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Neil W. Roach1,*, James Heron2, David Whitaker2

and Paul V. McGraw1

1Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK
2Bradford School of Optometry and Vision Science, University of Bradford, Bradford, UK

The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals

relate to a common source and for making inferences about causality. However, the way in which the

brain represents temporal relationships remains poorly understood. Recent studies indicate that our per-

ception of multisensory timing is flexible—adaptation to a regular inter-modal delay alters the point at

which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual

asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We

find distinctive patterns of induced biases that are inconsistent with the previous explanations based on

changes in perceptual latency. Instead, our results can be well accounted for by a neural population

coding model in which: (i) relative audio-visual timing is represented by the distributed activity across

a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this popu-

lation code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is

to modify neuronal response gain. These results suggest that multisensory timing information is rep-

resented by a dedicated population code and that shifts in perceived simultaneity following asynchrony

adaptation arise from analogous neural processes to well-known perceptual after-effects.
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1. INTRODUCTION
We typically perceive external events as coherent multi-

sensory entities. When a balloon pops in front of us, for

example, we see and hear it happen simultaneously. This

is not trivial, given the considerable differences between

the speed that light and sound travel through air, and

the rate at which each is transduced into neural signals

by our senses (see [1,2]). A flexible strategy the brain

might employ to support accurate perception of timing

is to monitor the temporal correspondence (e.g. cross-

correlation) of sensory inputs and correct for pervasive

delays between modalities. Studies demonstrating that

our perception of simultaneity can be altered by recent

experience are consistent with this active recalibration

hypothesis. Short periods of adaptation to a consistent

inter-modal asynchrony have been shown to shift an

observer’s point of subjective simultaneity (PSS) in the

direction of the adapted asynchrony [3–12]. For instance,

after exposure to sequences of auditory-visual stimuli in

which the sound is consistently delayed, an auditory lag

is typically required for subsequent stimuli to be perceived

as simultaneous.

Traditional psychological models assume that perceived

stimulus timing reflects the relative arrival time of sensory

signals at some central brain site (e.g. [13–15]). Within

this framework, situations in which synchronous sensory

inputs give rise to asynchronous perception are most

naturally interpreted as a consequence of disparate

neural processing latencies. Indeed, findings that PSS

estimates systematically deviate from zero have been
r for correspondence (nwr@psychology.nottingham.ac.uk).
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taken as evidence for changes in processing latency as a

function of visual field location [16], luminance [17],

attentional state [18], stimulus feature (e.g. [19]) and sen-

sory modality (e.g. [20]). In keeping with this approach, it

has recently been proposed that changes in the PSS

induced by auditory-visual asynchrony adaptation can

be accounted for by an experience-dependent modulation

of processing speed [21,22]. According to this hypothesis,

processing of stimuli in one modality is accelerated or

retarded during the course of adaptation to bring signals

into temporal alignment with one another. Because such

latency changes are inherently unisensory, a key predic-

tion of this account is that adaptation to auditory-visual

asynchrony should produce a uniform recalibration

in which the perception of all audio-visual temporal

relationships is altered equally.

Consider the recalibration process commonly per-

formed when using a kitchen scale. Prior to measuring

a quantity of flour, we first place an empty bowl on the

scale and adjust the display to zero. This ‘zeroing’ of

the kitchen scale is roughly analogous to the shifts in

the PSS produced by asynchrony adaptation. In each

case, we compensate for a potential source of error (the

mass of the bowl or pervasive time delays) by adjusting

the physical input (mass or asynchrony) required to

produce null output (a reading of zero mass or the per-

ception of simultaneity). The utility of kitchen scale

calibration rests upon the fact that it applies a uniform,

stimulus-independent correction for all subsequent

measurements—regardless of how much flour we now

add, we can be confident that the tare mass of the bowl

will always be subtracted. A change in the processing

speed in a given modality should operate in a functionally
This journal is q 2010 The Royal Society
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Figure 1. (a) Prolonged exposure to asynchronous auditory-visual stimuli alters the point of subjective simultaneity (PSS)—the
physical stimulus-onset asynchrony required for stimuli to be perceived as simultaneous. Relative to baseline conditions with no
adaptation (black star), the PSS shifts in the direction of the adapting asynchrony (red and blue stars). If this effect is repre-

sentative of a uniform recalibration of perceived timing, the perception of all temporal relationships ought to be equally affected
(diagonal lines). (b) Schematic of the experimental sequence, designed to measure adaptation-induced changes in perceived
timing over a range of stimulus-onset asynchronies (SOAs). See main text for details.
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similar manner, exerting an effect that is independent of

the temporal relationship between multimodal inputs.

