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Diabetes mellitus is a global public health challenge with high morbidity. Type 2 diabetes
mellitus (T2DM) accounts for 90% of the global prevalence of diabetes. T2DM is featured
by a combination of defective insulin secretion by pancreatic β-cells and the inability of
insulin-sensitive tissues to respond appropriately to insulin. However, the pathogenesis of
this disease is complicated by genetic and environmental factors, which needs further
study. Numerous studies have demonstrated an epigenetic influence on the course of this
disease via altering the expression of downstream diabetes-related proteins. Further
studies in the field of epigenetics can help to elucidate the mechanisms and identify
appropriate treatments. Histone methylation is defined as a common histone mark by
adding a methyl group (-CH3) onto a lysine or arginine residue, which can alter the
expression of downstream proteins and affect cellular processes. Thus, in tthis study will
discuss types and functions of histone methylation and its role in T2DM wilsed. We will
review the involvement of histone methyltransferases and histone demethylases in the
progression of T2DM and analyze epigenetic-based therapies. We will also discuss the
potential application of histone methylation modification as targets for the treatment
of T2DM.
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INTRODUCTION

Diabetes mellitus, a global public health challenge with rapidly increasing morbidity rate, causes a
high epidemiological and economic burden on health systems worldwide (Zimmet et al., 2016). This
disease serves as a high-prevalence epidemic that currently affects approximately 316 million people,
which is estimated to reach 470 million by the year 2035 (Reed et al., 2021). Among the types of
diabetes, type 2 diabetes mellitus (T2DM) is a common form, which accounts for nearly 90% of the
global prevalence of diabetes (Dendup et al., 2018). Type 2 diabetes is a complicated, chronic, and
multi-factor disease, featured by prolonged high glucose levels, altered insulin sensitivity, pancreatic
beta cell dysfunction, and alterations in oxidative and inflammation-related gene expression
(Venables and Jeukendrup, 2009). Intuitively, T2DM is induced either by insulin resistance (IR)
from insulin-responsive cells and tissues or pancreatic β-cell dysfunction, leading to inadequate
secretion of insulin (Galicia-Garcia et al., 2020). Mechanically, T2DM is due to a combination of
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genetic and environmental factors. Genetic factors include
heritable polymorphisms and mutations in genes that are
responsible for regulating insulin sensitivity. Environmental
factors include unhealthy diet, old age, and sedentary lifestyle,
playing essential roles in T2DM progression (Lee et al., 2000). As
depicted by a follow-up epidemiology of diabetes intervention
and complication study, patients with diabetes who underwent
standard insulin therapy show persistent slight inflammation and
progressive vascular complications despite the intensified therapy
afterward, indicating a potential metabolic memory signature
prompted by hyperglycemia (Ryk et al., 2020). However, the
pathogenesis of this disease is complicated by genetic and
environmental factors, which need further study. Numerous
studies have demonstrated an epigenetic influence on the
course of this disease. Further research in the field of
epigenetics can help to elucidate the mechanisms and identify
appropriate treatments.

Epigenetics refers to somatic heritable genetic traits caused by
changes in chromatin structure without changing the DNA
sequence, including DNA methylation, histone modifications,
noncoding RNA (ncRNAs) regulation, and chromosomal
remodeling (Ordog et al., 2012). Among the epigenetic
modifications, DNA methylation is a specific postsynthetic,
enzymatic modification of DNA base. In addition, histone
modification is a covalent post-translational modification
(PTM) to histone proteins, whereas ncRNA modification
occurs at the post-translational and post-transcriptional levels
(Cedar and Bergman, 2009). A nucleosome, which is known as
the basic unit of chromatin, is composed of 146 bp DNA
sequences intertwining a core histone octamer, including two
copies of H2A, H2B, H3, and H4 (Mariño-Ramírez et al., 2005).
The nucleosome further assembles into a spiral fiber with six
nucleosomes per circle with the assistance of other proteins, such
as histone H1. The N-terminal of histones can be covalently
modified by various types of PTMs, including acetylation,
methylation, phosphorylation, and ubiquitination (Ramazi
et al., 2020).

Based on the transcriptional status, chromosome exists in
two different functional states in cells. It is either in a highly
folded condensed structure that is, unavailable for
transcription (heterochromatin) or in an unfolded,
uncondensed structure that is accessible for transcriptional
factors to initiate gene transcription (euchromatin) (Pederson
and Robbins, 1972). Despite early observations, their
functional explorations are just at the beginning stage.
Nuclear histone acetyltransferase (HAT) is initially
identified as a homolog of the yeast transcriptional
coactivator Gcn5p, which correlates with the findings of a
previous study, that is, histone acetylation is related to gene
transcriptional activation (Verdone et al., 2006). These
observations induce in-depth research of histone acetylation
function in gene transcription modulation. Therefore,
biochemical and genetic analyses show the importance of
histone acetylation in transcriptional regulation. As shown
in previous studies, several factors can modulate the status of
acetylation, including HATs (e.g., Gcn5, p300/CBP, PCAF,
TAF250, and the p160 family) and histone deacetylases

(HDACs, e.g., Sin3 and NCoR/SMRT) (Zhang and
Reinberg, 2001). All these studies have confirmed the
regulation of the dynamic structure of chromatin by histone
acetylation. Lysine acetylation has been implicated in
mediating immunological and metabolic pathways;
therefore, it maintains energy homeostasis via controlling
the expression of downstream proteins (Iyer et al., 2012).
Lysine acetylation can also affect the expression of a
majority of the metabolic enzymes involved in glycolysis,
tricarboxylic acid (TCA) and urea cycles, and fatty acid and
glycogen metabolism in the liver (Kosanam et al., 2014). For
example, the enhanced deacetylation activity of SIRT1 is
observed in caloric restriction and fasting-mediated fatty
acid oxidation, which maintains glucose homeostasis,
accompanied by PGC-1α and PPARα activation (Soyal
et al., 2006). SIRT1 activation also suppresses the
expression-targeted genes of SREBP regulatory elements and
improves metabolic status in diet-induced and genetically
obese mice (Ding et al., 2017). These results suggest the
modulatory effects of deacetylases and the acetylation levels
on metabolism. The inhibitors of HDACs can also mediate the
development, proliferation, and differentiation of β-cells in
diabetic animal models and IR (Khan and Jena, 2014).

