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Virtual touch tissue imaging 
and quantification (VTIQ) in the 
evaluation of thyroid nodules: 
the associated factors leading to 
misdiagnosis
Cheng-Yu Sun1,2,3,4,*, Kai-Rong Lei2,*, Bo-Ji Liu1,3,4, Xiao-Wan Bo1,3,4, Xiao-Long Li1,3,4,  
Ya-Ping He1,4, Dan Wang1,3,4, Wei-Wei Ren1,3,4, Chong-Ke Zhao1,3,4 & Hui-Xiong Xu1,3,4

To evaluate the associated factors leading to misdiagnosis with VTIQ for differentiation between benign 
from malignant thyroid nodules (TNs). The study included 238 benign TNs and 150 malignant TNs. 
Conventional ultrasound (US) features and VTIQ parameters were obtained and compared with the 
reference standard of histopathological and/or cytological results. Binary logistic regression analysis 
was performed to select independent variables leading to misdiagnosis. The maximum shear wave 
speed (SWS) (SWS-max), mean SWS (SWS-mean), SWS-ratio and standard deviation of SWS (SWS-SD)  
were significantly higher for malignant TNs compared with benign TNs (all P < 0.001). SWS-mean 
achieved the highest diagnostic performance with a cut-off value of 3.15 m/s. False positive rate was 
13.4% (32/238) while false negative rate was 35.3% (53/150). Intranodular calcification (OR: 1.715) was 
significantly associated with false positive VTIQ findings, while nodule size (OR: 0.936) and echotexture 
of the thyroid gland (OR: 0.033) were negatively associated with them. Nodule depth (OR: 0.881) and 
TI-RADS category (OR: 0.563) were negatively associated with false negative VTIQ findings. These 
US characteristic of TNs should be taken into consideration when interpreting the results of VTIQ 
examinations.

There is a high incidence of thyroid nodules (TNs) in the adult population1 and the prevalence of thyroid cancer 
is up to 5–15%2,3. High-frequency ultrasound (US) is the preferred non-invasive imaging modality in distinguish-
ing malignant from benign TNs; however, there is a quite a lot overlap in imaging features between benign and 
malignant TNs4. In addition, the diagnostic performance of US depends on the operator’s experience and offers 
little information about mechanical properties of TNs5.

Shear wave (SW) imaging, also known as shear wave elastography (SWE), has been introduced into clinical 
practice in recent years, which provides quantitative measurement of tissue stiffness instead of qualitative stiffness 
information with previous strain elastography6,7. SW imaging under acoustic radiation force impulse (ARFI) 
excitation can be divided into two types: point shear wave speed (SWS) measurement (i.e. point SWE) and SWS 
imaging ( i.e. two-dimensional [2D] SWE). As a point SWS measurement technique, the utility of virtual touch 
tissue quantification (VTQ; Siemens Medical Solutions, Mountain View, CA, USA) in distinguishing malignancy 
from benign TNs has been reported in numerous studies8–11. However, it does not offer a 2D stiffness map of the 
TNs and is not able to provide guidance for selecting SW region of interest (ROI) for quantitative measurement. 
Thus sometimes the SW ROI might be placed on the unwanted areas and invalid measurement results might be 
encountered, which is usually displayed as “X.XX m/s” and leads to confusion as to how to handle with these 
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invalid values. In addition, the fixed SW ROI (i.e. 5 ×  6 mm) is also an inherent limitation for VTQ. The surround-
ing thyroid parenchyma may be included in the SW ROI if the nodules are small, therefore the measurement 
results would be affected8,12.

The newly developed virtual touch tissue imaging and quantification (VTIQ; Siemens Medical Solutions, 
Mountain View, CA, USA) is a two-dimensional quantitative SWS imaging and an ARFI based method that uses 
an acquisition sequence consisting of reference, excitation and tracking sonic pulse types. Both reference and 
tracking pulses are conventional B-mode US beams that explore the difference between an initially established 
tissue baseline and the strain response to the radiation force generated by the excitation of a longitudinal ARFI13. 
Then the speed of SW which propagates in a perpendicular direction by a detection pulse is measured. The image 
is acquired by translating the pushing focus to cover up to 256 acquisition lines within 700 ms. For each, SWS is 
calculated at a number of locations around the pushing focus14. Compared with previous point SWS measure-
ment technique, 2D SWS imaging of VTIQ might provide more precise stiffness information and avoid invalid 
measurements within the TNs due to its 2D visualization of SWS distribution with various colors and smaller SW 
ROIs (i.e. 1.5 ×  1.5 mm).