For example, if adapting to an auditory temporal lead

over vision retards auditory latency by 30 ms, a 30 ms

auditory lead will be perceived as close to synchronous,

but a 100 ms auditory lead will also be perceived as

closer to 70 ms. Thus, if mechanisms underlying asyn-

chrony adaptation effects genuinely compensate for

pervasive delays by adjusting processing latencies, one

might expect resulting changes in perceived multisensory

timing to be uniform in nature (figure 1a).

In this study, we measure the effects of adaptation to a

fixed audio-visual asynchrony on the perception of a wide

range of sub-second temporal relationships. In contrast to

the uniform recalibration predicted by changes in sensory

processing latency, we find that the magnitude of induced

biases varies systematically as a function of the difference

in stimulus-onset asynchrony (SOA) between adapting

and test stimuli. To explain these findings, we consider

an alternative working model of how the brain codes the

relative timing of different sensory signals. The dominant

coding strategy employed by the brain is to represent sen-

sory information in the responses of specialized

populations of neurons characterized by different tuning

properties. Dedicated neural population codes have

been characterized for numerous visual and auditory

stimulus features, and significant progress has been

made towards understanding the strategies employed by

human observers when decoding this information to

form perceptual decisions and plan actions (for recent

reviews see [23–25]). Here, we develop a simple

population-coding model of audio-visual timing that

provides an excellent approximation of the varying

effects of asynchrony adaptation. Our findings suggest

that multisensory timing information may be represented

in a fundamentally similar way to other sensory proper-

ties, and that shifts in the PSS following asynchrony

adaptation arise from analogous neural processes to

classic perceptual after-effects. Uniquely, however, the

population code for multisensory timing may be charac-

terized by intrinsic biases that arise as a consequence of
Proc. R. Soc. B (2011)
the brain restricting neural representation to a finite

range of audio-visual asynchronies.
2. MATERIAL AND METHODS
(a) Participants

Three of the authors served as participants, along with two

adults who had experience of performing psychophysical

tasks, but were naive to the specific purposes of experiment.

Each had normal visual acuity and no history of hearing loss.

(b) Stimuli

Visual stimuli were isotropic Gaussian blobs (s ¼ 28) gener-

ated in MATLAB and displayed via a Cambridge Research

Systems ViSaGe on either a gamma-corrected Mitsubishi

Diamond Pro 2045U or Sony Trinitron GDM-FW900

CRT monitor (mean luminance 47 cd m22) at fixation for

two video frames at 100 Hz. Auditory stimuli were 20 ms

bursts of white noise (200 Hz—12 kHz passband, 5 ms

cosine ramp at onset/offset), presented binaurally via

Sennheiser HD-265 headphones. Auditory stimuli were

convolved with a generic pair of head-related impulse

response functions corresponding to a spatial position

immediately in front of the observer (08 azimuth, 08
elevation; see [26] for measurement details).

(c) Procedure

Although established methods exist for measuring shifts in

the PSS following asynchrony adaptation, quantification of

adaptation-related changes in perception across a range of

SOAs poses more of a methodological challenge. Participants

typically have a robust concept of what is meant by ‘simul-

taneous’, providing an internal standard against which

stimuli can be judged (e.g. as in synchronous/asynchronous

or temporal order judgements). However, because strong

internal standards are not available for different temporal

relationships (try to imagine a visual stimulus leading an

auditory one by 170 ms, for example), such single-interval

binary judgements are ill-suited to the measurement of per-

ceived temporal relationships across a broad range of

asynchronies. The obvious alternative is to pair test stimuli

with an explicit standard stimulus with a fixed SOA (i.e. a
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two-alternative forced choice procedure). However, this

approach is also problematic in this instance, because the

perceived timing of the standard stimulus will also be affected

by adaptation. To circumvent these problems, we opted to

use magnitude estimation, a classical psychophysical pro-

cedure most often associated with Stevens’s pioneering

work on brightness and loudness perception (e.g. [27]).

