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when cluster size is informative
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Abstract

To estimate the mean of a quantitative variable in a hierarchical population, it is logistically convenient to sample in two

stages (two-stage sampling), i.e. selecting first clusters, and then individuals from the sampled clusters. Allowing cluster

size to vary in the population and to be related to the mean of the outcome variable of interest (informative cluster size),

the following competing sampling designs are considered: sampling clusters with probability proportional to cluster size,

and then the same number of individuals per cluster; drawing clusters with equal probability, and then the same

percentage of individuals per cluster; and selecting clusters with equal probability, and then the same number of

individuals per cluster. For each design, optimal sample sizes are derived under a budget constraint. The three optimal

two-stage sampling designs are compared, in terms of efficiency, with each other and with simple random sampling of

individuals. Sampling clusters with probability proportional to size is recommended. To overcome the dependency of the

optimal design on unknown nuisance parameters, maximin designs are derived. The results are illustrated, assuming

probability proportional to size sampling of clusters, with the planning of a hypothetical survey to compare adolescent

alcohol consumption between France and Italy.
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1 Introduction

For the purpose of estimating the mean or prevalence of an outcome variable (e.g. alcohol consumption or
smoking) in a hierarchical population (e.g. students within schools, patients within general practices), or of
comparing subpopulations with respect to such a mean or prevalence, it is often convenient, for economic or
logistic reasons, to sample in two stages: first, clusters (e.g. schools, general practices) are sampled and then
individuals (e.g. students, patients) are drawn from the sampled clusters.1–3 Examples of these multi-stage sam-
pling designs include school-based surveys for monitoring substance use among adolescents,4–6 and national
surveys for estimating the average length of stay for discharges from hospitals,7 or nursing homes.8 The topic
of this paper is the efficient design of two-stage sampling (TSS) schemes for estimating the mean of a quantitative
outcome variable in a two-level population.
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In practice, clusters usually vary in size (e.g. small versus large schools) and then, to estimate the population
mean, a sample can be drawn with at least three alternative TSS schemes: sampling clusters with probability
proportional to cluster size, and then sampling the same number of individuals from each selected cluster (TSS1);
sampling clusters with equal probability, and then sampling the same percentage of individuals from each sampled
cluster (TSS2); sampling clusters with equal probability, and then sampling the same number of individuals per
cluster (TSS3). These three TSS schemes will be considered in this paper and compared with Simple Random
Sampling (SRS) of individuals.

Additionally to cluster size variation, further complications arise with informative cluster sizes, that is, when
cluster size is related to the outcome of interest.9,10 For instance, cluster size is informative when the amount of
alcohol consumed by an adolescent is related to the number of students enrolled in the school, as small schools
might provide a more supportive environment,11–13 or when the number of patients registered to a general practice
affects its efficacy in preventing expensive hospitalisations,14 thus impacting on public expenditure on health per
patient. Informative cluster sizes not only can have direct policy implications, such as introducing a limit to school
or general practice size, they also have consequences for statistical data analysis and sample size planning. In
informative cluster size literature (see the review by Seaman et al., 9 and references therein), the main focus has
been on how to handle informative cluster size when the target of inference is the association between the outcome
variable and some covariates (e.g. a risk factor). For instance, Seaman et al.9 have discussed several methods to
make cluster-specific inferences with Generalized Linear Mixed Models and population-average inferences with
Generalized Estimating Equations when cluster size is informative. Innocenti et al., 15 instead, have investigated a
different topic: the implications of informative cluster size for unbiased and efficient estimation of a population
mean in surveys conducted with the three aforementioned TSS schemes. The present paper is also about mean
estimation for these three TSS schemes when cluster size is informative, but focuses instead on sample size
planning, and the consequences of informative cluster size for the required sample sizes and budget.

Innocenti et al.’s results15 are the starting point of this paper and therefore summarized here. First, there are
two definitions of overall mean in a two-level population, namely the average of all individual outcomes and the
average of all cluster-specific means. These two definitions coincide only if cluster sizes are either equal or non-
informative. Second, when cluster size is informative, estimation of the mean of all individual outcomes (i.e. the
definition used in this paper) is unbiased under TSS1 with the unweighted average of cluster means, and asymp-
totically unbiased under TSS2 and TSS3 with the average of cluster means weighted by cluster size. In contrast,
when cluster size is non-informative, the unweighted average of cluster means is unbiased for all sampling
schemes, but optimally efficient for TSS1 and TSS3 only. Third, under the constraint of a fixed total sample
size, SRS is more efficient than any TSS scheme, TSS3 is the least efficient TSS scheme, and TSS1 is the most
efficient for many cluster size distributions. Indeed, when cluster size is informative, the relative efficiency of these
sampling schemes depends on some features of the cluster size distribution in the population, such as the coef-
ficient of variation, the skewness, and the kurtosis. However, when cluster size is non-informative, TSS1 and TSS3
are equally efficient and outperform TSS2. Fourth, the two inferential paradigms in survey sampling, namely the
model-based3 and the design-based approach,1,2 give similar results in terms of unbiased and efficient estimation
of the average of all individual outcomes with the three aforementioned TSS schemes, at least if the model
assumptions are met. Furthermore, sample size planning and sampling schemes comparisons, which are the
topics of this paper, are much more feasible with the assumption of a model for the outcome variable of interest.15