Although many studies have confirmed that 2D SWS imaging improved the diagnostic performance in differ-
entiating malignant from benign TNs3,14. Undoubtedly, some TNs might not show typical stiffness manifestations 
on 2D SWS imaging, which would lead to false-positive and false-negative results. To understand the factors relat-
ing to these false-positive or false-negative results is relevant in clinical practice, which may help the investigators 
to make correct decision when encountering a special clinical scenario. However, as far as we know, no studies 
have been carried out to explore the factors leading to misdiagnosis with VTIQ.

The aim of the study was to analyze the false VTIQ results in the differential diagnosis between benign and 
malignant TNs and to investigate the associated factors which led to false findings of TNs with VTIQ.

Material and Methods
The Ethical Committee of Shanghai Tenth People’s Hospital approved this retrospective study and the require-
ment to obtain informed consent from the patients was waived due to the retrospective nature of the study. The 
study was performed in accordance with Declaration of Helsinki for human study.

Patients. From June 2014 to October 2015, 385 patients with 412 TNs were retrospectively included in the 
study. The inclusion criteria were as follows: (1) TNs were subject to both conventional US and VTIQ examina-
tion in the referral university hospital. (2) Patients with TNs underwent fine-needle aspiration biopsy (FNAB) 
and/or surgery. (3) Benign TNs on FNAB without histopathological confirmation were followed up for at least 
6 months. (4) Malignant TNs were confirmed by histopathological examination after surgery. (5) No invasive 
procedures such as thyroid surgery or FNAB were performed before. Among them, 23 patients with 24 TNs with-
out enough thyroid tissue around the nodule at the same depth were excluded. Finally, 388 TNs in 362 patients 
were enrolled in the study. The patients included 99 (25.5%) men and 289 (74.5%) women. The patient mean age 
was 49.5 ±  12.9 years (range: 14 to 79 years). For the patient with multiple TNs, generally, the nodule which was 
most suspicious of malignant or the largest nodule on US was selected. For the patient with multiple suspicious 
nodules, all of the nodules were analyzed. Finally, single nodule in 337 patients, 2 nodules in 24 patients, and 3 
nodules in 1 patient were analyzed.

Conventional US and VTIQ examinations. Conventional US and VTIQ images were obtained using the 
same Siemens S3000 US scanner (Siemens Medical Solutions, Mountain View, CA, USA). The 9L4 linear array 
transducer (frequency range: 4–9 MHz) and/or the 14L5 linear array transducer (frequency range: 6–14 MHz) 
were used for conventional US examination and the 9L4 linear array transducer was used for VTIQ examination. 
Both of conventional US and VTIQ examinations were performed by the same operator and conventional US 
examination was performed before VTIQ examination. The operators were trained in terms of VTIQ examina-
tion for 2 months to ensure optimized image quality before the study.

Patient gender, age and past medical history were obtained before US examination. Patients took supine posi-
tion and the image settings were adjusted to obtain optimal images. The target nodule was placed in the screen 
center of the US machine. On conventional US, transverse and longitudinal images were obtained for each nodule 
by scanning the nodule and adjacent tissue. All the US images were digitally stored and were transferred to a 
personal computer for further analysis.

After conventional US, SWS imaging of VTIQ was performed in the longitudinal direction of the nodule. 
The linear array transducer was applied very gently at the skin to avoid extra compression and held for a few sec-
onds to stabilize the elastography images. Patients were asked to hold breath and not swallow for a few seconds 

Thyroid Nodule n SWS-mean (m/s) SWS-max (m/s) SWS- SD (m/s) SWS-ratio

Benign 238 2.63 ±  0.44 
(1.53–4.03)

2.95 ±  0.48 
(1.75–4.53)

0.23 ±  0.12 
(0.03–0.70)

1.08 ±  0.14 
(0.58–1.58)

Malignant 150 3.71 ±  1.24 
(1.87–8.74)

4.27 ±  1.62 
(2.07–9.75)

0.43 ±  0.37 
(0.03–2.12)

1.32 ±  0.36 
(0.91–3.49)