As depicted in figure 1b, participants were required to

estimate the SOA between pairs of brief auditory and visual

stimuli with and without prior adaptation to a fixed

asynchrony (100 ms visual-lead or 100 ms auditory-lead).

Adaptation consisted of 120 initial presentations of the

asynchronous audio-visual pair, plus four additional top-up

presentations prior to each test stimulus. To obviate exposure

to a consistent unimodal timing pattern during adaptation,

the interstimulus interval between successive audio-visual

pairs was randomly jittered in the range 400–600 ms. The

SOA of each test stimulus was sampled (with replacement)

from a uniform distribution spanning 2300 ms (visual

lead) to þ300 ms (auditory lead). Participants were

required to indicate the perceived SOA of the test pair via a

graphical user interface comprising a scaled schematic of

the time-course and numerical SOA value that could be

adjusted to 5 ms precision. The initial SOA indicated by

the graphical-user interface was randomized to disperse the

effect of any potential biases related to the starting position

of the adjustment process. Practice was provided at the

beginning of each experimental session to familiarize partici-

pants with the extremes of the SOA range (+300 ms).

Participants were informed that the SOA of all stimuli was

restricted to this range. All participants first completed a

number of experimental sessions for the baseline condition

with no adaptation, before completing sessions with

adaptation to an auditory visual lead in a randomized order.
(d) Modelling

We began by assuming that the temporal relationship

between auditory and visual signals is represented across a

population of N neurons tuned to different SOAs. The

tuning function f of each neuron was described by a Gaussian

function of the form

fiðSOAÞ ¼ Gie
�ðSOA�SOAiÞ2=2s2

;

where Gi and SOAi are the response gain and preferred SOA

of the ith neuron, respectively, and s sets the width of the

tuning function (common to all neurons). Tuning functions

were distributed uniformly around physical synchrony with

a fixed 50 ms separation. Adaptation was modelled as a

reduction in response gain, the magnitude of which falls off

as a Gaussian function of the difference between adapted

(SOAa) and preferred (SOAi) asynchronies

Gi ¼ G0 1� ae�ðSOAi�SOAaÞ2=2s2
a

� �
;

where the unadapted response gain G0, maximal pro-

portional gain reduction a and breadth of the gain field

(sa) were common to all neurons.

The response Ri of each neuron to a test stimulus on any

given trial was determined from its tuning curve and

corrupted by independent Poisson noise such that

pðRi jSOAÞ ¼ fiðSOAÞ e
�fiðSOAÞ

Ri !
:

Proc. R. Soc. B (2011)
To decode the noisy population response, the log likeli-

hood of each potential SOA was calculated (see [28]) as

log LðSOAÞ ¼
XI

i¼1

Ri log fiðSOAÞ �
XI

i¼1

fiðSOAÞ

�
XI

i¼1

logðRi !Þ:

The SOA with the maximum log-likelihood was then

taken as the model’s estimate on that trial. In order to pro-

duce biases in perceived timing, it was assumed that the

maximum-likelihood decoder was ‘unaware’ of the effects

of adaptation (i.e. the log-likelihood calculation used the

unadapted tuning function fi(SOA); see [29]).
3. RESULTS
Estimates were collated across observers (approx. 7000

total trials). Image maps representing the distribution of

perceived SOA estimates as a function of physical SOA

are shown in figure 2a. In this and subsequent figures,

negative and positive SOA values indicate visual and audi-

tory leads, respectively. In each condition, physical and

perceived SOAs were highly correlated (rvisual-lead ¼

0.92, rno-adaptation ¼ 0.88, rauditory-lead ¼ 0.91), indicating

that observers were able to form estimates with a reason-

able degree of precision. To avoid potential problems

encountered at the extremes of the sampled SOA interval

(e.g. ‘clipping’ of estimates that would have fallen outside

the range), subsequent analysis was restricted to the range

between 2200 ms and þ200 ms. Trials were binned

according to the sampled physical SOA (60 ms bin

width, 10 ms centre-to-centre bin separation). Instances

in which estimation error (SOAperceived 2 SOAphysical) was

more than 3 s.d. away from the bin mean were removed,

accounting for less than 3 per cent of all estimates.