For these two reasons, the model-based approach is adopted here.
This work extends the results of Innocenti et al.15 in the following ways. First, for each of the three afore-

mentioned TSS schemes, the optimal design is derived. Here, the optimal design is defined as that design (i.e.
number of clusters and number of individuals per cluster) that minimizes the sampling variance of the population
mean estimator subject to a cost constraint. Second, the three optimal TSS schemes are compared with SRS and
with each other under the constraint of a fixed budget. Third, to take care of uncertainty with respect to model
parameters and distributional features of cluster size, as a practical alternative, maximin designs are derived.
Fourth, sample size calculations for making comparisons between populations are derived and illustrated.

This paper is structured as follows. In section 2, the assumptions of this paper are presented, as well as the
sampling schemes and the corresponding mean estimators. Furthermore, the findings of a simulation study to
assess the accuracy of some results in Innocenti et al.15 that are relevant to the present paper are summarized. In
section 3, the optimal design for each TSS scheme is derived, and these optimal TSS designs are compared with
each other and with SRS for a fixed budget. Furthermore, the consequences of ignoring informative cluster size at
the design phase of a study are investigated. Section 4 deals with the maximin approach, that is, a strategy to solve
the dependency of the optimal design on unknown nuisance parameters. Section 5 provides a procedure for

358 Statistical Methods in Medical Research 30(2)



computing sample sizes for surveys aimed to make cross-population comparisons, and the procedure is illustrated
in planning a survey for comparing the average alcohol consumption among adolescents in France and Italy.
Section 6 offers some final remarks. The mathematical derivations of the results, the description of the simulation
study discussed in section 2, and additional figures and tables can be found in the Supplementary Material 1 (S.
M.1). The Supplementary Material 2 (S.M.2) provides the R16 code of the simulation study and other R codes to
apply some of the mathematical results of this paper.

2 Assumptions, sampling schemes and mean estimators

The results of Innocenti et al.15 and this paper are based on the following assumptions (the notation used in the
main text is summarized in the Appendix).

Assumption 1: The population is composed of K clusters and each cluster j contains Nj individuals, that is, in the
population clusters vary in size (Nj). The population size is Npop ¼

PK
j¼1 Nj.

Assumption 2: Sampling is either SRS of individuals in one stage, or else TSS. In TSS, we first sample k clusters,
and then sample n or nj individuals per selected cluster j. In case of TSS, the population is very large relative to the

sample size at each design level (i.e. k
K
! 0 and �n

hN
! 0, where �n ¼

Pk

j¼1
nj

k
is the average sample size per sampled

cluster, and hN ¼ Npop

K is the population mean of cluster size). In case of SRS, Npop is very large relative to m, the

number of individuals sampled (i.e. m
Npop

! 0).

Assumption 3: The outcome variable Yij is quantitative (e.g. alcohol consumption) and measured at the individual
level. Further, Yij shows variation at the cluster level as well as at the individual level. Therefore, sampling error
occurs at each design level. This is taken into account by assuming the following two-level random intercept
model for the outcome of the i-th individual from the j-th cluster3,17

yij ¼ b0 þ uj þ eij (1)

where eij �N 0; r2e
� �

, and cluster effect uj and individual effect eij are unrelated (i.e. uj?eij). The distribution of uj
will be defined in the next assumption.

Assumption 4: Cluster effect uj is linearly related to cluster size Nj, that is, uj ¼ a0 þ a1Nj þ �j ¼ a1 Nj � hNð Þ þ �j,
where a0 ¼ �a1hN for model identifiability, �j �N 0; r2�

� �
, and �j is the component of cluster effect uj that does not

depend on cluster size (i.e. �j?Nj). Thus, the conditional distribution of uj given Nj is ujjNj �N a1 Nj � hNð Þ; r2�
� �

.

Innocenti et al.15 show that b0 in model (1) is the average of all cluster-specific means in the population, and
differs from the average of all individual outcomes in the population l, unless cluster size is non-informative
(a1 ¼ 0) or constant across clusters, as can be seen from the following expression

l ¼ b0 þ a1hNs
2
N (2)

where hN, sN ¼ rN
hN
, and r2N are, respectively, the population mean, the coefficient of variation, and the variance of

cluster size. The distinction between b0 and l comes from considering the distribution of cluster effect uj over
either the population of clusters (which yields b0) or the population of individuals (which yields l).15 This paper
focuses on l.