P Value < 0.001* < 0.001* < 0.001* < 0.001*

Table 1.  SWS measurement results on VTIQ in benign and malignant thyroid nodules. Data are 
means ±  standard deviations, and the value ranges are in parentheses. SWS =  shear wave speed, VTIQ =  virtual 
touch tissue imaging and quantification. *Indicates statistically significant difference.
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while images were acquiring. The sampling box was adjusted to cover the target thyroid nodules and part of the 
surrounding thyroid tissue. SW quality map which reveals the signal-to-noise ratio (SNR) was acquired firstly in 
the target area, in which green indicates good SW quality, yellow for marginal SW quality, and red for poor SW 
quality15. Afterwards, SW velocity mode was initialed and a 2D color map of SWS distribution within the TN was 
obtained, in which the color represents the SWS from high (red), intermediate (yellow or green), to low (blue). 
SWS was measured with a small ROI box of which the diameter was 1.5 mm and the ROI size was fixed. The scale 
of SWS (measured in m/s) is up to 10 m/s. Cystic, necrotic and calcified areas were avoided when placing SW ROIs. 
ROI placement was also referenced with the SW-quality map that only the high SW quality areas were selected 
whereas the marginal or poor quality areas were avoided. Seven ROIs were placed on the target nodule and the 
ROIs were placed randomly when the velocity map showed homogeneous SW distribution; otherwise, according 
to the color-scale of velocity map, the ROIs were located from highest SWS to lowest SWS area (including one 
stiffest area and one softest area). The SWS in the surrounding thyroid tissue at the same depth were also measured 
for seven times. For each ROI, the machine would give the mean SWS in the ROI and displayed it on the screen. 
The VTIQ images were also digitally stored and were transferred to a personal computer for subsequent analysis.

Image Interpretation and Analysis. Two other investigators retrospectively reviewed the conventional 
US images independently who had at least 10 years of experience in thyroid US and 2 years of experience in thy-
roid elastography. Different opinions were solved with consensus. The TNs were evaluated for the following US 
features: capsule contact (no contact, former capsule contact, rear capsule contact, beside trachea, beside carotid), 
ratio of perimeter in contact with the capsule (no contact, less than 25% of perimeter, 25%–50% of perimeter, 
more than 50% of perimeter in contact with the capsule), size (the largest diameter), depth (distance from the 
skin to the center of the TN), halo sign (present or not), margin (circumscribed, not circumscribed), echogenicity 
(mixed-, hyper-, iso-, hypo, and marked hypo-echogenicity; hypoechogenicity means the echogenicity is lower 
than the surrounding thyroid tissue, while marked hypoechogenicity means the echogenicity is lower than the 
nearby strap muscle), internal components (completely solid or complex cystic and solid including three cate-
gories: cystic portion up to 25%, cystic portion of 25%–50%, cystic portion of more than 50%), posterior acous-
tic feature (none, enhancement, shadowing), intranodular calcification (non-calcification; microcalcification, 
less than or equal to 1 mm in diameter; macrocalcification, greater than 1 mm in diameter; when TN had both 
microcalcification and macrocalcification, it was defined as microcalcification), intranodular vascularity (type I, 
absence of blood flow; type II, slight internal flow without peripheral flow; type III, slight peripheral flow without 
internal flow; type IV, marked peripheral flow with slight internal flow; type V, marked internal flow with slight 
peripheral flow), location of TNs (left lobe, right lobe, isthmus), position of TNs (the upper, the middle part, the 
lower part of the thyroid gland), shape (wider than tall, taller than wide), thyroid enlargement (present or not), 
single nodule or multiple nodules. The nodules were classified according to thyroid imaging reporting and data 
(TI-RADS) system described by Kwak et al.16 and the suspicious US features of solid component, hypoecho-
genicity or marked hypoechogenicity, irregular or microlobulated margin, taller than-wide shape and microcal-
cifications were applied to categorize TNs: TI-RADS category 3 (no suspicious US features), 4a (one suspicious 
US feature), 4b (two suspicious US features), 4c (three or four suspicious US features), and 5 (five suspicious US 
features). The echotexture of the thyroid background was categorized as homogeneous or heterogeneous.

