for consumers.   

1. Introduction 

Nowadays, the consumer demand for more qualified food products 
has increased. Everybody has searched for healthy and safe foods. Due to 
the uniqueness of the food supply in any country, accordance of food to 
the developed standards to ensure consumer’s safety is very vital [1]. 
Metal residues are considered as major contaminants of foods. Envi-
ronmental pollution resulted from natural or human activity is among 
the most important sources of heavy metals in foods [2,3]. According to 
the World Health Organization report, 25 % of the diseases occurred to 
human is through long-time exposure to environmental contamination 
[4]. The poultry industry develops quickly due to the increase of de-
mand for poultry meat. Moreover, lower price and more content of 
protein are the main factors of higher amount of poultry meat’s con-
sumption. Nowadays, chicken is the second consuming meat after pork 

throughout the world. The risk assessment studies accelerate the process 
of ensuring safer food production [5–8]. Chicken, hen’s liver, and 
gizzard constitute the usual part of popular diet of people. 

Some metals including copper [9] have essential roles like co-
enzymes [9–12]. It must be considered that these essential metals have a 
level of adequacy for the body (Cu 0.9 mg/day) and toxic effects have 
been exhibited in the higher amounts. The excess amount of Cu was 
associated with the liver damage [13]. Other metals such as cadmium 
(Cd), and lead (Pb) even with the lower content have been considered as 
toxic metals [14]. Unfortunately, absorption of these toxic metals easily 
happens from the atmospheric air and the digestive tract [15–17]. Pb 
has a significant role in the formation of the renal tumors, decrease of 
the cognitive development, increase of the blood pressure and cardio-
vascular diseases risk for adults. Cd may cause kidney dysfunctions, 
prostate and breast cancer, osteomalacia and reproductive deficiencies 
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[13]. The problem of heavy metal is severe in developing countries due 
to the uncontrolled level of pollution in the environment and they were 
reported from different foodstuffs, including meat, aquatic animals, 
processed foods, pistachio and honey [2,9,18–23]. 

Heavy metal contamination can lead to adverse health effects on 
human, so it is essential to determine the level of chemical contaminants 
in foods especially chicken due to high level of consumption to deter-
mine their potential health hazard. According to the best of our 
knowledge, there are no data about the heavy metal concentration in 
poultry and edible organs which were marketed in this region and health 
risk assessment was not carried out for consumers of these products. 
Moreover, there is no report about chromium (Cr) levels in chicken, 
hen’s liver, and gizzard. The present study aimed to measure the mean 
concentration of heavy metals (Pb, Cd, Cu, Cr and nickel (Ni)) in the 
muscle, liver, and gizzard of hens marketed in the east of Iran. Moreover, 
estimated daily intake (EDI), target hazard quotient (THQ), hazard 
index (HI) and carcinogenic risk (CR) of chicken and edible organs were 
assessed. 

2. Material and methods 

2.1. Sampling 

A total of 51 samples, including liver (17), gizzard (17) and muscle 
(17) of hen were obtained from three to five different retails (one was 
taken from each retail) in five different regions of Birjand, east of Iran 
(Fig. 1) (January to September 2017). Samples were labeled and placed 
in cooler boxes. All samples were held at − 20 ◦C until analysis. 

2.2. Sample preparation and metal analysis 

All laboratory equipment and containers were washed with Nitric 
acid 10 % (Merck KGaA, Darmstadt, Germany) to ensure cleaning. After 
washing with deionized water, five ml of HNO3 (65 %) and 15 mL of HCl 
(Merck KGaA, Darmstadt, Germany) were mixed with one gram (g) of 
the sample. Samples were held at room temperature overnight. For full 
acid digestion, sample was heated on heater block at 105 ◦C during 2–3 
h. Then, the digested sample was cooled, and filtered by Whatman 
(Ashless no. 42) paper, and diluted with deionized water up to 50 mL. 
Quantification of Pb, Cr, Ni, Cu, and Cd were done through the use of an 
Inductively Coupled Plasma-Optic emission spectroscopy (ICP-OES) 
(Spectro Arcos, Germany). A standard solution mixture of studied metals 

Fig. 1. Sampling map of the study.  
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was used to calibrate the instrument (to establish standard curves before 
metal analysis). In order to obtain the standard curve, the injection of 
standards and blank solution into ICP-OES was performed according to 
the protocol of the instrument. Levels of metals were stated in mg/kg 
(ppm) of wet weight (mg/kg WW). 