With the aim of estimating l, the three aforementioned TSS schemes are studied in this paper. For each of these
TSS schemes and SRS, Table 1 summarizes the sampling procedure (i.e. sample size and inclusion probability per
design stage) and the required knowledge before sampling. Furthermore, Table 1 shows the population mean

estimator l̂ and the sampling variance V l̂ð Þ for each sampling scheme. Denote by quN ¼ E uj�E ujð Þð Þ Nj�E Njð Þð Þ½ �
rurN

¼
E uj Nj�hNð Þ½ �

rurN
the correlation between uj and Nj, where E ujð Þ ¼ 0 and V ujð Þ ¼ r2u ¼ r2� þ a21r

2
N, and by w ¼ q2uN

1�q2
uN

� �

the degree of informativeness of cluster size. From Table 1, note that �n ¼
Pk

j¼1
nj

k
¼ n for TSS1 and TSS3, while

�n ¼
Pk

j¼1
nj

k ¼ p

Pk

j¼1
Nj

k ¼ p �N for TSS2, where �N is the average population size of the k sampled clusters (not to be
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confused with �n, that is, the average sample size of the sampled clusters). Furthermore, for TSS2

n ¼ E �nð Þ ¼ pE �Nð Þ ¼ phN. The sampling variances in Table 1 are functions of the total unexplained outcome

variance r2y ¼ r2� þ r2e , the intraclass correlation coefficient q ¼ r2�
r2y
2 0;1½ �, the sample sizes (k, n), the parameter w,

and some features of the cluster size distribution in the population: the coefficient of variation sN, the skewness fN,
and (for TSS2 and TSS3 only) the kurtosis gN. When cluster size is non-informative (w ¼ 0), V l̂ð Þ depends only
on r2y, q, k, n, and (for TSS2 and TSS3 only) sN. The estimators l̂ associated with SRS and TSS1 are unbiased,

and their sampling variances V l̂ð Þ are exact expressions.15

The estimators associated with TSS2 and TSS3 are only asymptotically unbiased, and the corresponding

sampling variances are based on first-order Taylor series approximations.15 The accuracy of these approx-

imations was evaluated through a simulation study discussed in supplementary material S.M.1 (section 1), but

the main findings are summarized here. Sampling k ¼ 20 clusters guarantees nearly unbiased estimates of l
under TSS2 and TSS3 independently of the cluster size distribution, and fair accuracy (i.e. bias � 5%) of the

variances in Table 1 (TSS2 and TSS3 row) when jquNj � 0:75, q � 0:3, and fN and gN are relatively close (say,

�1:5) to those of the Normal distribution (i.e. fN ¼ 0 and gN ¼ 3). However, for cluster size distributions with

extreme skewness and kurtosis (e.g. fN � 2 and gN � 9) at least k ¼ 100 clusters must be sampled to achieve a

reasonable accuracy (i.e. bias �6%) of the sampling variances in Table 1, for quN � 0:5 and q � 0:3.

Furthermore, the simulations showed that the two lower-bounds for k (i.e. 20, and 100) guarantee the cor-

responding accuracy level across different values for n (at least for 2 � n � 100). To contextualize these two

lower-bounds for k, in a school-based survey for studying substance use among adolescents in 21 European

countries, Shackleton et al.18 have reported that, across countries, k 2 36;531½ � (Median¼ 123) and �n 2
5:92;119:62½ � (Median¼ 20:74).

3 Optimal design and relative efficiencies for a given budget

3.1 Optimal design

For any sampling scheme, the precision of the estimator l̂, and thus also the width of a confidence interval for

l and the statistical power for testing a hypothesis on l, depends on the number of clusters and on the sample

size per cluster (Table 1). This raises the question of the best combination of sample sizes at each design stage

(i.e. sampling many clusters versus sampling many individuals per cluster). Define the optimal design as that

design (i.e. number of clusters and number of individuals per cluster), which minimizes V l̂ð Þ subject to a cost

constraint, given that time and budget are limited in practice. For TSS, the cost constraint is assumed to

be C ¼ k c2 þ c1nð Þ, where C is the budget for sampling and measuring (excluding costs for constructing the

sampling frame and other costs not related to sample size). From now on C is called the research budget.

Furthermore, c2 is the average cost for sampling a cluster, c1 is the average cost for sampling an individual

from a sampled cluster, and c2 þ c1nð Þ is the cost per cluster including the costs for sampling n individuals from

that cluster (recall that for TSS2 n ¼ phN). For SRS, the cost constraint is C ¼ c0 þ csrsm, where m is the

number of individuals to sample, csrs is the average cost for sampling an individual directly from the popula-

tion, and c0 represents the extra-cost due to constructing the sampling frame for a SRS compared with the

sampling frame for a TSS.
For each TSS scheme, the optimal design (i.e. the optimal sample sizes k	 and n	) for estimating l and the

optimal variance V l̂ð Þ	 (i.e. V l̂ð Þ under the optimal design) are given in Table 2 (for proofs, see section 2.2 of S.

M.1). For TSS2, one can obtain the optimal proportion of individuals to sample per cluster p	 from the optimal

n	, by dividing n	 as given in Table 2 (TSS2 row) by hN. The optimal TSS2 and TSS3 designs depend on two

approximations of V l̂ð Þ: the first-order Taylor approximation mentioned in section 2 and evaluated in S.M.1

(section 1), which underlies the equations in Table 1, and an approximation based on large k (i.e. k such

that
s2N
k � 0, k�1

k � 1, and k�3
k�1 � 1) to simplify the expressions in Table 1. These two approximations give the

following equations (for details, see section 2.1 of S.M.1)