Four values of SWS were computed for analysis: the mean SWS (SWS -mean) for the seven ROIs in TN, the 
maximum SWS (SWS-max) for the seven ROIs, standard deviation of SWS (SWS-SD) for the seven ROIs, and the 
SWS ratio (SWS-ratio) which is the ratio of SWS-mean value of TNs to the SWS-mean of the surrounding thyroid 
tissue.

Reference Standard. For malignant TNs, only the histopathological results after surgery was used as the 
reference standard; while for benign TNs, besides histopathological results after surgery, Bethesda category 2 
cytological results on FNAB and followup for at least 6 months without change in size and US appearance was 
used as the reference standard.

Statistical analysis. Statistical analysis was performed with the SPSS 20.0 software (SPSS, Chicago, IL, USA) 
and MedCalc software (Mariakerke, Belgium). Means and SD were used for continuous data. Comparison of the 
values of SWS (including SWS-max, SWS-mean, SWS-SD and SWS-ratio) in benign and malignant TNs were con-
ducted using independent t test. Receiver operating characteristic (ROC) curve was applied to obtain the optimal 
SWS cut-off value and the area under ROC curve (Az). Binary logistic regression analysis was performed to eval-
uate independent characteristics related to false VTIQ findings. Univariate analysis was performed first, and then 

Parameters
Cut-off 
value Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) Az (95% CI) P value

SWS-mean 3.15 m/s 64.7 (97/150) 86.6 (206/238) 78.1 (303/388) 75.2 (97/129) 79.5 (206/259) 0.827 (0.785–0.863) < 0.001*

SWS-max 3.61 m/s 60.0 (90/150) 93.7 (223/238) 80.7 (313/388) 85.7 (90/105) 78.8 (223/283) 0.814 (0.722–0.852) < 0.001*

SWS-SD 0.34 m/s 47.3 (71/150) 85.3 (203/238) 70.6 (274/388) 67.0 (71/106) 72.0 (203/282) 0.682 (0.633–0.728) < 0.001*

SWS-ratio 1.12 76.7 (115/150) 65.1 (155/238) 69.6 (270/388) 58.1 (115/198) 81.6 (155/190) 0.774 (0.729–0.815) < 0.001*

Table 2.  Diagnostic performance of SWS imaging parameters on VTIQ. SWS =  shear-wave speed; 
VTIQ =  virtual touch tissue imaging and quantification; PPV =  positive predictive value; NPV =  negative 
predictive value. *Indicates statistically significant difference.
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Characteristics

Benign TN Malignant TN

SWS-mean SWS-mean

<3.15 m/s (n = 206) ≥3.15 m/s (n = 32) P value <3.15 m/s (n = 53) ≥3.15 m/s (n = 97) P value

Age (years)* 51.4 ±  12.0 51.0 ±  11.0 0.065 46.0 ±  14.0 46.9 ±  14.1 0.046

Depth (mm) * 16.0 ±  4.6 14.0 ±  2.8 0.993 17.0 ±  3.1 14.0 ±  3.8 0.032

Thyroid background < 0.001 0.290

 Homogeneous 153 (74.3) 17 (53.1) 42 (79.2) 59 (60.8)

 Heterogeneous 53(25.7) 15(46.9) 11 (20.8) 38 (39.2)

Position contacted capsule 0.001 0.009

 None 88 (42.7) 10 (31.2) 35 (66.0) 37 (38.1)

 Former capsule 47 (22.8) 9 (28.1) 0.291 8 (15.1) 19 (19.6)

 Rear capsule 59 (28.6) 9 (28.1) 0.383 5 (9.4) 22 (22.7)

 Beside trachea 10 (4.9) 2 (6.3) 0.908 3 (5.7) 14 (14.4)

 Beside carotid 2 (1.0) 2 (6.3) 0.039 2 (3.8) 5 (5.2)

Contact with the capsule < 0.001 0.022

 No 88(42.7) 10(31.3) 23(43.4) 47(48.5)

 < 25% 44(21.4) 12(37.5) 16(30.2) 32(33.0)

 ≥ 25%, < 50% 65(31.6) 9(28.1) 13(24.5) 16(16.5)

 ≥ 50% 9(4.4) 1(3.1) 1(1.9) 2(2.1)

Size (mm)* 15.0 ±  11.0 10.3 ±  5.7 0.005 9.8 ±  5.7 10.5 ±  7.9 0.129

Halo sign 0.043 0.172

 Absent 147 (71.4) 27 (84.4) 47 (88.7) 94 (96.9)