2.3. Quality control 

The detection limit of Cd, Cr, Cu, Ni, and Pb were 1, 1, 2, 3 and 3 ppb 
in this study, respectively. To perform a recovery study, different con-
centration of a multi-element standard solution was added to the 
analyzed samples and the sample was re-measured. Also, certified 
reference material, fish protein DORM-3 (National Research Council, 
Canada) was used. Recovery rates were in the range of 95 %–103 % for 
the studied metals. All measurements were replicated three times. The 
reliability of instrument was determined by injection of a blank and 
some standards between the working runs (relative standard deviation, 
RSD ≤ 3%). 

2.4. Estimated daily intake (EDI) 

The following equation was used to calculate the EDI of toxic metals 
(Cd, Cr, Cu, Ni and Pb): 

EDI =
MC × FDC

BW  

Where: MC is the average level of specific metal in the food (mg/kg, 
ww); FDC corresponds to the average consumption of offal and muscle in 
a day, 3 and 32 g/day for adult (60 kg in BW) and children (30 kg in BW) 
respectively, (g/person/d) [24–26]; BW is the average of body weight. 
Tolerable daily intakes (TDI) of metals [24,27] were compared with the 
EDI of studied metals. 

2.5. Target hazard quotient (THQ) 

The THQ was calculated with the use of U.S.EPA [4] and Wang et al. 
[28]. Oral reference dose (RfD) for Cd, Cr, Cu, Ni and Pb is, 0.001, 0.003, 
0.04, 0.02 and 0.004 (mg/kg BW/day), respectively [4,9]. 

THQ =
EFr × ED × FIR × MC

RfD × BW × AT
× E − 3  

Where: EFr is the time of exposure (365 days/year); ED is the period of 
exposure (72 years); FIR is the food ingestion rate (g/person/d); MC is 
the average level of metal in the food (mg/kg, ww); RfD relates to the 
oral reference dose (mg/kg/d); BW expresses the average of body 
weight, adult (60 kg); children (30 kg); AT is the average exposure time 
(365 days/year × number of exposure years, assuming 72 years in this 
study). If the value is less than one, it means there is no health risk for 
consumer and if it is equal or more than one, consumers might expose 
non-carcinogenic health risk. 

2.6. Hazard index (HI) 

The HI evaluates the risk of exposure to more than one metal and 
measured by summation of the THQs:  

HI = Σ THQ = THQ Cd + THQ Cr + THQ Cu + THQ Ni + THQ Pb        

Where Σ THQ: sum of target hazard quotients of metals and THQ Cd, 
THQ Cr, THQ Cu, THQ Ni and THQ Pb are the target hazard quotients for 
cadmium, chromium, copper, nickel, and lead, respectively. HI value 
more than one represents a potential non-carcinogenic adverse effect 
[29]. 

2.7. Carcinogenic risk (CR) 

CR is the possibility of developing cancer throughout the life of a 
person because of digestion of a potential carcinogen. Cancer risk of Pb, 
Cd, Cr and Ni was determined by the following equation:  

CR = CSF × EDI                                                                                 

Where CSF relates to the carcinogenic slope factor of 0.0085 (mg/kg/ 
day)− 1 for Pb, 0.38 (mg/kg/day)− 1 for Cd recommended by USPEA 
[27], 0.5 for Cr and 0.84 for Ni according to Nduka et al. and Xu et al. 
[30,31]. The range of acceptable risk value is E-4 to E-6. 