Apart from histone acetylation, critical achievements have
been made in the studies of other histone modifications, such as
phosphorylation and histone methylation (Bui et al., 2010). These
modifications are mutually affected, and pre-formed
modifications can modulate subsequent histone modifications.
Collectively, these modifications serve as marks for recruiting
other proteins to control diverse chromatin functions, including
gene expression, DNA replication, and chromosomal segregation
(Zhang and Reinberg, 2001).

Accumulating studies have shown that histone modifications
interact and influence each other because the decoding of a
specific post-translational modification (PTM) at a single-
nucleosome level is difficult (Rothbart and Strahl, 2014). At
present, advances in high-throughput technology facilitate the
protein modification identification on a large scale. Notably,
recent studies have recognized histone methylation as the
most flourishing field of epigenetics and most stable type of
PTM (Ishii et al., 2021).

Previous studies have mostly focused on the effects of
epigenetic on some of the major physiological and
pathological processes, such as embryonic development, aging,
and cancer (Khan et al., 2016). However, considerable attention
has been paid to other fields recently, such as inflammation,
obesity, cardiovascular diseases, neurodegenerative diseases, and
immune diseases (Khan et al., 2016; Jasiulionis, 2018).
Considering that the epigenetic modifications are susceptible
to external and internal factors and are capable to modulate
gene expression, epigenetic is regarded as the unknown and
potential critical mechanism of several diseases. Epigenetic
modifications are inheritable during cell division, leading to
stable inheritance of acquired phenotypes; therefore,
epigenetics can serve as a new framework for the exploration
of etiological factors in environment-associated diseases,
particularly diabetes.
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HISTONE METHYLATION

Histone methylation is a common histone mark by adding a
methyl group (−CH3) onto a particular lysine or arginine
residue (Greer and Shi, 2012). The methylation on the
lysine residues can be mono-(me), di-(me2), or tri-(me3) on
the ε-amino group, whereas for arginine, it can be mono-(me)
or di-(me2s) symmetrically or asymmetrically (me2a) (Kim
et al., 2019). Histone methylation can be added by histone
methyltransferase (HMTs), catalyzing the transfer of a methyl
group from S-adenosylmethionine to their targeted residues
(Yang et al., 2021). Typically, HMTs are composed of three
families: the SET-domain containing enzymes, Dot1-like
proteins, and arginine N-methyltransferase enzymes
(PRMTs, Figure 1; Table 1) (Michalak and Visvader, 2016).
The former two families primarily act on lysines (KMTs) and
share a conserved catalytic SET domain that is, originally
identified in the Drosophila Su [var] 3-9, Enhancer of zeste,
and Trithorax proteins, and the latter primarily acts on
arginines (Bhaumik et al., 2007; Park and Han, 2019).
HMTs not only methylate histones that make up for
chromatin, but also free histones and even non-histone
proteins (Gong and Miller, 2019).

Conversely, histone demethylases (HDMs) promote the
removal of a methyl group from lysines or arginines. Lysine
demethylases (KDMs) are classified into two families: the FAD-
dependent amine oxidases and Fe (II)- and α-ketoglutarate-
dependent jumonji C (JmjC)-domain containing iron-
dependent dioxygenases (JMJD, Figure 1) (Arifuzzaman et al.,
2020).

Lysine-specific demethylase (LSD) is composed of two
members, LSD1 and LSD2, and demethylase mono- and
dimethylated H3K4 and H3K9 (Kim et al., 2018). JmjC
domain-containing HDMs are divided into several subgroups,
including the JARID/KDM5, JMJD1/JHDM2/KDM3, JMJD2/
KDM4, JMJD3/KDM6, JHDM1/FBX/KDM2, and JmjC
domain-only group, based on the substrate specificity for
H3K4, H3K9, H3K27, or H3K36 (Dong et al., 2020). The
JMJD2 or KDM4 family, containing JMJD2A (KDM4A),
JMJD2B (KDM4B), and JMJD2C (KDM4C), is responsible for
demethylation of di- and trimethylated H3K9 and H3K36
(H3K9me2/me3 and H3K36me2/me3, Figure 1; Table 1)
(Kim et al., 2018). Arginine demethylases remain less
represented.

Histone modifications at particular loci are associated with the
transcriptional status of the downstream genes (Ellis et al., 2009).

FIGURE 1 | Histone methylation sites on H3 and H4, and the enzymes catalyzing or removing histone methylation. The existing methylation sites in histone H3 and
H4 and the histone methyltransferases (writers) and demethylases (erasers) responsible for these modification sites are listed.
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Hyperacetylation of H3 and H4 is associated with the activation
of gene transcription; conversely, hypoacetylation correlates with
the repression of gene transcription (Schnekenburger et al., 2007).
Histone methylation can be an activator and repressor of
downstream gene transcription. For example, H3K9me2 is
commonly believed as repressive heterochromatin. H3K36
methylation has been shown to associate with transcriptional
activation (Matsuda et al., 2015). Lysine methylation is observed
in transcriptional activation (H3K4, K36, K79) and repression
(H3K9, K27, H4K20) (Table 1) (Völkel and Angrand, 2007). In
addition, the extent of methylation affects the status of gene
transcription. H4K20 monomethylation (H4K20me1) is
associated with active gene transcription, whereas
trimethylation on H4K20 (H4K20me3) correlates with silenced
gene transcription and compacted heterochromatin (Li et al.,
2011). The status of gene transcription is also modulated by the
loci of the methylation with regard to the DNA sequence. For
example, H3K9me3 at the promoter is associated with gene
repression, and that at the gene body is correlated with gene
activation (Nagy et al., 2017). The influence of histone
modification on gene transcription is determined through
recognition of other binding motifs. Several chromatin-
modifying enzymes are involved in histone methylation on
recruitment to specific target gene loci (Bannister and
Kouzarides, 2011). For example, the Tudor domains (e.g.,

53BP1 and JMJD2A/KDM4A) are found in the methyl-lysine-
binding module of histone methylation enzymes (Mallette et al.,
2012).