 Present 59 (28.6) 5 (15.6) 6 (11.3) 3 (3.1)

Margin 0.006 0.167

 Circumscribed 167 (81.1) 27 (84.4) 16 (30.2) 20 (20.6)

 Not circumscribed 39 (18.9) 5 (15.6) 37 (69.8) 77 (79.4)

Echogenicity 0.001 0.042

 Marked hypoechoic 30(14.6) 9(28.1) 32(60.4) 60(61.9)

 Hypoechoic 109(52.9) 15(46.9) 17(32.1) 29(29.9)

 Isoechoic 28(13.6) 3(9.4) 1(1.9) 4(4.1)

 Hyperechoic 2(1.0) 0(0.0) 0 0(0.0)

 Mixed echoic 37(18.0) 5(15.6) 3(5.7) 4(4.1)

Internal components < 0.001 0.257

 Solid 169(82.0) 27(84.4) 50(94.3) 93(95.9)

 Cystic portion 0–25% 22(10.7) 3(9.4) 3(5.7) 4(4.1)

 Cystic portion 25–50% 7(3.4) 2(6.3) 0(0.0) 0(0.0)

  Cystic portion ≥  50% 8(3.9) 0(0.0) 0(0.0) 0(0.0)

Posterior acoustic feature < 0.001 0.019

  None 122(59.2) 20(62.5) 33(62.3) 68(70.1)

  EnhancementEnhancement 46(22.3) 4(12.5) 5(9.4) 6(6.2)

  Shadowing 38(18.4) 8(25.0) 15(28.3) 23(23.7)

Calcification < 0.001 0.046

  No 87(42.2) 7(21.9) 14(26.4) 27(27.8)

  Microcalcification: 72(35.0) 14(43.8) 27(50.9) 55(56.7)

  Macrocalcification 47(22.8) 11(34.4) 12(22.6) 15(15.5)

Intranodular vascularity 0.014 0.040

  Type Ι 36(17.5) 7(21.9) 18(34.0) 24(24.7)

  Type II 42(20.4) 10(31.3) 12(22.6) 28(28.9)

  Type Ι II 34(16.5) 7(21.9) 11(20.8) 12(12.4)

  Type Ι V 64(31.1) 6(18.8) 4(7.5) 14(14.4)

  Type V 30(14.6) 2(6.3) 8(15.1) 19(19.6)

TI-RADS category 0.096 0.041

  3 67(32.5) 6(18.8) 1(1.9) 1(1.0)

  4a 137(66.5) 25(78.1) 30(56.6) 35(36.1)

  4b 1(0.5) 1(3.1) 16(30.2) 47(48.5)

  4c 1(0.5) 0(0.0) 6(11.3) 14(14.4)

Table 3.  Analyzing the correlation of patient and morphologic characteristics of the TNs with SWS 
imaging findings by univariate logistic regression analysis. TN =  thyroid nodule; SWS =  shear-wave speed; 
TI-RADS =  thyroid imaging reporting and data system. *Data are means ±  standard deviations.
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the statistically significant variables (P <  0.05) were put into the model of binary logistic regression analysis with 
a forward stepwise selection method. P values of less than 0.05 were considered statistically significant and the 
independent variables with P values less than 0.05 were selected for partial regression coefficient (β ), odds ratio 
(OR) estimates and 95% confidence interval (CI).

Results
There were 150 (38.7%) malignant TNs and 238 (61.3%) benign TNs. All the 150 malignant TNs were confirmed 
by histopathological examinations after surgery. The pathological results of the malignant TNs were as follows: 
papillary thyroid carcinoma (PTC) (n =  144), medullary carcinoma (n =  3), follicular carcinoma (n =  2), and 
nondifferentiated carcinoma (n =  1). For the 238 benign TNs, 70 were confirmed by histopathological examina-
tions after surgery, while the remaining 168 TNs were confirmed by Bethesda category 2 cytological results on 
FNAB and followup for at least 6 months without change in size and US appearance.