(a) Shifts in the point of subjective simultaneity

In order to facilitate comparison with the pre-existing

accounts of asynchrony adaptation, we first used the

polarity of non-zero-perceived SOA estimates (i.e.

whether it was auditory-first or visual-first) to reconstruct

psychometric functions for temporal order discrimi-

nation. Figure 2b shows the probability of perceiving the

auditory stimulus to lead the visual stimulus, plotted as

a function of the physical SOA. Solid lines show the

best-fitting logistic function

pðsound firstÞ ¼ 1þ eðPSS�SOAÞ=JND
� ��1

;

where PSS is defined as the physical SOA at which

participants are equally likely to judge the auditory

stimulus as leading or lagging and JND is an index of

the discrimination threshold (the just-noticeable differ-

ence). Consistent with previous studies measuring

explicit (i.e. binary) temporal order judgements (e.g.

[4,9]), we found that audio-visual asynchrony adaptation

systematically shifted the PSS towards the exposed

asynchrony (PSSvisual-lead ¼ 221.12 ms, PSSno-adaptation ¼

14.42 ms, PSSauditory-lead ¼ 41.28 ms), and that dis-

crimination thresholds were similar in the three

conditions (JNDvisual-lead ¼ 32.56 ms, JNDno-adaptation ¼

35.93 ms, JNDauditory-lead ¼ 27.76 ms).



(a)

(b) (c) (d)

adapt to 
auditory lead

adapt to 
visual lead

–100

00

100

20

40

60

80

–20

–40

–60

–80

adapt to 
auditory lead

adapt to 
visual lead

predicted 35.54 ms shift 
from PSS estimates

predicted 26.86 ms shift 
from PSS estimates

Δ 
bi

as
 (

m
s)

so
un

d 
ea

rl
ie

r
vi

su
al

 e
ar

lie
r

–100

100

20

40

60

80

–20

–40

–60

–80

bi
as

 (
m

s)
so

un
d 

ea
rl

ie
r

vi
su

al
 e

ar
lie

r

0 50 100 150–50–100–150
0

0.5

1.0

p 
(s

ou
nd

 f
ir

st
)

physical SOA (ms) sound firstvisual first
0 50 100 150–50–100–150

physical SOA (ms) sound firstvisual first
0 50 100 150–50–100–150

physical SOA (ms) sound firstvisual first

adapt to 
visual lead

adapt to 
auditory lead

PSS = –21.12 ms
PSS = 14.42 ms

PSS = 41.28 ms

300–300 –200 –100 0 100 200

–3
00

–2
00

–1
00

0
10

0
20

0
30

0

physical SOA (ms) sound firstvisual first

pe
rc

ei
ve

d 
SO

A
 (

m
s)

so
un

d 
fi

rs
t

vi
su

al
 f

ir
st

no adaptation
(baseline)

300–300 –200 –100 0 100 200

–3
00

–2
00

–1
00

0
10

0
20

0
30

0

physical SOA (ms) sound firstvisual first

pe
rc

ei
ve

d 
SO

A
 (

m
s)

so
un

d 
fi

rs
t

vi
su

al
 f

ir
st

adapt to auditory lead
(SOA = 100 ms)

300–300 –200 –100 0 100 200

–3
00

–2
00

–1
00

0
10

0
20

0
30

0

physical SOA (ms) sound firstvisual first

pe
rc

ei
ve

d 
SO

A
 (

m
s)

so
un

d 
fi

rs
t

vi
su

al
 f

ir
st

adapt to visual lead
(SOA = –100 ms)

Figure 2. (a) Image maps representing the distribution of estimates at each physical stimulus-onset asynchrony (SOA).
‘Warmer’ colours indicate higher probabilities. To aid clarity, the observed values have been convolved with an isotropic Gaus-

sian smoothing filter (s ¼ 20 ms). The dashed black lines indicate veridical estimation. (b) Reconstructed psychometric
functions for temporal order discrimination. The probability of perceiving the auditory stimulus as leading the visual stimulus
is plotted as a function of SOA. Solid lines show the best-fitting logistic functions for each condition (colour coding as shown in
figure 1). Clear evidence can be seen for a shift in the point of subjective simultaneity (PSS) towards the adapted asynchrony.