HISTONE METHYLATION IN TYPE 2
DIABETES

Type 2 diabetes results from the combined interaction between
genetic and environmental factors (Ahlqvist et al., 2011).
However, the genetic factors identified at present only account
for a small percentage of the observed disease. The remaining
heritability could be possibly explained by rare variants, including
gene-environment interactions and epigenetics. Aberrant histone
modifications prelude the development of various diseases, such
as IR (Maude et al., 2021). Several studies have focused on the
relation of histone modification and T2DM.

Insulin resistance is a common characteristic found in many
metabolic defects, including high fasting glucose, high
triglycerides, low high-density lipoprotein cholesterol, and
hypertension (Roberts et al., 2013). Sustained IR could induce
T2DM, which is the pathology of T2DM for a long time. Broad
examinations of histone modifications in IR have been
performed, including hepatic IR, T2DM, and obesity
(Castellano-Castillo et al., 2019). For example, the progression

TABLE 1 | Known histone methylation sites and proposed functions.

Histone Site Histone-modifying
enzymes

Proposed function Alteration in metabolism

H1 Lys26 EZH2 transcriptional silencing
H2A Arg3 PRMT1/6, PRMT5/7 transcriptional activation, transcriptional repression
H3 Arg2 PRMT5, PRMT6 transcriptional repression

Arg8 PRMT5, PRMT2/6 transcriptional activation, transcriptional repression
Arg17 CARM1 transcriptional activation correlates with insulin gene expression and insulin secretion stimulated by

glucoseArg26 CARM1 transcriptional activation
Arg42 CARM1 transcriptional activation
Lys4 Set1 (S. cerevisiae) permissive euchromatin (di-Me) enhanced in response to hyperglycemia, enhanced in uninephrectomized

db/db miceSet 7/9 (vertebrates) transcriptional activation (tri-Me)
MLL, ALL-1 transcriptional activation
Ash1 (D. melanogaster) transcriptional activation

Lys9 Suv39h, Clr4 transcriptional silencing (tri-Me) reduced in VSMCs stimulated with high glucose and diabetic mice model
G9a transcriptional repression genomic

imprinting
SETDB1 transcriptional repression (tri-Me)
Dim-5, Kryptonite DNA methylation (tri-Me)
Ash1 transcriptional activation

Lys27 Ezh2 transcriptional silencing reduced in T2DM and T1DM.
X inactivation (tri-Me)

G9a transcriptional silencing
Lys36 Set2 transcriptional activation (elongation) higher H3K36me3 in db/db mice
Lys79 Dot1 euchromatin associated with glucose-stimulated insulin secretion

transcriptional activation (elongation)
checkpoint response

H4 Arg3 PRMT1/6 transcriptional activation elevated in response to glucose dysregulation and HFD
PRMT5/7 transcriptional repression

Lys20 PR-Set7 transcriptional silencing (mono-Me)
Suv4-20 h heterochromatin (tri-Me)
Ash1 (D. melanogaster) transcriptional activation
Set9 (S. pombe) checkpoint response

Lys59 unknown transcriptional silencing
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of T2DM is accompanied by an increased level of H3K4me1 and
H3K9me2 and a reduced level of H3K9ac and H3K23ac
(Figure 2) (Tu et al., 2015). Global proteomic analysis
revealed 15 histone modifications differentially abundant in
high-fat diet (HFD)-induced mice (Maude et al., 2021).
HDAC8 was associated with the promotion of IR in NAFLD-
associated hepatocellular carcinoma (HCC). About 5,000 regions
of H3K27ac enrichment were found to be significantly different in
HFD-induced glucose-tolerant mice. Many genes are reported to
have altered expression and contribute to the pathogenesis of
T2DM. Increased expression and decreased methylation of
CDKN1A and PDE7B genes in T2DM were reported to result
in impaired glucose-stimulated insulin release (Ishikawa et al.,
2015). The high H3K4me3 level of the Fxyd3 gene negatively
modulates glucose competence of insulin-secreting cells in mice
(Vallois et al., 2014). ER stress induced the increased level of
H3K4me1 at the inflammatory gene MCP-1 promoter in
accordance with the enhanced expression of MCP-1 by SET7/9
upregulation in db/db mice (Chen et al., 2014). These observation

provides evidence of diabetes associated epigenetic modifications
and associated impaired insulin release.

Initial studies analyzed DNA methylation of candidate genes
for T2DM such as INS (encoding insulin), PDX1, PPARGC1A
(encoding PGC1α), and GLP1R (encoding the GLP-1 receptor) in
human pancreatic islets from donors with T2DM and non-
diabetic controls (Ling and Rönn, 2019). Islets from T2DM
donors were found to have increased DNA methylation and
decreased expression of these key genes, which were associated
with impaired insulin secretion. Notably, genome-wide histone
modifications have so far only been analyzed in pancreatic islets
of non-diabetic subjects, whereas other studies performed in
blood cells have included subjects with T2DM. In addition,
histone modifications have been analyzed in monocytes
cultured in normal and high glucose. The same applies for
analysis of the chromatin structure, for example, by ATAC-
seq, where mainly samples from non-diabetic people have
been used. Therefore, there is a large need for further
epigenome-wide studies in tissues from subjects with T2DM.

FIGURE 2 | Alterations of histone methylation and downstream-targeted gene induced by high glucose and diabetes. High glucose induces the increased level of
H3K4me1/2/3 and H3R17me and reduces the landscape of H3K9me3 and H4K20me, which cause the activation or repression of downstream genes. Diabetes,
featured by sustained high glucose, is accompanied with increased H3K4me2/3, and decreased level of H3K4me1, H3K27me, H3K4me3, H4K9/14ac, H4K20me, and
H3K27me3 and upregulation or downregulation of targeted genes.
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Active Chromatin Marks
H3K4me1/2/3, H3K36me2/3, and H3K79me2 are correlated with
transcriptional activation (Zheng et al., 2021). A genome-wide
study of these modifications revealed that these modifications
played critical roles in the specific promoters and enhancers of the
islet and pathogenesis of diabetes (Backe et al., 2019).