All the quantitative VTIQ parameters (including SWS-mean, SWS-max, SWS-SD and SWS-ratio) were signif-
icantly higher for the malignant TNs compared with those for the benign TNs (all P <  0.001) (Table 1). Among 
the VTIQ parameters, SWS-mean with a cut-off value of 3.15 m/s achieved the highest Az value, with a sensitivity 
of 64.7% (97/150), specificity of 86.6% (206/238), accuracy of 78.1% (303/388), PPV of 75.2% (97/129), and NPV 
of 79.5% (206/259) (Table 2). Benign TNs that had an SWS-mean ≤  3.15 m/s were classified as “true negative” 
whereas those with SWS-mean > 3.15 m/s were classified as “false positive”. Conversely, malignant TNs that had 
an SWS-mean ≤  3.15 m/s were classified as “false negative” whereas those with SWS-mean > 3.15 m/s were clas-
sified as “true positive”. The false positive rate was 13.4% (32/238) and the false negative rate was 35.3% (53/150).

The results of univariate logistic regression analysis are summarized in Table 3. For benign TNs, the signif-
icant features for differentiation between false positive VTIQ and true negative VTIQ results were as follows: 
echotexture of the thyroid background, position of capsule contact (especially beside carotid), ratio of perimeter 
in contact with the capsule, size, halo sign, margin, echogenicity, internal components, posterior acoustic feature, 
intranodular calcification, intranodular vascularity (all P <  0.05). For malignant TNs, the significant features for 
differentiation between false negative VTIQ and true positive VTIQ results were as follows: age, lesion depth, 
position of capsule contact, ratio of perimeter in contact with the capsule, echogenicity, posterior acoustic feature, 
intranodular calcification, intranodular vascularity of TNs, TI-RADS category (all P <  0.05).

Binary logistic regression analysis showed that intranodular calcification (β : 0.539, OR: 1.715, 95% CI: 1.046–
2.811) were independent characteristics related to false positive VTIQ findings, while nodule size (β : − 0.067, OR: 
0.936, 95% CI: 0.881–0.994) and echotexture of the thyroid background (β : − 3.410, OR: 0.033, 95% CI: 1.217–
5.617) were negatively associated with false positive findings (Fig. 1) (Table 4). On the other hand, nodule depth 
(β : − 0.126, OR: 0.881, 95% CI: 0.800–0.970) and TI-RADS category (β : − 0.575, OR: 0.563, 95% CI: 0.339–0.933) 
were negatively associated with false negative VTIQ findings (Table 5) (Fig. 2). False negative VTIQ findings were 
as follows: PTC (n =  49; 34.0%, 49/144), medullary carcinoma (n =  2; 66.7%, 2/3), follicular carcinoma (n =  2; 
100%, 2/2), nondifferentiated thyroid carcinoma (n =  0; 0%, 0/1).

Discussion
Tissue stiffness is one of the characteristics that may reflect the nature of TNs17. US elastography as a diagnostic 
tool can assess the tissue stiffness, which helps differentiation between benign and malignant TNs8,18. We investi-
gated the VTIQ parameters including SWS-mean, SWS-max, SWS-SD of TNs and SWS-ratio and all of them were 
significantly higher for malignant TNs compared with benign ones. SWS-mean with cut-off value of 3.15 m/s had 
the highest Az value and achieved 64.7% sensitivity, 86.6% specificity, 75.2% PPV, 79.5% NPV, and 78.1% accu-
racy. Ghobad et al.19 reported 79.27% sensitivity, 71.52% specificity, 26.75% PPV and 96.34% NPV for predicting 
thyroid cancer with a cut-off SWS-max value of 3.54 m/s. In the current study, the cut-off SWS-max value was 
3.61 m/s, which was consistent with Ghobad’s result.

In this series, The false positive rate was 13.4% and the false negative rate was 35.3%. Xu et al.20 reported 
that, with a threshold mean SWS of 2.87 m/s applying VTQ, the false negative rate was 31.8% ( 21 of 66), and 
the false positive rate was 23.1% (27 of 117). The false positive rates in this series were lower than those in their 
studies, which may be ascribed to the fact that quality measure and smaller SW ROI were applied in the current 
study. Despite the relatively high false results, the specificity of VTIQ was 86.6% with SWS-mean and 93.7% with 
SWS-max, which was in agreement with a recent consensus of World Federation for Ultrasound in Medicine and 
Biology (WFUMB) panel group that SWS imaging may be useful in selecting patients with TNs for surgery and 
SWS imaging can be considered as a useful complement to conventional ultrasound21. Compared with conven-
tional US, SWS imaging has improved specificity for diagnosing malignant TNs and also improved the confidence 
for diagnosis21.