2.8. Statistical analysis 

SPSS (version16) was used to analyze the data. Kolmogorov-Smirnov 
test was used to test the normal distribution of the data. One sample t- 
test was performed to compare the concentration of Cd and Pb with ML 
which was set by WHO and EU. The mean concentrations of metals in 
two seasons were compared by using Independent t-test. A one- way 
analysis of variance (ANOVA) (Tukey’s test) was carried out to assess the 
metals in different tissues of chicken. A statistically significant differ-
ence was considered as p< 0.05. Principal component analysis (PCA) 
was used to measure the pattern distribution of metals and diagramed by 
R software (version 3.5). 

3. Results 

All samples were polluted with the studied metals. Table 1 shows the 
metal concentration in the tissues of hen. The highest content of Cd and 
Cu were in the liver samples of hen, while the highest levels of Cr and Ni 
were in the chicken (Table 1). The highest concentration of Pb was in the 
gizzard (0.11 mg/kg) (Table 1). Content of Cd in the chicken, hen’s liver 
and the gizzard was significantly (p < .001) lower than ML which was 
set by codex as 0.05, and 0.5, respectively for meat and the edible organ 
of poultry [32]. Pb in the liver and gizzard was significantly (p < .001) 
lower than ML which was recommended for meat and edible organ of 
poultry as 0.1, and 0.5, respectively [32]. Chicken content of Pb was 
lower than ML (p > 0.05). The value of Cd, Cr, Cu, Ni and Pb in warm 
(summer) and cold (winter) seasons didn’t have any statistically sig-
nificant difference (p > 0.05) (Fig. 2). In the three different tissues, value 
of Cr, Cu, Ni and Pb had a significant difference, while Cd content didn’t 
have any significant difference (Table 1). 

Table 1 
Mean (±SE) and range of metal concentrations (mg/kg ww) in the muscle, liver 
and gizzard of hen.  

Sample 
type 
(number)  

Cd Cr Cu Ni Pb 

muscle (n 
= 17) 

Mean 
± SE 
Range 

0.021 
± 0.00 
0.019 - 
0.027 

2.98 ±
0.50a 

0.726 
– 
8.686 

0.94 ±
0.10a 

0.504- 
2.202 

1.82 ±
0.40a 

0.166 
-7.166 

0.091 ±
0.01a 

0.021− 0.294 

Liver (n =
17) 

Mean 
± SE 
Range 

0.021 
± 0.00 
0.016 - 
0.027 

0.71 ±
0.05b 

0.437 
– 
1.119 

3.30 ±
0.20b 

2.739 - 
6.311 

0.10 ±
0.02b 

0.010 - 
0.321 

0.04 ± 0.00b 

0.008− 0.051 

Gizzard (n 
= 17) 

Mean 
± SE 
Range 

0.02 ±
0.00 
0.013 - 
0.032 

1.76 ±
0.39 
0.604 - 
7.591 

1.24 ±
0.07a 

0.916 – 
1.765 

1.04 ±
0.23a 

0.203 
– 
4.284 

0.11 ± 0.00a 

0.050− 0.186 

Superscript ‘a’ letter in each column means significant difference with liver (p < 
0.05). 
Superscript ‘b’ letter in each column means significant difference with muscle (p 
< 0.05). 