Recently, H3K4me1/2/3 has been implicated in the
dysregulation of critical genes involved in the progression of
diabetic nephropathy (DN) (Figure 2) (Kato and Natarajan,
2014). An increased level of H3K4me landscape at
extracellular matrix-associated gene promoters was observed in
rat mesangial cells (RMC) upon high-glucose treatment (Sun
et al., 2010). In transient hyperglycemia endothelial cells, the level
of H3K4me1 at the proximal promoter of p65 was increased
accompanied with the sustained activation of NF-κB subunit p65
(Wegner et al., 2014). Meanwhile, the enhanced H3K4me1 level
at the p65 promoter was induced by hyperglycemic exposure in
aortic endothelial cells isolated from non-diabetic mice
(Rajasekar et al., 2015). ChIP coupled with DNA microarray
(ChIP-on-chip) assay depicted that high-glucose stimulation
altered the level of H3K4me2 in cultured human monocytes
(Sun et al., 2014). Moreover, the H3K4me2 level was enhanced in
uninephrectomized db/db mice.

The methylation of histones correlated with the progression of
T2DM. For example, treatment with MCP-1/CCL2 antagonist
relieved DN histological damage and H3K4me2 methylation
status in uninephrectomized db/db mice (Figure 2) (Sun et al.,
2014). In type 2 diabetic db/db mice, the H3K4me1 level was
enhanced, which was consistent with enhanced RNA polymerase
II recruitment at the promoter region of PAI-1 and RAGE
(receptor for advanced glycation end products) compared with
db/+ mice; however, H3K4me2/3 showed no evident difference
(Sun et al., 2014). In addition, ER stress induced the increased
level of H3K4me1 at theMCP-1 promoter in accordance with the
enhanced expression of inflammatory gene MCP-1 by SET7/9
upregulation in db/db mice (Shao et al., 2021). H3K4me3
enhancement was observed in proinflammatory genes (MCP-1
and TNF-α), profibrotic genes (TGF-β1 and collagen III), and
histone-modifying enzyme (SET1 and BRG1) in an ischemia-
reperfusion injury animal model (Naito et al., 2009). In IR state,
H3K4me3 and H3K9/14ac were reduced in adipose tissue
(Figure 2) (Wróblewski et al., 2021). The enhancement of the
H3K4me3 level promoted PEPCK expression, which might
contribute to hyperglycemia and anorexia in mandarin fish fed
on carbohydrate-rich diets (You et al., 2020). The high H3K4me3
level of the Fxyd3 gene negatively modulates glucose competence
of insulin-secreting cells in mice (Figure 2) (You et al., 2020).
Moreover, transcription factor 19 regulates gluconeogenesis
through mediating H3K4me3 and modulating the expression
of glucose-6-phosphatase and fructose-1,6 bisphosphatase (Sen
et al., 2017). Diet-induced obesity in mice depicted the
significantly reduced level of acetylated H3, H4, and
methylated H4K4 (Milagro et al., 2013).

H3K4me2 demethylation is mediated by a FAD-dependent
demethylase, LSD1, which is enhanced in adipose tissue of HFD-
induced mice (Hino et al., 2012). In addition, the genes related to
energy expenditure are directly repressed by LSD1. Thus, the

inhibition of LSD1 elevates the entire H3K4 methylation and
reduces the body weight of HFD-inducedmice (Hino et al., 2012).
A HMT, MLL3, could induce H3K4 methylation (Bosgana et al.,
2020). The mutations of MLL3 at the catalytic SET domain
change the level of a series of metabolic genes such as Rbp4,
which is involved in insulin sensitivity. These studies demonstrate
that manipulating the global level of H3K4 methylation could
affect adiposity and insulin sensitivity (Jufvas et al., 2013). This
finding is further verified by studying the positive correlation of
the expression level of H3K4me3 and PPARγ during adipogenesis
(Wang et al., 2013). Moreover, highly demethylated H3K4 is
observed at the insulin reporter, indicating the involvement of
histone methylation in insulin promoter modulation (Žumer
et al., 2012).

The methylation on histone H3 Arg17 and Arg26 has been
considered as transcriptional activation (Selvi et al., 2010). H3R17
methylation mediated by PRMT4 correlates with insulin gene
expression and insulin secretion stimulated by glucose in
pancreatic β cells (Ma et al., 2001). Another activation mark,
H3K36me3, was reported to be correlated with transcriptional
elongation (Sun et al., 2020).

Different from other methylation sites at the histone tails, the
methylation of H3K79 is on the globular domain of the histone
(Mushtaq et al., 2021). Its methylation is mediated by the
methyltransferase, which is a disruptor of telomeric silencing
proteins DOT1/DOT1L (Farooq et al., 2016). H3K79methylation
is involved in mediating the cell cycle, embryonic development,
DNA damage response, and hematopoiesis (Farooq et al., 2016).
The ring-finger ubiquitin ligase complex components, namely,
Rnf20 and Rnf40, are a prerequisite for histone modifications
such as H3K4 and H3K79 methylation (Jääskeläinen et al., 2012).
Rnf complex depletion affects the expression of β-cell genes,
including Glut2, MafA, and Ucp2, contributing to the reduced
glucose-stimulated insulin secretion.

Repressive Chromatin Marks
Histone methylation has several repressive chromatin marks,
which could affect the progression of T2DM. H3K9me2/3,
H3K27me3, and H4K20me3 are generally considered as gene
silencers (Li et al., 2019). These histone methylations are involved
in metabolic memory leading to long-term alterations in diabetes
(Sun et al., 2014). The decreased H3K9me3 level at the promoter
of inflammatory genes (IL-6, MCSF, and MCP-1) was induced,
accompanied with increased expression in response to high
glucose in normal human vascular smooth muscle cells
(VSMCs) (Villeneuve et al., 2008). Similar methylation
alterations were observed in VSMCs of a diabetic mice model
(Villeneuve et al., 2010). In addition, the stimulation of TNF-α
further exacerbated the decrease of H3K9me3 along with
increased expression of inflammatory genes in VSMCs of db/
dbmice (Sun et al., 2014). In other RMCmodels, H3K9me2/3 was
reduced, accompanied with induced upregulation of Col1α1, PAI-
1, and CTGF genes in response to TGF-β and high glucose (Sun
et al., 2017). Moreover, transient stimulation with high glucose
triggered sustained reduction of the H3K9me2 and H3K9me3
levels at the p65 promoter, even after removing high glucose,
indicating that the epigenetic alterations were remarkable
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metabolic changes (Wei et al., 2020). Furthermore, the dynamic
epigenetic modification of H3K9me2 was observed in THP-1 cells
when high glucose and monocytes were isolated from patients
with diabetes (Miao et al., 2007). The expression of p66Shc was
modulated by a complicated network, including the
methyltransferase SUV39H1, demethylase JMJD2C, and
acetyltransferase steroid receptor coactivator-1 (SRC-1) by
stimulating H3K9 demethylation and acetylation (Marmorstein
and Trievel, 2009). Interestingly, targeting SUV39H1, JMJD2C,
and SRC-1 ameliorated obesity-related endothelia dysfunction in
mice (Costantino et al., 2019). Moreover, depletion of p66Shc
restored insulin response through the IRS-1/Akt/eNOS and NF-
kB pathways (Natalicchio et al., 2011).