VTSS2 l̂ð Þ� r2y
nk

1þ q n s2N þ 1
� �

þ w s4N þ s2N gN � 3ð Þ þ 2fNsN 1� s2N
� �

þ 1
� �� �

� 1
� �� 	

(3)
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and

VTSS3 l̂ð Þ� r2y
nk

s2N þ 1þ q s2N þ 1
� �

n� 1ð Þ þ nw s4N þ s2N gN � 3ð Þ þ 2fNsN 1� s2N
� �þ 1

� �� �� 	
(4)

where for TSS2, n ¼ phN. Recall from section 2 that, for TSS2 and TSS3, k must be large anyway, because the
estimators l̂TSS2 and l̂TSS3 given in Table 1 are only asymptotically unbiased. As a special case, w ¼ 0 gives the
optimal design and optimal variance for non-informative cluster size (for which case b0 ¼ l), which under TSS1
coincide with the equations available for cluster randomized trials (for instance, see Moerbeek et al. 19). There is
no such equivalence under TSS2 due to sample size variation between clusters, and under TSS3 due to weighting
cluster means by cluster size if informative cluster size is assumed in the design phase. Indeed, under non-
informative cluster size, no weighting is needed under TSS3,15and then the optimal design equations for TSS1
apply to TSS3 as well.

Note from Table 2 that the optimal number of clusters k	 and the optimal number of individuals per cluster n	

are inversely related, and that n	 is an increasing function of the cluster-to-individual cost ratio cr ¼ c2
c1
> 1 and a

decreasing function of q and w. These relations between the optimal design and cr, q, and w hold, under TSS1, for
fN > sN � 1

sN
, and always under TSS2 and TSS3 (for proof, see section 2.1 of S.M.1). The condition fN > sN � 1

sN
is

met by all the distributions in Tables S.2 and S.7 (S.M.1). Hence, this condition is assumed to be satisfied when
considering results for TSS1 in the sequel.

3.2 Effect of cluster size informativeness on the optimal design and study budget

needed

The optimal number of individuals per cluster n	 for TSS1 and TSS3 is plotted in Figure 1, for two real-life cluster
size distributions: the general practice list size distribution in England, and the public high school size distribution
in Italy (both distributions are shown in Figure S.1, S.M.1). The behaviour of n	 for other cluster size distributions
is shown in Figures S.2 and S.4 (S.M.1) for TSS1 and TSS3, respectively, and in Figure S.3 (S.M.1) for TSS2. In
most scenarios in Figure 1 and Figures S.2–S.4 (S.M.1), the difference between n	 for w ¼ 0:35 (i.e. quN ¼ �0:51)
and n	 for w ¼ 0 (i.e. quN ¼ 0) is small, which means that the ratio of V l̂ð Þ under the design assuming w ¼ 0:35 to
V l̂ð Þ under the design assuming w ¼ 0, when the true w ¼ 0:35, is close to 1. So, the optimal designs in Table 2 are
quite robust against misspecification of w, in the sense of being efficient relative to the optimal design for the true

Table 2. Optimal design and optimal variance V l̂ð Þ	 for each sampling scheme.

SRS V l̂ð Þ	 csrsr2y 1þ qw sN fN � sNð Þ þ 1½ �ð Þ
C � c0

TSS1 Optimal design n	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cr

1� q
q

� �
1

1þ w sN fN � sNð Þ þ 1½ �
� �s

, k	 ¼ C
c1 crþn	ð Þ

V l̂ð Þ	
c1r2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
crq 1þ w sN fN � sNð Þ þ 1½ �ð Þp þ ffiffiffiffiffiffiffiffiffiffiffi

1� q
p� �2

C

TSS2 Optimal design n	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cr

1� q
q

� �
1

s2N þ 1
� �þ w s4N þ s2N gN � 3ð Þ þ 2fNsN 1� s2N

� �þ 1
� �

s
, k	 ¼ C

c1 crþn	ð Þ

V l̂ð Þ	
c1r2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
crq s2N þ 1þ w s4N þ s2N gN � 3ð Þ þ 2fNsN 1� s2N

� �þ 1
� �� �q

þ ffiffiffiffiffiffiffiffiffiffiffi
1� q

p� �2

C

TSS3 Optimal design n	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cr

1� q
q

� �
s2N þ 1
� �

s2N þ 1
� �þ w s4N þ s2N gN � 3ð Þ þ 2fNsN 1� s2N

� �þ 1
� �

s
, k	 ¼ C

c1 crþn	ð Þ

V l̂ð Þ	
c1r2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
crq s2N þ 1þ w s4N þ s2N gN � 3ð Þ þ 2fNsN 1� s2N

� �þ 1
� �� �q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qð Þ s2N þ 1

� �q� �2

C

Note: Derivations are given in section 2.2 in supplementary material S.M.1. Note that cr ¼ c2
c1
> 1, fN � sN � 1

sN
implies that sN fN � sNð Þ þ 1½ � � 0 that,

in turn, entails that 1þ w sN fN � sNð Þ þ 1½ � > 0 since w � 0. Note that s4N þ s2N gN � 3ð Þ þ 2fNsN 1� s2N
� �þ 1

� � � 0 for any distribution (for proof,

see section 2.1, S.M.1). Recall that for TSS2 n	 ¼ p	hN.
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w and given a fixed research budget C. However, ignoring informativeness can lead to serious underestimation of

the sampling variance of the mean estimator, and thereby also of the budget needed, as will be seen below.