(c) Biases of perceived timing induced by asynchrony adaptation. The mean bias (difference between physical and estimated
SOA) is plotted as a function of SOA for each condition. (d) Shifts in mean bias from baseline are shown across the range
of sampled SOAs. For comparison, the dashed horizontal lines indicate the pattern of results that would be expected if PSS
shifts were representative of a uniform recalibration of perceived timing. In this and subsequent figures, shaded regions indicate
the 95% confidence intervals.

Population coding of audio-visual timing N. W. Roach et al. 1317
(b) Non-uniform changes in perceived

auditory-visual timing

The advantage of our experimental approach is that it

permits us to carry out a more detailed analysis of per-

ceived timing. To quantify the biases in the perception

of different temporal relationships, we next calculated

the difference between physical and perceived SOA

values on each individual trial. Figure 2c displays mean

biases in each condition, plotted as a function of the

test stimulus SOA. Shaded regions indicate the 95 per

cent confidence intervals calculated using non-parametric

bootstrapping [30]. One point of note is that rather than

being horizontal, the bias function for the unadapted con-

dition (shown in black) has a negative slope. This suggests

a compressive bias—on average, asynchronous auditory-

visual stimuli are judged to be slightly less asynchronous

than they actually are. We will return to this point in a

subsequent section.

If asynchrony adaptation acts to induce a uniform

recalibration of the perceived audio-visual timing, bias

profiles for each adaptation condition should resemble a

vertical translation of that obtained in the no-adaptation

condition. Contrary to this prediction, however, changes

in bias are highly non-uniform across the sampled SOA

interval. Whereas adaptation induced large, statistically

significant shifts in bias for certain SOAs, others remained
Proc. R. Soc. B (2011)
indistinguishable from baseline. This departure from uni-

formity can be clearly seen in figure 2d, which plots the

difference in bias between the adapting and baseline con-

ditions. Results are poorly approximated by the horizontal

dashed lines, which designate the pattern of results that

would be expected if measured shifts in the PSS were

representative of a uniform recalibration of audio-visual

timing perception. Rather, the magnitude of induced

biases appears to increase as the SOA of the test stimulus

is moved away from that of the adaptor. These findings

are inconsistent with the operation of a mechanism that

compensates for an adapted auditory-visual asynchrony

by adjusting the speed of processing in one or both

modalities.
(c) Characterizing adaptation-induced biases

with a population-coding model

To explain the non-uniform effects of asynchrony adap-

tation, an understanding of how the brain encodes the

relative timing of multisensory events is required. At pre-

sent, however, the nature of the mechanisms involved is

unclear. One potential solution might be to represent

relative time via the pattern of activity across a population

of neurons tuned to different inter-sensory delays (e.g.

[3,31]). An appeal of this approach is that shifts in the
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Figure 3. Modelling the effects of auditory-visual asynchrony adaptation. (a) Schematic of a population code comprising neur-
ons tuned to different auditory-visual stimulus-onset asynchronies (SOAs). In the best-fitting model, there were a total (n) of 29

neurons and each had a Gaussian tuning profile with an s.d. (s) of 220.60 ms. (b) The effects of adaptation were modelled as a
selective reduction of response gain around the adapted SOA. Best-fitting parameter values were a maximum proportional gain
reduction (a) of 0.41 and a gain field standard deviation (sa) of 122.61 ms. See §2d for further details. (c) Examples of popu-
lation responses to a physically synchronous auditory-visual stimulus (SOA ¼ 0 ms). Data points represent individual noisy
neuronal responses, plotted as a function of their preferred SOA. Asynchrony adaptation produces a repulsive shift of the popu-

lation response profile away from the adapted SOA. (d) Psychometric functions for temporal order discrimination
reconstructed from the simulated dataset, demonstrating the resulting shift in the point of subjective simultaneity. (e) Mean
bias of SOA estimates in the simulated dataset as a function of SOA. ( f ) Shifts in mean bias from baseline for each of the
adaptation conditions in the simulated dataset.
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PSS following asynchrony adaptation could be viewed as

an analogue of well-documented visual after-effects in the

orientation (e.g. [32]) and motion (e.g. [33]) domains.

Extant models of these sensory after-effects posit that

adaptation selectively reduces the gain of neurons tuned

to the adapted stimulus, resulting in a repulsive shift of

the population response to subsequent stimuli away

from the adapted value (e.g. [34,35]). Figure 3a–c illus-

trates how a comparable population-coding model

might explain changes in perceived simultaneity following

adaptation to asynchronous auditory-visual stimuli.