H3K27 methylation is a repressive epigenetic mark. In a type 2
diabetic mouse model, the H3K27me3 level at RAGE and PAI-1
promoters was decreased relative to db/+ mice (Komers et al.,
2013). As illustrated by another OVE26 mice and STZ-induced
rat type 1 diabetic models, the H3K27me3 levels were decreased,
and consequently the expression of Cox2 andMCP-1 in mice was
enhanced (Komers et al., 2013). The proliferation of pancreatic β
cells is important in adapting to the increased insulin requirement
as cell proliferation weakens after birth (Dhawan et al., 2009). The
level of H3K27 declined at Ink4a/Arf and HMT, EZH2, which
was consistent with the elevated expression of Ink4a/Arf in older
mice (Massenet et al., 2021).

Among histone methylations, the methylation of histone H4
was initially identified about half a century ago; however, its
catalyzing enzymes was not clear until recently. H4K20me1/2
methylation, which is involved in gene repression, is responsible
for DNA replication and damage repair (Jørgensen et al., 2013).
The methylation of H4K20me1 is mediated by SEY8, whereas
H4K20me2/3 is primarily mediated by SUV4-20H1 and SUV4-
20H2 (Eid et al., 2016). Glucose dysregulation induced the
downregulation of antioxidant gene mitochondrial superoxide
dismutase (SOD), and the increased level of H4K20me3 via
increased recruitment of SUV4-20H2 to SOD gene promoter
induced its expression (Reddy et al., 2012). The multigenerational
effects of HFD in the first two generations promoted the elevated
methylation of H4K20 at the leptin promoter, which was
consistent with the increased expression and serum level of
leptin at 12 and 24 weeks of age in white adipose tissues
(Macchia et al., 2021). Interestingly, the level of H4K20me1
was also increased in the offspring of both parents upon HFD
treatment (Safi-Stibler and Gabory, 2020). These observations
indicated that histone modification marks can be acquired from
in utero HFD induction or from both parents.

HMTs, HDMs,Writers, and Erasers in Type 2
Diabetes
Histone methylation is relatively stable and modulated by HMTs
(as methylation writers) and HDMs (as methylation erasers),
which cause complexity in the pathogeny of diabetes and related
diseases. Typically, H3K4me is catalyzed by several HMTs,
including SET1/COMPASS, mixed lineage leukemia 1–4
(MLL1-4), SET and MYND domain 2/3 (SMYD2/3), and
SET7/9 (Gu and Lee, 2013). H3K9me can be modified by

suppressor of variegation 3–9 homolog 1/2 (SUV39H1/2),
G9a, G9a-like protein (GLP), SET domain, bifurcated 1/ERG-
associated protein with SET domain (SETDB1/ESET), and Eu-
HMTase1 (Table 2) (Venkatesh and Workman, 2013). In
addition, H3K27me is mediated by EZH2, H3K36me by SET2,
andH3K79 byDot1 (Kim et al., 2017). These enzymes canmodify
these sites to different degrees to modulate the expression of
downstream genes. Histone methylation can also be affected by
different metabolites as cofactors or cosubstrates (Chen et al.,
2020). HMTs transfer methylation groups dependent on
S-adenosyl methionine (SAM), whereas JmjC domain-
containing demethylases remove methyl groups dependent on
α-ketoglutarate (αKG) (Matilainen et al., 2017). As a critical
metabolite in the TCA cycle, αKG serves as a substrate in
several anabolic processes (Noe and Mitchell, 2019). The αKG
level is affected by the cell’s metabolic state and correlated to the
fasting state in hepatocytes (Sivanand and Vander Heiden, 2020).
Therefore, the metabolic status is associated with the fluctuation
of αKG, thereby affecting the demethylating activity of the JmjC
domain-containing family.

SUV39H1 can mediate the methylation of H3K9me3, and its
suppression is directly associated with the reduced H3K9me3
level at the promoter of inflammatory genes to affect their
expression in VSMC of db/db mice (Figure 3; Table 2)
(Villeneuve et al., 2010). In addition, the overexpression of
SUV39H1 in db/db VSMC could partially ameliorate the
diabetic phenotypes (Figure 4) (Czvitkovich et al., 2001).

SET7/9 recruitment and H3K4 methylation are the features of
activated insulin genes in cells involved in insulin production,
such as β cells, non-β cells, and embryonic stem cells (Batista and
Helguero, 2018). The SET7/9 knockdown in monocytes reduced
the H3K4me1 level at the promoter of MCP-1 and TNF-α and
subsequently reduced occupancies of the NF-κB subunit on
promoters, indicating the dependence of NF-κB in inhibiting
TNF-α-induced expression of key inflammatory genes (Sun et al.,
2014). Meanwhile, transient stimulation of high glucose induced
increased recruitment of SET7/9 and LSD1 to the p65 promoter
in aortic endothelial cells (Reddy et al., 2008). In rat renal
mesangial cells, SET7/9 was upregulated and actively recruited
to the promoter of key fibrotic genes (i.e., PAI-1 and CTCF) in
response to high glucose (Figure 3), accompanied with increased
H3K4 occupancy (Keating and El-Osta, 2013). In addition,
deficiency of SET7/9 in the islets contributed to impaired
glucose-induced Ca2+ mobilization and insulin secretion
(Table 2). Therefore, SET7/9 is essential for glucose-stimulated
insulin secretion in beta cells via modulating the euchromatin
structure at the promoter of related genes through mediating
histone methylation (Ogihara et al., 2009).