K. Naseri et al.                                                                                                                                                                                                                                  



Toxicology Reports 8 (2021) 53–59

56

Table 2 shows the EDI of metals. Daily intake of all metals was below 
the provisional tolerable daily intake (PTDI) recommended by US EPA 
[27] and ISIRI [24]. The metal concentration in the different tissues was 
separated (Fig. 3). The mean of Cd, Cr and Ni was correlated. Pb was 
highly correlated with Cu than Cd, Cr and Ni concentration. Cu level was 
negatively correlated with Cd, Cr, and Ni (Fig. 3). THQs of studied 
metals for children and adults were calculated (Fig. 4). THQ of all metals 
in the adults was lower than one. THQs of the liver, and gizzard had the 
same value. In adults, Cr in the muscle had the highest THQs, while it 
was more than one in children. HI was also determined (Fig. 5). Ac-
cording to HI, consumption of chicken in both adults and children may 
pose a risk. Moreover, children who consume liver may expose some 
health problems. The CR of exposure to Cd, Pb, Cr, and Ni through 
consumption of chicken, liver and gizzard was evaluated (Table 3). The 
CR values of Cd and Pb were acceptable just exposure to Cd through 
chicken may lead to some carcinogenic problems, but the CR due to Cr 
and Ni in chicken and edible organs was unacceptable. 

4. Discussion 

4.1. Level of measured metals 

The mean content of Cd, Cu, and Pb in chicken was 0.21, 0.94 and 
0.09, respectively. Alturiqi and Albedair (2012) reported the mean level 
of Cd, Cu, and Pb as 5.92, 5.4 and 8.77, respectively, in dry weight of 
chicken in Saudi Arabia [33] which was higher than the results of the 
current study. It can be due to the measurement of metal in wet weight 
in the current study. European Food Safety Agency (EFSA) reported that 
poultry didn’t contain the considerable amount of Cd [34]. Kidney and 
liver samples of poultry had higher concentration of Cd and Pb than the 
muscle samples [35], which was not seen in the present study. 
Pagan-Rodriguez et al. (2007) did not report any Cd or Pb contamination 
in the muscle of poultry higher than ML set by the international insti-
tution [35] which was compatible with the present study. Mahmood 
et al. (2015) reported a higher amount of Ni (4.1), Pb (2.75) and Cd 
(0.66) in the liver samples [5]. Values of heavy metal (mg/kg dry 
weight) in the muscle samples of poultry were as follows: Ni (4.78 ±
3.3), Pb (2.8 ± 0.9) and Cd (1.6 ± 1.5) [5], which were also greater than 
the present study. In the current study, Cd concentration was higher in 
the liver than muscle which was not in agreement with another study 

[5]. Among the analyzed metals, Cu had the highest level, and Cd had 
the lowest level in the edible organs, but Cr had the highest content in 
the muscle samples. In other studies, Cd was at the lowest level in 
poultry edibles [5]. It seems that metals aggregate in poultry muscle 
than the liver or gizzard except for Cu and Pb, respectively [5,36]. Re-
sults of the current study disagreed with other studies which showed the 
accumulation of Pb in the liver [37,38]. In the present study, Pb had 
higher content in the gizzard, which was proved in a previous study 
[25]. Storage of Pb in the edible organs of chicken can relate to pollution 
of soil, feeds and water. It was mentioned that Pb could be retained in 
gizzard [25]. The mean concentration of Cu (mg/kg) in sausage and ham 
samples was 1.88 and 1.48, respectively [23], which were higher than 
the results of chicken and gizzard in the present study. Moreover, the 
mean of Pb was 0.35 mg/kg in sausage samples and 0.32 mg/kg in ham 
samples [23] which were also higher than the results of present study. It 
seems that the content of metals were higher in processed foods than 
unprocessed ones. The mean contents (mg/kg) of Pb, Cd, Cr, and Cu in 
the commercial egg samples were 0.29, 0.18, 0.31, and 2.8, respectively 
[39] that all of the metals except Cr were higher than content of metals 
in chicken and offal’s in the present study. 

Tropism of contaminant to a specific organ in the living organisms is 
not uniform [40]. The content of heavy metal residue in the organ 
correlates with the period of exposure, the amount of ingestion, age, and 
breed of animal [5]. However, the route of exposure mainly affect the 
toxicity of the metals [5]. Some metals had lower concentration in the 
muscle, although the measurement of metals in the muscle is important 
due to the higher amount of consumption of poultry [5]. Bortey-Sam 
et al. (2015) reported the higher level of Pb in liver, and gizzard than 
the level of Pb in the present study. But they observed the lower level of 
contamination with Cr, and Ni in all of the samples, and also Cu and Cd 
had a lower content in muscle samples [25]. 