To test this approach in a quantitative manner, we car-

ried out a series of trial-by-trial simulations in which we

repeated the asynchrony adaptation experiment while

replacing the responses of the psychophysical observers

with the output of the population-coding model (see

§2d for details). Each simulation comprised 10 000

trials and the resulting dataset was analysed in an identi-

cal manner to the empirical study. Across successive

simulations, four parameters were free to vary: the

number of neurons in the population (N), the bandwidth

of their tuning (s), and the depth (a) and bandwidth (sa)

of the gain reduction induced by adaptation. These model

parameters were optimized so as to minimize the squared

residual error between the adaptation-related change in

bias produced in the empirical (i.e. figure 2d) and simu-

lated experiments. Results for the best-fitting model are
Proc. R. Soc. B (2011)
shown in figure 3f, which successfully accounted for

approximately 94 per cent of the variance in the original

dataset. In addition, the model produced accurate

approximations of the reconstructed psychometric func-

tions for temporal order discrimination (figure 3d) and

the bias profiles for each individual condition

(figure 3e). In contrast to the uniform recalibration pre-

dicted by a change in sensory processing latency, this

population-coding approach is clearly able to capture

the non-uniform effects of asynchrony adaptation.
(d) Compressive biases and neural population

codes with a finite range

In the model, we derived each SOA estimate from the

neural population response using a maximum-likelihood

decoder (see §2d). This read-out strategy is regularly

employed in the literature because it is often ‘optimal’,

providing estimates that are unbiased and with the

lowest possible variance (e.g. [28,36,37]). With this in

mind, an unexpected outcome of the simulations was

that even in the absence of adaptation, estimates were sys-

tematically biased. As shown by the black line in figure 3e,

the model underestimated the magnitude of asynchro-

nous stimuli in the unadapted condition, reproducing

the compressive bias previously noted in the baseline con-

dition of the empirical experiment. The reason for this is
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Figure 4. (a) Effect of changing the absolute number of neurons in the model population code. (i) Predicted patterns of bias of
the best-fitting model, comprising 29 neurons with SOA preferences ranging from 2700 ms to þ700 ms. Evidence of a com-
pressive bias can be seen in the unadapted baseline condition (black line). (ii) Increasing the range of preferred SOAs to
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shows mean biases in the unadapted condition for three observers, where the SOA of test stimuli was randomly drawn from
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range of potential SOAs was offset by 150 ms (green line) or 2150 ms (orange line), indicating that the locus of the compres-

sive bias is an SOA near synchrony, not the centre of the response range. Shaded regions indicate the 95% confidence intervals.
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that the optimality of the maximum-likelihood decoder

can break down when there are relatively small numbers

of neurons in the population code (see [36]). This effect

is illustrated in figure 4a, which shows patterns of bias

produced by variants of the population-coding model

characterized by different ranges of tuning preferences.

Figure 4a(i) shows results for the best-fitting model,

which comprised 29 neurons with preferred SOAs ran-

ging from 2700 ms to þ700 ms. Increasing the range of

representation by adding additional neurons to the popu-

lation abolishes the compressive bias in the baseline

condition (figure 4a(ii); 81 neurons, preferred SOA

range 22000 ms to þ2000 ms), whereas reducing the

range by removing neurons produces a pattern of results

dominated by the compressive bias (figure 4a(iii); 21

neurons, preferred SOA range 2500 ms to þ500 ms).

Importantly, a change in the number of neurons in

either direction produces a pattern of results in baseline

and adaptation conditions that is a poorer fit of the

empirical dataset. Note that a comparable pattern of

results can also be simulated by varying the spacing of

preferred SOAs in a population with a fixed number

of neurons, suggesting that the critical factor is the

range of preferred SOAs, rather than the number of

neurons per se.