Previous studies reveal the association between H3K4
methylation and adipogenesis (Ge, 2012). MLL3 Δ/Δ mice
harboring an H3K4 HMTs inactive mutant exhibited a
significant decline of white adipose tissue accompanied with
overall beneficial metabolic profile, including improved insulin
sensitivity and elevated energy consumption (Figure 4) (Lee et al.,
2009). These data indicate the potential application of HMT
activities as targets for antidiabetic and/or anti-steatohepatitis
therapeutics in certain tissues.
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Haploinsufficiency in MLL2, an HMT of H3K4, induced
hyperglycemia and hyperinsulinemia, which contributed to
hepatic fat deposition and irregular plasma triglyceride in mice
(Goldsworthy et al., 2013). In addition, MLL2mutation caused IR
and glucose intolerance in mice (Figure 4). Considering that
HMT is responsible for the addition of H3K9me1/2, G9a was

downregulated in diabetic mouse model. However, G9a could
affect insulin sensitivity independent of methyltransferase
activity. It modulated the insulin signaling pathway via
mediating the structure of the transcriptional factor HMGA1,
a key regulator in insulin reporter (Xue et al., 2018). In addition,
G9a restoration in db/db mice improved IR and mitigated

TABLE 2 | HMT and HDM specificity, and their roles in diabetes-related phenotypes.

Classifcation Family Name Specificity Roles in diabetes-related
phenotypes

HMT PRMTs PRMT1 H4R3 Impaired PRMT1 activity stimulated by hyperglycemia
PRMT4 H3R2, R17, R26 Increased in diabetic models. PRMT4 inhibition suppresses the expression

of insulinPRMT5 H2A, H4 (non-histone
proteins)

PRMT7 H3R2
SET EZH2 H3K27 Modulate β-cell dedifferentiation and cell proliferation

NSD1-3, SETD2,
SMYD2

H3K36

SUV39H1, SUV39H2 H3K9 Overexpression of SUV39H1 ameliorate the diabetic phenotypes
G9a H3K9, H3K27 Modulated insulin signaling pathway
SET7/9 H3K4 Essential for the glucose-stimulated insulin secretion
SET8 H4K20
SUV4-20H1, SUV4-
20H2

H4K20

Seven-β-
strand (7BS)

Dot1/DOT1L H3K79

HDMs KDM1 KDM1A (LSD1) H3K4me1/2, H3K9me1/2 Promotion of beige adipocyte
KDM1B (LSD2) H3K4me1/2

JMJC KDM5A/B/C/D H3K4me2/3
KDM2B (JHDM1B) H3K36me2/1, H3K4me3
KDM2A (JHDM1A) H3K36me2/1
KDM3A (JHDM2A,
JMJD1A)

H3K9me2/1 Promotion of beige adipocyte. Depletion of JMJD1A is relevant with obesity

KDM4A (JHDM3A,
JMJD2A)

H3K9me3/2,
H3K36me3/2

Enhanced in db/db mice

KDM5A (JARID1A) H3K4me3/2
KDM6B (JMJD3) H3K27me2/3 Promotion of beige adipocyte
PHF2 H3K9me2 Overexpression of PHF2 in mice led to improved glucose intolerance and

insulin resistance

FIGURE 3 |HMTs, HDMs, and respective histonemethylation mark affected by diabetes and high glucose. Diabetic mice (db/db) exhibited increased expression of
H3K4 methyltransferases (SETD4 and SETD7), H3K36 methyltransferase (SETD2), H3K9 demethylases (JMJD2 family), and reduced level of H3K9 methyltransferase
(SUV39H1). In addition, SETD7/9 is upregulated in response to high glucose, and it modulates key fibrotic genes.
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hyperglycemia and hyperinsulinemia (Chiefari et al., 2018). As a
critical HMT for H3K27me3, EZH2 modulated β-cell
dedifferentiation and proliferation during pancreatic endocrine
specification (Dahlby et al., 2020). Homozygous EZH2-specific
depletion promotedmild glucose intolerance and decreased β-cell
mass (Arnes and Sussel, 2015). In addition, a reduced level of
H3K27me3 was observed in β cells from human T2DM donors
(Lu et al., 2018). Another HMT, PRMT4, which was responsible
for H3R17 methylation, was increased in the retinal pigment
epithelial layer of diabetic rats to promote cell death (Wang et al.,
2017). High-glucose stimulation induced the expression of
PRMT4 in INS-1 and HIT-T15 pancreatic β cells (Kim et al.,
2015). PRMT4 inhibition by drugs or knockdown inhibited the
expression of insulin and secretion stimulated by high glucose in
primary pancreatic islets. Furthermore, overexpression of
defective PRMT4 reduced the level of insulin expression
(Figure 4) (Kim et al., 2015). Goto-Kakizaki rats exhibited
enzymatic impaired PRMT1 activity and defective protein
methylation when stimulated by postprandial hyperglycemia,
indicating the potential involvement of protein methylation in
mediating insulin secretion (Iwasaki, 2009).

At present, the multitude of demethylases has been identified
with specific catalyzing activity toward different histone
methylations (Bhaumik et al., 2007). Histone methylation is
dynamic, and it potentially affects multiple diseases, including
diabetes (Gottlieb et al., 2010). As depicted by a qPCR array
screen, db/db mice exhibited increased expression of H3K4
methyltransferases (SETD4 and SETD7), H3K36
methyltransferase (SETD2), and H3K9 demethylases (JMJD2
family), which can be relieved by Losartan, an Ang II type 1-
receptor blocker (Figure 3) (Reddy et al., 2014).