Further, the optimal design depends not only on w, but also on q and the cluster size distribution (sN, fN, gN).
That dependence will be addressed in section 4.

An example will now show that (a) given a study budget, the optimal design is robust against misspecification

of cluster size informativeness, but (b) the budget needed is very sensitive to misspecification. Suppose we plan a

survey to estimate l in the population of all patients of all general practices in England. The parameters of the

general practice patient list size distribution are sN ¼ 0:633, fN ¼ 2:12, and gN ¼ 14:549 (Table S.2, S.M.1).

Furthermore, suppose that q ¼ 0:05, cr ¼ 10, and C=c1 ¼ 1000. The optimal TSS1 samples n	 ¼ 10:74 individuals

and k	 ¼ 48:22 clusters assuming w ¼ 1=3, and n	 ¼ 13:78 and k	 ¼ 42:04 assuming w ¼ 0 (see Table 2, TSS1

row). If the true w ¼ 1=3, V l̂ð Þ ¼ r2y 
 0:00354 for the design correctly assuming w ¼ 1=3,
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Figure 1. Optimal number of individuals per cluster n* under TSS1 (left column) and TSS3 (right column), as a function of q, for
different values of cr and w (curves), and different cluster size distributions (rows). The cluster size distributions are shown in Figure
S.1 (S.M.1). Note that w¼ 0.35 corresponds to quN¼�0.51.
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and V l̂ð Þ ¼ r2y 
 0:00360 for the design incorrectly assuming w ¼ 0 (see variance equation in Table 1, TSS1 row),
giving a variance ratio 0:00354=0:00360 ¼ 0:983. Additional results for TSS1, TSS2, and TSS3 are given in Table
S.8 (S.M.1), which shows that even in some more extreme cases (e.g. w ¼ 1, i.e. quN ¼ �0:707) the variance ratio
still exceeds 0.8. The example given here and those in Table S.8 (S.M.1) show that the optimal designs in Table 2
are quite robust against misspecification of w, in the sense of being efficient relative to the optimal design for the
true w and given a fixed research budget C.

However, ignoring informativeness can lead to serious underestimation of the budget needed. Suppose one
wants to test the null hypothesisH0 that l ¼ l0 against the alternative hypothesisH1 that l 6¼ l0. The budget that
guarantees the desired power level 1� c for the chosen type I error rate a, is then obtained by equating V l̂ð Þ	 in
Table 2 with l�l0

z1�cþz1�a
2

� �2
, where zq is the qth percentile of the standard normal distribution. This gives

C ¼ g q;wð Þ z1�cþz1�a
2ð Þ2

d2
0

, where g q;wð Þ is the numerator of V l̂ð Þ	 in Table 2 excluding r2y, and d0 ¼ l�l0
ry

is the stan-

dardized difference between true mean and mean according to H0. Since g q;wð Þ is an increasing function of c1, c2,
and w, the required budget C for the desired power level also increases with c1, c2, and w. Likewise, C increases
with q, at least up to q ¼ 0:5 (for proofs, see section 2.2 in S.M.1). The required budget C to detect a standardized
difference of medium size (d0 ¼ 0:5), with 90% power and two-tailed a ¼ 0:05, is plotted in Figure 2 for TSS1 and
TSS3, as function of w, for the general practice list size distribution in England and the public high school size
distribution in Italy, and assuming c1 ¼ 10. As can be seen in Figure 2, the research budget C is not robust against
misspecification of w. For example, the required budget C for the optimal TSS1, assuming the English general
practice list size distribution, cr ¼ 30, c1 ¼ 10, and q ¼ 0:10 (Figure 2, left column, first row), is underestimated by
29% if one incorrectly assumes w ¼ 0 when the true w ¼ 0:35. The required budget C is also shown, for other
cluster size distributions, in Figures S.5 and S.7 (S.M.1) for TSS1 and TSS3, respectively, and in Figure S.6 (S.
M.1) for TSS2. These figures show that C increases with q, c2, and w, and that the impact of the cluster size
distribution on C becomes more relevant as w increases. Hence, ignoring informative cluster size at the design
phase of the survey can lead to underestimating the required budget for the chosen effect size and desired power
level. Finally, for the desired power level, the required budget is smallest with the optimal TSS1, and largest with
the optimal TSS3.

3.3 Relative efficiencies for a given budget

We now compare the efficiency of the optimal designs in Table 2 with each other and with SRS, under the
constraint of a fixed research budget. The relative efficiency (RE) of the optimal designs for two sampling schemes
is defined as the ratio of their optimal variances V l̂ð Þ	 in Table 2, more specifically, RE D1 vs D2ð Þ ¼ VD2 l̂ð Þ	

VD1 l̂ð Þ	.
These REs are shown in Table 3 (for proofs, see section 2.3, S.M.1), which also gives the sufficient (but not
necessary) conditions under which each RE is smaller than one.