An intriguing possibility raised by these results there-

fore is that the compressive bias displayed by participants

might be indicative of the use of an inherently inaccurate

population code. Before we can conclude this, however,

it is necessary to consider an alternative explanation of

this effect. In principle, measured biases could simply

reflect an artefact of observers not using the full range

of SOAs in the estimation task. Response range
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compressions have been documented to occur in some

magnitude estimation paradigms, and are classically

referred to as ‘regression effects’ (see [38,39]). A critical

difference between these explanations is that whereas the

small sample bias account predicts a compression of per-

ceived SOA around a fixed point (the centre of the range

of neuronal preferences in the population code), a

regression effect should be linked to the particular

response range in the estimation task. To dissociate

between these different accounts, we had a subset of

observers repeat the baseline (no adaptation) condition

while offsetting the range of potential SOAs by

+150 ms (i.e. instead of 2300 ms to þ300 ms, the

range was 2150 ms to þ450 ms, or 2450 ms to

þ150 ms). To avoid any net adaptation to a particular

temporal order in a run of trials, these two conditions

were interleaved with one another—the test stimulus

was randomly drawn from the range centred on

þ150 ms for odd trial numbers, and the range centred

on 2150 ms for even trial numbers. All other methods

were identical to those described previously. Results are

shown in figure 4b. If regression to the centre of the

response range were occurring, we would expect bias

profiles in these offset conditions to be shifted along

the horizontal axis. Contrary to this prediction, however,

patterns of bias were very similar to those found in

the original measurements. Perceived SOAs are com-

pressed around a consistent point somewhere near

physical synchrony, rather than around the centre of

the particular response range imposed on the

observer. Accordingly, it appears unlikely that a simple

response bias artefact of this kind can account for

these biases.
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the adaptor than those that are of opposite polarity. (b) This pattern is also evident in the empirical dataset.
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(e) Response gain and estimate variability

In order to approximate the perceptual biases induced by

exposure to asynchronous stimuli, we have modelled

adaptation as a selective change in neuronal response

gain. Rather than solely producing bias, population-

coding theory dictates that these physiological changes

ought to also affect the variability of estimates (e.g. see

[29,40]). To investigate this possibility, we computed

the standard deviation of estimates within each SOA bin

in the simulated and empirical datasets. Figure 5a,b

shows the results for each adaptation condition derived

from the model and participant estimates, respectively.

Although there is a difference in terms of absolute level

of variability, both plots clearly show a similar pattern.

Estimates of SOAs that are of the same polarity as the

adapting stimulus are more variable than those of oppo-

site polarity. It is important to note here that although

the parameters of the model were optimized to fit the pat-

terns of bias in the empirical dataset, the fitting procedure

itself did not take into account estimate variability.

4. DISCUSSION
After exposure to a consistent temporal delay between

auditory and visual stimuli, perceived auditory-visual

simultaneity is adjusted to compensate for the adapted

lag. Recent proposals that this phenomenon arises as a

consequence of changes in perceptual processing latency

[21,22] predict a uniform recalibration, in which the per-

ception of all auditory-visual temporal relationships is

equally affected. Contrary to this prediction, however,

in the present study we have shown that changes in per-

ceived timing induced by asynchrony adaptation vary

systematically as a function of the difference between

adapted and tested SOAs. This finding is difficult to

reconcile with any explanation based on sensory proces-

sing changes within either (or both) modalities. Instead,

it suggests that asynchrony adaptation acts upon rep-

resentations of the temporal relationship between

auditory and visual inputs itself.

How does the brain represent the relative timing of

different sensory inputs? Here we propose that, like

many basic unisensory properties, multisensory timing

is at some level represented by a dedicated population

code comprising neurons tuned to different asynchronies.
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Multimodal neurons exhibiting broad selectivity for par-