JMJD1A is responsible for demethylating mono- and di-
methyl H3K9 at the promoters to gain access for gene
transcription (Marmorstein and Trievel, 2009). Its depletion is

relevant with obesity, reduced level of genes related to active
metabolism (such as peroxisome proliferator-activated receptor
and medium-chain acyl-CoA dehydrogenase) in skeletal muscle,
and declined expression of cold-induced uncoupling protein 1 in
brown adipose tissues of rodents (Figure 4) (Inagaki, 2018).
JMJD1A also modulates genes involved in energy homeostasis,
including anti-adipogenesis (Nr2f2 and GATA2), regulation of fat
storage (Apoc1), glucose transport (Slc2a4), and predisposing
genes of T2DM (ADAMTS9) in white adipose tissue (WAT)
(Lafortuna et al., 2017). JMJD1A−/− mice displayed hypothermia
induced by fasting and increased respiratory quotient (Figure 4)
(Tateishi et al., 2009; Lafortuna et al., 2017). Therefore, JMJD1A
plays an important role in modulating energy expenditure and fat
deposition, indicating its hitherto uncharacterized role in
metabolic syndrome.

Based on previous reports, several HDMs had the potential to
interact with transcriptional factors. For example, plant
homeodomain finger protein 2 (PHF2), a type of H3K9 HDM,
is essential for the transcriptional activation of ChREBP, which is
a critical regulator in lipid and glycolytic metabolism (Kim et al.,
2014). CHREBP plays an important role in strengthening
lipogenesis under IR condition (Benhamed et al., 2012).
Overexpression of PHF2 in mice led to improved glucose
intolerance and IR and reduced expression of proinflammatory
genes (Figure 4) (Okuno et al., 2013). PHF2 can promote SCD1
activity and elevate the ratio of monounsaturated fatty acids to
saturated fatty acid, providing protection from lipotoxicity,
oxidative stress, and IR (Bricambert et al., 2018). Liver-specific
deletion of a HDM, JMJD1C, could provide protection from
high-carbohydrate diet-induced hepatosteatosis and IR and
contribute to the decreased expression of lipogenic genes
through its interaction with USF1 (Figure 4) (Viscarra and
Sul, 2020). Single-nucleotide polymorphism in JMJD1C is
connected to the progression of T2DM, indicating the

FIGURE 4 | HMTs and HDMs modulate insulin sensitivity and diabetes-related metabolic syndrome through altering histone methylation status on the promoter of
the respective genes. In detail, overexpression of PHF2 in mice leads to improved glucose intolerance and IR. Overexpression of SUV39H1 partially ameliorates the
diabetic phenotypes. JMJD1A depletion is relevant to obesity. PRMT4 inhibition reduces the expression and secretion of insulin. Deletion of JMJD1C provides protection
from high-carbohydrate diet-induced hepatosteatosis and IR. MLL3 mutation exhibits overall beneficial metabolic profile. In addition, MLL2 mutation causes insulin
resistance and glucose intolerance.
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potential involvement of JMJD1C in the development of
metabolic diseases as evaluated by genome-wide association
studies (Kim et al., 2018). These studies have indicated the
potential effects of HMTs and HDMs on the pathogenesis
of T2DM.

Epigenetic-Based Therapies for Type 2
Diabetes
Collectively, we discussed that histone methylations were
casually involved in the expression of genes implicated in
the pathogenesis of T2DM (Sun et al., 2015). Recent studies
suggested that targeting histone methylation might reverse the
deleterious epigenetic marks and modulate the expression
levels of genes related to T2DM. Multitude drugs and
chemicals targeting histone methylations have been
proposed for the treatment of this disease. More recently,
inhibitors that target chromatin-associated epigenomic
writers such as EZH2, erasers such as LSD1, and readers
such as BRD4 are being considered as therapeutic agents
(Rosen et al., 2018). The use of BET/BRD inhibitor JQ1 was
highlighted in the treatment of cancer. However, it may not be
suitable for the treatment of diabetes due to severe side effects,
broad activity on multiple pathways, and lack of cell-type
specificity.

Lactobacillus supplementation can modulate the histone
methylation profile in IR (Sharma et al., 2020). H3K27 and
H3K79 methylation state can be modulated by Lactobacillus
supplementation (Figure 5) (Sharma et al., 2020).
Lactobacillus supplementation predominantly prevented
methylation and demethylation of H3K79me2 and H3K27me3,
respectively, making it not an ideal drug for histone methylation-
related diseases (Sharma et al., 2020). H3K27 methylation is
associated with transcription repression, whereas H3K79 is
correlated with transcriptional activation (Lin et al., 2010).
The correlation of H3K37me3 in metabolic disorders has been
identified (Wei et al., 2021). H3K27me3 can be removed by

KDM6. Pharmacological inhibition of KDM6 members with
GSK-J4 relieved the progression of nephropathy in diabetic
db/db mice (Figure 5) (Chen et al., 2021). Inhibition of
KDM6A reduces Cry1 expression and sensitizes leptin
signaling to combat obesity-related diseases (Wei et al., 2021).
Therefore, GSK-J4, a KDM6A inhibitor, could serve as an
attractive drug for obesity and metabolic disorders.

GSK126, an EZH2-specific inhibitor, alleviates the obesity
phenotype by promoting the differentiation of thermogenic
beige adipocytes in diet-induced obese mice (Figure 5) (Wu
et al., 2018). After GSK126 administration, the H3K27me3 and
mRNA levels of the key transcription factors in adipocytes
differentiation increased significantly, however, the number of
lipid droplets and lipid content in the GSK126 group didn’t
change much, possibly owning to some unknown side effects or
drug toxicity of GSK126 in physiological functions of cells (Wu
et al., 2021). An MLL1 small-molecule inhibitor, MI-2,
administered at the appropriate time postinjury, may be an
ideal therapeutic drug to decrease chronic inflammation of
wounds among patients with diabetes (Kimball et al., 2017).