The RE of a TSS scheme compared with SRS (Table 3, first three rows) is composed of three ratios. The first
ratio is a function of q, w, sN, fN, gN, and cr, and is always smaller than one for w ¼ 0, and also for w 6¼ 0 at least
under the conditions for fN given in the rightmost column of Table 3 (for proofs, see section 2.3, S.M.1). The other
two components of RE TSS vs SRSð Þ are the ratio csrs

c1
, for the costs per individual in SRS relative to TSS, and the

budget ratio C
C�c0

. Since sampling an individual directly from the population will be more expensive than sampling
an individual after having sampled the cluster to which he/she belongs (i.e. csrs > c1), and constructing the sam-
pling frame for a SRS has extra-costs compared with constructing the sampling frame for a TSS (i.e. c0 > 0), the
ratios csrs

c1
and C

C�c0
will always be at least one and often larger than one. As a result, the RE can become larger than

one, implying that SRS can be less efficient than TSS under the constraint of a fixed budget.
The REs of the optimal TSS1 and TSS3 versus SRS are shown in Figure 3, for the general practice list size

distribution in England and the public high school size distribution in Italy, and assuming csrs
c1

� � ¼ C
C�c0

� �
¼ 1

(note that values greater than 1 give a higher RE of TSS versus SRS). Further, Figures S.8–S.10 (S.M.1) show the
REs of the optimal TSS1, TSS2, and TSS3 versus SRS for other cluster size distributions. For w ¼ 0, the RE of
any optimal TSS versus SRS is a decreasing function of (i) cr (Table 3), (ii) q (at least for q � 0:5, see Figure 3,
and Figures S.8–S.10 in S.M.1), and (iii), only for TSS2 and TSS3, sN (Table 3). For w 6¼ 0, the patterns remain
almost the same as before and the REs also do not seem to vary much across cluster size distributions (Figure 3,
and Figures S.8–S.10 in S.M.1).

The REs of the three TSS schemes compared with each other (Table 3, last three rows) are functions of q, cr, w,
sN, fN, and gN. The optimal TSS2 is more efficient than the optimal TSS3 since RE TSS3 vs TSS2ð Þ < 1 (unless
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sN ¼ 0, Table 3, or quN ��1,15 since in both cases RE TSS3 vs TSS2ð Þ ¼ 1). The REs of TSS2 and TSS3 versus

TSS1 are smaller than one, and so the optimal TSS1 is the most efficient TSS scheme, at least for cluster size

distributions satisfying the conditions in Table 3 (rightmost column), such as all distributions in Table S.7 (S.

M.1). For other cluster size distributions, one must compute the RE for that particular distribution to see whether

RE < 1. However, for w ¼ 0, the REs in the last three rows of Table 3 are all smaller than one for any cluster size

distribution, making TSS1 the most efficient TSS scheme, followed by TSS2. Note that this only holds if infor-

mative cluster size (w 6¼ 0) is assumed at the design stage, such that in TSS3 cluster means are weighted by cluster

size to estimate l (Table 1). If non-informative cluster size (w ¼ 0) is assumed already in the design stage, then no

weighting is needed for TSS3,15 and TSS3 then is as efficient as TSS1.
The RE of the optimal TSS2 and TSS3 versus the optimal TSS1 are shown in Figure 4, for the general practice

list size distribution in England and the public high school size distribution in Italy, and in Figures S.11–S.12
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(S.M.1) for other four cluster size distributions. For w ¼ 0, these reduce to RE TSS2 vs TSS1ð Þ ¼ffiffiffiffiffi
crq

p þ
ffiffiffiffiffiffiffi
1�q

p� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
crq s2

N
þ1ð Þp

þ
ffiffiffiffiffiffiffi
1�q

p� �2 and RE TSS3 vs TSS1ð Þ ¼ 1
s2
N
þ1
, which are both decreasing functions of sN, but

RE TSS2 vs TSS1ð Þ also decreases as q and/or cr increases. For w 6¼ 0, the patterns are the same as before with
two major differences. First, both REs decrease as gN increases (Table 3). Second, for w ¼ 0:35, both REs differ at
most 6% from their values at w ¼ 0 (Figure 4, and Figures S.11–S.12 in S.M.1), except for the English general
practice (GP) list size distribution that, having an extreme kurtosis (i.e. gN ¼ 14:55), shows a drop in RE (com-
pared with the case w ¼ 0) larger than 20%. Note that TSS1 is the most efficient design in Figure 4 and Figures
S.11–S.12 (S.M.1).
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Figure 3. Relative efficiency of the optimal TSS1 versus SRS (left column), and of the optimal TSS3 versus SRS (right column), for a
given research budget C and assuming (csrs/c1)¼ (C/(C-c0))¼ 1 (values greater than 1 give a higher RE of TSS versus SRS), as a
function of q, for different values of cr and w (curves), and different cluster size distributions (rows). The cluster size distributions are
shown in Figure S.1 (S.M.1). Note that w ¼ 0.35 corresponds to quN¼�0.51.
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4 Maximin design