Moreover, in the current study Cd and Pb contaminated all of the 
samples but in the Bortey-Sam et al. (2015), Cd was measured in 14 % of 
muscles, 100 % of the liver samples and 90 % of the gizzards, and Pb was 
aggregated in all of the liver samples, 80 % of the gizzards and 38 % of 
the muscles [25]. The lower level of Pb in comparison with other 
detected metals may relate to major deposition of Pb in the bone and 
positive correlation with age [41]. In the present study, the chicken had 
the highest level of Ni and Cr while Ogbomida et al. (2018) observed the 
highest level of the mentioned metals in the gizzard [26]. As gizzard is 

Fig. 2. Mean concentration of metals (mg/kg ww) in the winter (W) and summer (S).  

Table 2 
EDI of metals through the consumption of chicken, liver and gizzard (μg/kg bw/day).  

Sample 
Cd Cr Cu Ni Pb 

Adults/ children Adults/ children Adults/ children Adults/ children Adults/ children 

muscle 0.011232 0.022464 1.591936 3.183872 0.503184 1.006368 0.968816 1.937632 0.048597 0.097195 
Liver 0.001065 0.002129 0.035653 0.071306 0.165153 0.330306 0.005483 0.010965 0.001927 0.003853 
Gizzard 0.001018 0.002035 0.088215 0.176429 0.061812 0.123624 0.051894 0.103788 0.005644 0.011288 
TDI ((USEPA 2010), ISIRI, 2010) 1 1500 40 20 3.6  
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the main organ for grinding up ingested food, it may have the higher 
level of metals. Diet is considered as a major pathway of intake of heavy 
metal and the accumulation of metal in the animal tissue correlates with 
their feeds [42]. Offal indicates short time exposure to metals and is a 
good target organ to test the metals [26]. 

4.2. Lead and cadmium 

Pb and Cd were categorized as number two and seven, respectively, 
out of the 275 most hazardous materials in the environment for human 
[26]. They don’t have any biological role in the body, but a few levels of 
them can be tolerated. Higher amounts of these metals were down 
regulating the metabolic pathways [43,44]. Exposure of animals to these 
toxic metals mainly occurs through diet [26]. The main sources of Pb in 
the environment can relate to vast implementation of Pb in batteries, oils 
and fats, industry sewage, high ways traffic, and mines [5]. Moreover, 
the aggregation of trace amounts during a long period in humans raise a 
particular concern for children that may be exposed to neurotoxic effects 
or abnormal neural development in the long-time Pb intake [43]. The 
major environmental sources of Cd are oils, fertilizers and rubber car 
tires [5]. Animals can absorb Cd through inhalation, and ingestion route; 
they can also act as an indicator for Pb and Cd pollution of water, air, 
and soil [45]. Calcium metabolism is influenced by chronic Cd intoxi-
cation and leads to fracture of bones and skeletal deformations. Foods 
containing Cd are the major route of exposure in the general 

Fig. 3. Distribution of the metals in the tissues of hen.  

Fig. 4. Target hazard quotients (THQs) of Cd, Cr, Cu, Ni and Pb in the children and adults.  

Fig. 5. Hazard Index of metals through consumption of chicken, liver 
and gizzard. 

Table 3 
Carcinogenic risk of Pb, Cd, Cr and Ni.  