Metformin supplementation has long been implicated in the
treatment of T2DM. Chromatin modification alteration is
induced by metformin at the enhancer element of the ATM
gene, a locus that is, relevant with metformin response in primary
human hepatocytes (Bridgeman et al., 2018). Metformin reversed
the H3K36me2 mark in prediabetic and diet-induced obesity
mouse model (Figure 5) (Nie et al., 2017). In addition, metformin
was found directly targeted the H3K27me3 demethylase
KDM6A/UTX (Cuyàs et al., 2018). Metformin was revealed to
modulate the level of multiple histone methyltransferases, the
activity of SIRT1 and the effects of DNMT inhibitors (Bridgeman
et al., 2018). Consequently, these alterations might influence the
epigenome and gene expression, and subsequently leading to the
antidiabetic properties of metformin. As mentioned above, the
effect of metformine can alter histone methylation and gene
expression which leaves much uncertainty related to the
overall effect of metformin on the epigenome, on gene

FIGURE 5 | Inhibitors of histone methylation and their targets for the prevention of diabetes. For example, Lactobacillus can modulate H3K27 and H3K79
methylation in IR. Inhibition of KDM6A with GSK-J4 reduces Cry1 expression and sensitizes leptin signaling to combat obesity-related diseases. Metformin reversed the
H3K36me mark in prediabetic and diet-induced obesity mouse model. GN mediated HFD-induced hepatic steatosis by reducing the JMJD2B and PPARγ2 levels.
Minocycline reversed diabetes-related chronic inflammation by modifying the methylation state of H4K20me. In addition, GSK126, an EZH2-specific inhibitor,
alleviates the obesity phenotype in diet-induced obese mice.
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expression, and on the subsequent effect on the health of
metformin users.

Gomisin N (GN) improves hepatic steatosis induced by HFD
(Jung et al., 2017). In-depth study revealed that GN effectively
reduced the expression level of JMJD2B and subsequently
decreased the expression level of PPARγ2 and downstream
genes, indicating the potential mechanism in GN-mediated
HFD-induced hepatic steatosis (Figure 5) (Jang et al., 2017).
JMJD2A inhibition induced by a chemical inhibitor, namely, 2,4-
PDCA, suppressed VSMC migration, proliferation, and
inflammation accompanied by decreased H3K9me3 caused by
hyperglycemia in vitro and mitigated neointimal formation in
balloon-injured diabetic rats (Qi et al., 2015).

LSD1 plays a central epigenetic role in various metabolic
disorders, including obesity-associated diseases, neurological
disorders, and cancer (Cuyàs et al., 2019). Accordingly, extra
virgin olive oil contained a naturally occurring phenolic inhibitor
of LSD1 and potentially exerted a beneficial effect on the
treatment of obesity-associated diseases (Cuyàs et al., 2019).

Hepatic insulin sensitivity can also be modified by specific
dietary components that are involved in epigenetic modifications
(Maude et al., 2021). In mammals, SAM can provide methyl
groups for DNA, RNA, and histones (Ouyang et al., 2020). The
content of SAM is determined by the intake of its precursor,
methionine and co-factor folate (vitamin B9), betaine, and
vitamins B2, B6, and B12. Previous studies observed that the
serum level of methyl-related metabolites correlated with IR
(Zhou et al., 2011). Apart from being a methyl donor, folate is
also related to LSD1 (Chen et al., 2006).

Minocycline, a tetracycline antibiotic, can reverse the diabetic-
related chronic inflammation in the retina of rodents (Wang et al.,
2017). Meanwhile, the methylation state of H4K20me1/2, which is
associated with DNA damage response, was increased in the retina
of diabetic rats, and minocycline treatment restored the methylation
status ofH4K20 (Wang et al., 2017). Therefore, the favorable effect of
minocycline on the development of diabetic retinopathy is partially
attributed to its effect on the changed histone methylation.

Apart from its therapeutic potential, epigenetic modification
could also serve as disease biomarkers, which promotes early
detection of disease progression and improves the estimates of
future disease risk (Hornschuh et al., 2021). A total of 63
genomic regions associated with insulin sensitivity are identified
from neonatal blood spot samples (Maude et al., 2021). Such
genomic regions may facilitate appropriate lifestyle interventions
as biomarkers to reduce IR-related diseases. Recently, Sadeh et al.
utilized ChIP-seq to identify liver-specific histone modification
marks in plasma-free nucleosomes (Sadeh et al., 2021). In spite
of the relatively small sample size and patient heterogeneity, histone
modification enrichment in liver diseases can be detected, and it can
facilitate the high-throughput interrogation of disease signature in
patient blood samples.

CONCLUSION

The interaction between genetics and epigenetics plays an
important role in the pathogenesis of T2DM. Epigenetics

refers to the phenomenon of intergenerational inheritance
through cell division without changing the base sequence of
DNA genetic material. Among epigenetics, histone
methylation is the most important modification mode, which
serves as a complicated link between genotype and phenotype. A
number of studies have shown that methylation modification can
affect the development of pancreatic β cells, insulin sensitivity,
and secretion; thus, it is considered as a possible mechanism of
T2DM. Designing therapeutic targets for epigenetic inheritance,
particularly histonemethylation, may provide a new approach for
the treatment of T2DM.

Recent studies have also revealed that environmental factors
such as energy metabolism disorders can lead to epigenetic
alterations, resulting in “metabolic memory,” affecting the
development and secretion of islet β cells, reducing body’s
sensitivity to insulin, and ultimately leading to the occurrence
of T2DM. These epigenetic changes can be corrected and reversed
by special diets, drugs, and lifestyle remodeling, providing new
ideas for the prevention of T2DM and developing potential drug
targets for treatment.

Histone modification can be catalyzed by HMTs (writers) and
removed by HDMs (erasers). Recent studies have emphasized the
importance of histone methylation alteration in controlling
adipogenesis and energy homeostasis. The causal relationship
between diet-induced obesity and histone methylation regulated
genes associated with nutrition balance, which required further
investigation. Meanwhile, the utilization of genome-wide
technologies in gene expression and genetic variation in patients
with T2DM have provided new candidate genes. However, the
association between epigenetic modification alterations and
T2DM remains unclear. Thus, analyzing the role of histone
modification and DNA methylation in the pathogenesis of
T2DM and uncovering its complications are challenging.

Some of the epigenetic changes associated with obesity affect
genes known to increase the risk of diabetes. Other epigenetic
changes affect genes not specifically related to the disease, but
they play a role in metabolism. A previous study identified a series
of genes that had not previously been shown to play a role in
diabetes. In further tests, they found that at least some of these
genes did indeed regulate insulin’s effect on sugar absorption
(Multhaup et al., 2015); This provides insights into new potential
therapeutic targets for T2DM. In addition to providing clues for
drug development, new epigenetic tests should be developed to
determine who will develop diabetes earlier, thus offering more
hope for prevention of the disease. In addition, the understanding
of the mechanism of gene transcription at the epigenetic level will
help us to further study the prevention and control of diabetes
and its complications and provide new ideas for treatment.
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