ticular auditory-visual temporal relationships have

previously been reported in subcortical and cortical

areas (e.g. [41–44]). These neurons are typically viewed

as the foundations of a temporal window of integration,

within which sensory signals are likely to be bound

together and perceived as arising from a common

source. However, as our simulations demonstrate, the

response profile of a population of such neurons is also

an information-rich code capable of supporting the dis-

crimination of a range of different auditory-visual

temporal relationships. One issue for a dedicated popu-

lation code of relative multisensory timing is setting the

range of representation. For circular variables, such as

the orientation or direction of motion of a visual stimulus,

a population code can uniformly tile the space of all

potential values. In contrast, representation of all poten-

tial temporal relationships between sensory inputs

would require an infinite set of neural detectors. The

system must therefore strike a balance between the

range of representation of the population code and

the allocation of neural resources. An interesting outcome

of our modelling was that the optimization procedure

converged upon a population of neurons with preferences

spanning a finite range of SOAs (+700 ms). Such a range

is likely to be sufficient to permit representation of most

behaviourally relevant auditory-visual temporal relation-

ships (i.e. those relating to common or causally linked

events in the environment). However, the disadvantage

of having a relatively small number of detectors is that

the population code becomes inherently biased. Indeed,

both the experimental and simulated datasets displayed

evidence of a systematic compressive bias, in which

SOA estimates were shifted towards synchrony. There-

fore, it is possible that in representing the temporal

relationship between auditory and visual stimuli the

brain is forced to sacrifice perceptual accuracy to limit

the overall metabolic demands. Although population-

coding approaches have previously been employed in a

variety of sensory neuroscience applications (for recent

reviews see [25,40]), as far as we are aware this

is the first time in which human performance has been

successfully modelled using an intrinsically biased

population code.
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Although our experiments focused exclusively on audi-

tory-visual timing, it is likely that our results have wider

implications for the representation of temporal relation-

ships in the brain. Shifts in perceived simultaneity

have also been demonstrated following adaptation to

asynchronous auditory-tactile [4] and visual-tactile

[4,10,45] stimuli, suggesting that it is likely that

common processing strategies operate across different

sensory combinations. Moreover, it has recently been

shown that transfer of adaptation effects between different

bimodal pairings can occur under some circumstances

[22], raising the possibility that some overlap might

exist between representations of the temporal relationship

between different sensory inputs. Interesting parallels also

exist between our results and previous findings in studies

of sensory-motor timing perception. In 2002, Haggard

et al. [46] demonstrated that subjects consistently under-

estimate the temporal delay between a voluntary motor

act (a key press) and a subsequent sensory event (an audi-

tory tone). This systematic bias, which they termed

‘intentional binding’, is similar in nature to the compres-

sive bias we report for auditory-visual stimuli. Coupled

with the finding that perceived simultaneity can also be

manipulated by exposure to a fixed delay between actions

and sensory consequences [47–49], this result suggests

that the combination of intrinsic and adaptation-induced

biases reported in the present study are mirrored in the

sensory-motor domain.

In our model, asynchrony adaptation was

implemented by selectively reducing the response gain

of audio-visual neurons. Selective response suppression

is the most commonly reported physiological conse-

quence of adaptation (see [50]), and has long been

considered the primary contributor to repulsive percep-

tual after-effect phenomena (e.g. [51–53]). Using this

approach, we demonstrate that it is possible to success-

fully capture the non-uniform pattern of biases in

perceived auditory-visual timing following asynchrony

adaptation. Moreover, the model also made predictions

about the relative precision of timing estimates in adapted

conditions that were borne out in the experimental data-

set. It is important to note that this simultaneous

characterization of bias and variability could not be

achieved if the gain control mechanism was replaced

with a different form of plausible adaptation effect, such

as the modification of tuning width or a shift in the

tuning preferences of the underlying neuronal population

(see [29,40]). Although our data cannot rule out that

such changes might contribute in some way, it does

strongly suggest that response suppression is the primary

mechanism driving asynchrony adaptation effects. As

such, our results provide clear predictions for future phys-

iological studies investigating the effects of asynchrony

adaptation on the responses of multimodal neurons.

Application of a population-coding approach to multi-

sensory timing provides a parsimonious explanation of

the effects of asynchrony adaptation. Within this frame-

work, changes in perceived simultaneity arise from

computationally similar processes to classic sensory adap-

tation phenomena such as the tilt after-effect (e.g. [32])

and the direction after-effect (e.g. [33]). Given this simi-

larity, it is interesting to consider how markedly different

the interpretations of the broader functional significance

of these effects are. Although the precise functional role
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of sensory adaptation remains a topic of active debate, it

is generally agreed that its ultimate purpose is to improve

the efficiency of neural coding, and that perceptual biases

arise as a side-effect of the process. In contrast, the notion

that asynchrony adaptation reflects a temporal recalibra-

tion mechanism supposes that induced biases in

perceived timing are the primary functional outcome.

While it is not inconceivable that computationally similar

neural processes might support different functional out-

comes, in the future it might pay to consider sensory

and multisensory adaptation effects within a common

theoretical framework.
This work was supported by The Wellcome Trust and The
College of Optometrists, UK.
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