Sample Name Cd Pb Cr Ni 

Muscle 4.3E-3 4.13E-4 7.96E-1 8.10E-1 
Liver 4.05E-4 1.64E-5 1.80E-2 4.60E-3 
Gizzard 3.87E-4 4.8E-5 4.40E-2 4.30E-2  
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non-smoking population in the most countries [15]. The mean contents 
of Cu, Cd, and Pb were less than 0.5 mg/kg in honey samples of Iran and 
the lowest one was found for lead, at a concentration of 0.11 mg/kg 
[21], which was higher than the present study. 

4.3. Copper, chromium and nickel 

Cu, Cr and Ni have been categorized as essential elements in the trace 
amounts, but higher levels of them have been considered as carcinogenic 
or toxic and influence kidneys, liver, bones or teeth [26,46]. Cu is a 
coenzyme and has some roles in the synthesis of collagen and connective 
tissues, nerves and immune system [26]. The mean value of Cu was the 
highest in the liver in the current study and other studies [26]. It may be 
due to the acting of liver as a primary storage organ [26]. Cr integrates 
into the metabolism of carbohydrate, fat, and protein in the body [26]. 
In the present study, Cr was in the range of 0.7 in the liver to 2.99 in the 
muscle which was higher than other studies [26,36]. In the region of 
present study, there are some mines from which chromite, Cu and Granit 
are extracted. It may be the reason for the higher level of Cr and Cu in 
the meat and offal of hens. The ground water of region also contains Cr 
in the range of 0.28–132.34 g/l [47]. Ni has essential roles in animal 
biology. Intake of the higher amount of Ni can lead to the reduction of 
body weight, damage of heart and liver, and skin irritation [26]. The 
release of Ni in the environment mainly occurs through fuel oil, refinery 
products, and effluents from mining and refining operations [48]. Ni is 
not a cumulative toxin but is a known toxin for blood, immune system, 
liver, lung and kidney [49]. Ni is one of the agents that can cause 
oxidative stress and leads to genotoxicity and cancer [50]. Results of the 
current study showed that the range of Ni is 0.1–1.8 (mg/kg WW) in the 
liver and muscle, respectively which was higher than the range of 
Ogbomida et al. [26]. The mean value of Ni in the muscle and gizzard 
samples of the present study was greater than 0.5 mg/kg recommended 
by WHO [15]. The mean of metals (μg/g wet weight) in canned fish was 
2.66 for Cr, 0.92 for Cu, and 0.22 for Ni [51], which were lower than the 
present study. 

4.4. EDI, THQ, HI and CR 

Toxicity of metals is observed at different concentrations. The com-
parison of EDI of metals in this study with PTDI recommended by na-
tional and international regulations showed that EDI is lower than TDI. 
Fig. 4 shows the THQs of consumption of chicken, liver, and gizzard. As 
the THQ level more than one can cause some problems, the consumption 
of Cr through chicken may cause some health problems for any con-
sumer. The THQ of studied metals is lower than one indicating that 
people would not expose significant health hazards from the consump-
tion of individual metals through poultry. HI level lower than one rep-
resents no hazard; one to ten relates to moderate hazard while greater 
than ten corresponds to the higher hazard or risk for the consumer [52]. 
Chicken consumers may be exposed moderate hazard as HI is more than 
one. HI of liver consumption in children is also close to one and may be 
considered [29], due to the additive effect of consumption of more than 
one metal. CR of Cd in muscle and for Cr and Ni in all samples were 
greater than E-4 which shows a potential risk of cancer through con-
sumption of them. 

5. Conclusions 

Toxic heavy metals can have serious adverse health impacts on 
human. Metals were detected in chicken and edible organs in various 
concentrations. The EDI was lower than the PTDI recommended by the 
international organization, but THQ of Cr was noticeable which was 
shown the significant health hazard in the chicken. Moreover, HI of 
chicken should be considered in both adults and children. Also, con-
sumption of chicken may pose some health issues due to Cd level for 
consumers. It showed that continuous monitoring is needed for status of 

metals in meat and edible organs; control of metals content during the 
whole production process of poultry foods; and research on the effects of 
supplementation of hen diet with various metal contents. 
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