Binary logistic regression analysis showed that intranodular calcification (OR: 1.715) was independent 
characteristic associated with false positive findings on VTIQ. Out of 144 calcified benign TNs, 17.4% had an 
SWS-mean > 3.15 m/s while only 7.4% of the 94 non-calcified TNs. Veyrieres22 reported that 25.6% calcified TNs 
were wrongly classified by elastography while 9.13% for non-calcified TNs. The false positive cases for calcified 
benign TNs is lower in our study, which might be due to the smaller SW ROIs for VTIQ. The small ROI can 
minimize the influence of calcifications to SWS measurement, however, the influence can not be avoided when 
diffuse calcifications are present. Calcifications would increase the risk for malignancy23, therefore, for TNs with 
calcification, image analysis with combination of US elastography and conventional US is necessary.

On the other hand, nodule size (OR: 0.936) was negatively associated with false positive findings on VTIQ, which 
means false positive results were apt to be encountered in smaller TNs. Fukuhara et al.24 found the dispersion of 
VTQ of benign TNs and PTCs tended to be greater for small nodules and concluded that SWE is not suitable for 
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measurement of small nodules. The underlying mechanism might be that the ultrasonic waves of the push pulse were 
reflected and refracted at the curved boundaries of the nodules, resulting in irregular production of shear waves.

It is interesting to find that echotexture of the thyroid gland (OR: 0.033) was negatively associated with false 
positive findings on VTIQ, which indicates that benign TNs with heterogeneous thyroid gland was not easy to be 
misdiagnosed. Han et al.25 reported that the stiffness of extra-nodular thyroid tissue instead of TNs was affected 
by the severity of chronic autoimmune thyroiditis, but there is no significant difference of SWS of benign and 

Figure 1. VTIQ Images acquired in a 62-year-old man. Fine-needle aspiration biopsy for this TN is benign. 
(a) Conventional ultrasound shows a 10.8-mm TN that appears hypoechogenicity, macrocalcification, regular 
shape and wider than tall. (b) SW-quality image: green color represents a good image quality. (c) The SWS 
measurement of TN. SWS-mean is 3.26 m/s and SWS-SD is 0.22. (d) The SWS measurement of the adjacent 
thyroid parenchyma. SWS-mean is 2.66 m/s. VTIQ =  Virtual Touch Imaging Quantification; TN =  thyroid 
nodule; SW =  shear wave; SWS =  shear wave speed; SD =  standard deviation.

Characteristics β OR 95% CI P value

Thyroid background − 3.410 0.033 1.217, 5.617 < 0.001*

Size − 0.067 0.936 0.881, 0.994 0.031*

Calcification 0.539 1.715 1.046, 2.811 0.032*

Position contacted capsule − 0.097 0.908 0.628, 1.312 0.606

Contact with the capsule 0.298 1.347 0.695, 2.608 0.377

Halo sign − 0.375 0.687 0.283, 1.668 0.407

Echogenicity 0.414 1.513 0.774, 2.961 0.226

Table 4.  Evaluating independent factors related to false VTIQ finding of benign TNs by binary logistic 
regression analysis. VTIQ =  virtual touch tissue imaging and quantification; TN =  thyroid nodule; OR =  odd 
ratio; CI =  confidence interval. *Indicates statistically significant difference.

Characteristic β OR 95%CI P value

Depth − 0.126 0.881 0.800, 0.970 0.010*

TI-RADS category − 0.575 0.563 0.339, 0.933 0.026*

Age 2.067 7.898 0.319, 0.974 0.139

Contact with the capsule − 0.056 0.946 0.669, 1.337 0.751

Table 5.  Evaluating the independent factors related to false VTIQ finding of malignant TNs binary logistic 
regression analysis. VTIQ =  virtual touch tissue imaging and quantification; TN =  thyroid nodule; OR =  odd 
ratio; CI =  confidence interval; TI-RADS =  thyroid imaging reporting and data system. *Indicates statistically 
significant difference.
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malignant TNs in the comparison between the chronic autoimmune Hashimoto’s thyroiditis (HT) group and the 
non-HT group. Therefore, the heterogeneous thyroid background does not increase of the stiffness of benign TNs 
whereas faciliates correct diagnosis for those TNs.