In section 3.2 it has been noticed that the optimal designs in Table 2 require a priori knowledge of some nuisance
parameters (i.e. q, sN, fN, gN, and w). This is known as the local optimality problem in optimal design litera-
ture.20,21 Basically, this means that the optimal design is optimal only for certain values of these nuisance
parameters. In this paper, the local optimality problem is solved taking a maximin approach.20–22 This approach
has been applied in several contexts, such as longitudinal studies,23–25 fMRI experiments,26 cluster randomized
and multicentre trials,27–29 cost-effectiveness studies,30,31 life-event studies,32 test construction,33 and biological
and pharmacological studies.34–37 The maximin approach is composed of the following steps:

1. Define the parameter space, that is, for each unknown parameter (i.e. q, sN, fN, gN, and w) determine the
range of plausible values (e.g. q 2 0;0:30½ �).
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Figure 4. Relative efficiency of the optimal TSS2 versus the optimal TSS1 (left column), and of the optimal TSS3 versus the optimal
TSS1 (right column), for a given research budget, as a function of q, for different values of cr and w (curves), and different cluster size
distributions (rows). The cluster size distributions are shown in Figure S.1 (S.M.1). Note that w¼ 0.35 corresponds to quN¼�0.51.
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2. Define the design space, that is, the set of all candidate designs (n, k). In this step, one can rule out those designs
that are unfeasible in practice (e.g. too many clusters to cover relative to the time available for data collection),
thus preventing sample size adjustments afterwards.

3. For each design (n, k) in the design space, find those values of the nuisance parameters which minimize the
efficiency V l̂ð Þ�1 (and thus maximize V l̂ð Þ) within the range of their plausible values, as defined in step 1.

4. Choose the design that maximizes the minimum efficiency obtained in step 3. In other words, choose those
values of k and n that minimize V l̂ð Þ given the worst-case values of the nuisance parameters chosen in step 3.

The resulting design is called the maximin design, which is the optimal design for the worst-case scenario, as
defined by that set of parameter values chosen in step 3. The advantage of the maximin design is that it not only
maximizes the efficiency and the power in the worst-case scenario, but it also guarantees at least that same
efficiency and power level for all the other parameter values within the parameter space. Indeed, V l̂ð Þ is smaller
and the power for hypothesis testing on l is larger, for all other parameter values than for the worst-case values
chosen in step 3, given any fixed sample size (i.e. k and n).

Following the four steps above, we now explain how to find the maximin design for each sampling scheme. The
optimal design for TSS1 depends on q, sN, fN, and w: However, to draw a TSS1 sample we need to know the
cluster size distribution in the population anyway, which means that sN and fN are also known before sampling.
Thus, for TSS1, only q and w are unknown. The maximin design for TSS1 is obtained by plugging into the
optimal sample sizes equations (Table 2, TSS1 row) the largest realistic values of q and w (for proofs, see section
3.1 in S.M.1). Unlike for TSS1, when sampling with TSS2 or TSS3 the researcher needs no prior knowledge of the
whole cluster size distribution. Indeed, if such information is available, sampling with TSS1 is a better choice
(Table 3). The maximin design for TSS2 and TSS3 is obtained by plugging into the optimal design equations
(Table 2) the upper-bounds of the ranges for q, fN; gN, and w, and the worst-case value of sN (for proofs, see
section 3.1 in S.M.1). The latter value can be obtained with an R function given in S.M.2 (section 2), which
searches numerically for the value of sN that maximizes V l̂ð Þ (i.e. equations (3) and (4)) within its range of
plausible values, given the worst-case values for q, fN; gN, and w. For several upper-bounds for q, fN, gN, and
w, a numerical evaluation was performed and this always gave sN ¼ 1 as worst-case value of sN within the range
0;1½ � (for details, see section 3.2 in S.M.1).
To be on the safe side in sample size planning, one can assume for q the parameter range 0; 0:10½ � in health and

medical research,38,39 and 0; 0:25½ � in educational research.18,40 Lacking empirical evidence for w or quN, we
propose w 2 0; 0:35½ �, which corresponds to quN 2 �0:51; 0:51½ �. The range sN 2 0;1½ � can be justified by con-
sidering Table S.7 (S.M.1), and the extreme cases of an exponential cluster size distribution, for which sN ¼ 1, and
of a binary distribution with half of all clusters having size 2 and the other half having size 2hN � 2, for which
sN � 1. Finally, for fN and gN; the ranges fN 2 0:5; 2½ � and gN 2 3; 15½ � can be chosen based on Table S.7 (S.M.1).
Since V l̂ð Þ under TSS2 and TSS3 is an increasing function of fN and gN (at least if sN � 1, which will usually
hold), assuming positive skewness and positive excess kurtosis (i.e. gN � 3 > 0) is a safe choice.

As mentioned in section 3.1, the optimal design for TSS2 and TSS3 depends on two approximations: the first-
order Taylor series approximation used to derive V l̂ð Þ for TSS2 and TSS3 in Table 1, and the large k approx-
imation to simplify the equations in Table 1 into equations (3) and (4). Since the maximin design is the optimal
design for the worst-case scenario, the same approximations also underlie the maximin design. Based on the
simulation study and the numerical evaluation discussed in S.M.1 (sections 1 and 3.3), it turned out that each
approximation induces a bias of at most 5% in the Vðl̂Þ used to derive the optimal/maximin design if the optimal/
maximin kMD � 20, or, for fN � 2 and gN � 9, kMD � 100. Since V l̂ð Þ / 1

k, a simple solution is to increase
the maximin kMD with 10% to ensure sufficient power at the expense of a 10% higher budget C. However, if
the maximin kMD < 20 or (for fN � 2 and gN � 9) kMD < 100 both approximations are biased by more than 5%.
A solution is to first increase C such that maximin kMD � 20 or (for fN � 2 and gN � 9) kMD � 100, and then
further increase C by 10%.