Nodule depth (OR: 0.881) and TI-RADS category (OR: 0.563) were identified to be negatively associated 
with false negative results with VTIQ. In other words, false negative results were inclined to be found in superfi-
cial TNs and those with lower TI-RADS category. Hong et al. reported that malignant TNs protruded from the 
anterior capsule of thyroid might be elastic because the reference surrounding tissues were strap muscles instead 
of the thyroid parenchyma26. However, for deeper TNs, the stress transmission is attenuated with increasing dis-
tance from the transducer, which might result in artefactual tissue “hardening”27. In addition, malignant tumors 
are usually more heterogeneous than benign ones28–30. In the current study, the average SWS-SD values of TNs 
which were assigned to TI-RADS categories 3, 4a, 4b, 4c were 0.11, 0.30, 0.49 and 0.67, respectively. The higher 
TI-RADS categories, the more obvious the heterogeneity of TNs is. This may be the reason why false negative 
malignant TNs are inclined to be lower TI-RADS categories since TNs with lower TI-RADS categories are usually 
be homogenous.

Different pathological types of malignant TNs might have different hardness. PTC, which is the most com-
mon thyroid malignancy, tends to be hard. PTC has complex papillae with a central fibrovascular stalk. And 
psammoma bodies and fibrosis are often found in them26. However, 34% (49/144) PTCs in our series showed 
lower SWS values, which might be associated with the high percentage of microcarcinomas (100 of 150, 66.7%) 
and microcarcinomas usually have homogeneous pathological components31. Two follicular carcinomas (100%) 
in the current study were soft. In a meta-analysis by Sun et al.32, a total of 7 studies reported 11 follicular carci-
nomas, and 10 were erroneously diagnosed as benign nodules with elastography. The reason may also be that 
follicular carcinoma has homogeneous pathological components32. Medullary and nondifferentiated carcinoma 
may also be varied in stiffness33. In our study, 66.7% (2/3) medullary carcinomas showed lower SWS values on 
VTIQ. However, the case numbers with follicular carcinoma, medullary carcinoma and nondifferentiated thyroid 
carcinoma were small, thus future study is necessary to evaluate the relationship between pathological types of 
malignant TNs and tissue stiffness.

This study had several limitations, Firstly, retrospective nature of the study would decrease the power of the 
study thus future prospective study is mandatory to verify the results. Secondly, selection bias may exist because 
the study included only patients with symptoms or suspicious US characteristics of malignancy who were sched-
uled for FNAB or surgery, accordingly, the rate of malignancy (150 of 388 nodules) is higher than that of general 
population19. Thirdly, the sample size of misdiagnosed TNs is small on VTIQ. In addition, some benign nodules 
were confirmed by cytological results from FNAB and followup. Some of these TNs may be malignant, although 
it is reported that the risk of malignant TNs following a benign biopsy is less than 3%34. However, it is not ethical 
to perform surgery to all the benign nodules thus this limitation is hardly avoided.

Figure 2. VTIQ Images acquired in a 27-year-old man. Surgical pathology confirms the diagnosis of 
papillary carcinoma. (a) Conventional ultrasound shows a 5.3-mm TN classified as TI-RADS 4a on B-mode 
ultrasound that appears hypoechogenicity, lacking microcalcification, regular shape and wider than tall.  
(b) SW-quality image: green color represents a good image quality. (c) The SWS measurement of TN.  
SWS-mean is 2.29 m/s SWS-SD is 0.14. (d) The SWS measurement of the adjacent thyroid parenchyma.  
SWS-mean is 1.83 m/s. VTIQ =  Virtual Touch Imaging Quantification; TN =  thyroid nodule; SW =  shear  
wave; SWS =  shear wave speed; ROI =  region of interest; SD =  standard deviation.
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In conclusion, false positive and false negative results may be encountered in some TNs when VTIQ alone 
is applied. US features such as intranodular calcification, small nodule and homogeneous thyroid backgroud is 
associated with the false positive VTIQ findings. Superficial TNs and those with lower TI-RADS category are 
likely to show false negative VTIQ findings. These US characteristic of TNs should be taken into consideration 
when interpreting the results of VTIQ examinations.
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