5 Sample size calculation for cross-population comparisons

The results of the previous sections allow to efficiently plan a survey not only for estimating a mean, but also for
comparing different populations, if the samples are independent. An example of such a study is the ESPAD
study,6 which compares substance use among 15–16-year-old students across 35 European countries. For a fixed
separate budget per population, the optimal design per population is given in Table 2 and the maximin design in
section 4. However, the design can be further optimized by constraining the total budget (i.e. the sum of the

Innocenti et al. 369



separate budgets) instead of each separate budget and finding the optimal (or maximin) budget split between
populations (for details, see section 4 of S.M.1). For the case of comparing two populations, this optimization was
formalized into a procedure to compute maximin sample sizes per population and the maximin budget split
between populations, obtained by extending Van Breukelen and Candel28 to TSS1 with informative cluster
sizes and different cluster size distributions per population. This procedure for comparing two populations is
implemented in an R code given in section 4 in S.M.2. To use this program, the researcher needs to specify c1 and
c2 per population, sN and fN of the cluster size distribution of each population, the largest plausible values for q
and w, a range for the ratio of the outcome standard deviations (ry) between the two populations, the smallest
difference lF � lI that is worthwhile being detected, the maximum sum of outcome variances in both pop-
ulations Vmax, the power level 1� c, and the type I error rate a. The R code (S.M.2, section 4) returns the
maximin sample sizes per population and the maximin budget split. The steps of this procedure are given in S.
M.1 (section 4). This procedure is presented only for TSS1, because it is the most efficient sampling scheme for
many cluster size distributions.

Let us demonstrate the procedure with the following example. Suppose that we want to plan a survey to
estimate and compare the average alcohol consumption among high school students between France and Italy.
Similar to the ESPAD study,6 alcohol consumption Yij is measured as the average volume of ethanol (in centi-
litres) consumed on the last drinking day. Based on adolescent health literature, at the design stage, school size
(i.e. total number of students) can be assumed to be informative, that is, related to alcohol consumption. Indeed, it
has been found that school size and school connectedness, broadly defined as the degree of belonging at school,
are inversely related,12,13 as well as school connectedness and alcohol use.11 TSS1 is the most efficient two-stage
sampling scheme for both high school size distributions (this can be verified by checking the conditions in the
rightmost column of Table 3, with the numbers given in the second and third row of Table S.7 of S.M.1), and so it
is chosen for both populations. Suppose that we want to test the null hypothesis H0 that lF ¼ lI against the
alternative hypothesis H1 that lF 6¼ lI, where lF and lI are the population means of alcohol consumption in
France and Italy, respectively. Since the French and the Italian samples are independent, we can apply the
procedure above to determine how many schools and how many students per school one has to sample per
country, and how to split the total budget between countries.

The results are shown in Table 4 for four different cost scenarios. Two largest plausible values are assumed for
q and w, respectively, q maxð Þ ¼ 0:1;0:2f g and w maxð Þ ¼ 0;0:35f g. This combination of costs and model param-
eters (Table 4, first six columns) gives a total of 4 
 2
 2 ¼ 16 scenarios, each corresponding to a row in
Table 4. The seventh column in Table 4 gives the maximin budget split CF

CI
(i.e. the ratio of the budget for

France, CF, to that for Italy, CI), and from the eighth to the eleventh column the maximin sample sizes per
country are shown. Finally, the rightmost column of Table 4 shows the total budget required to detect a stan-
dardized difference of medium size (d ¼ lF�lIffiffiffiffiffiffi

Vmax
2

p ¼ 0:5), with 90% power using a two-tailed test with a ¼ 0:05. From

Table 4, it can be seen that the maximin nMD per country is an increasing function of cr, a decreasing function of q
and w, and is inversely related to the maximin kMD. Furthermore, the maximin budget split CF

CI
¼ 1 only for w ¼ 0

and homogeneous costs (c1;F ¼ c1;I and c2;F ¼ c2;I). In all other scenarios CF

CI
< 1, meaning that more budget is

allocated to the Italian sample than to the French sample. Given that q maxð Þ and w maxð Þ are the same for both
countries, CF

CI
< 1 because (i) sampling a student is more expensive in Italy than in France (c1;F < c1;I), or (ii)

sampling a school is more expensive in Italy than in France (c2;F < c2;I), or (iii) only for w ¼ 0:35, the school size
distribution in Italy is such that sN fN � sNð Þ is larger than in France (see Tables S.7 and S.9 of S.M.1). Finally, the
total budget C required for the desired power is larger for w ¼ 0:35 than for w ¼ 0 (Table 4, rightmost column),
suggesting that ignoring informative cluster size at the design stage has the consequence of determining a research
budget which is too low for the desired power level. Specifically, informative cluster size requires C to increase
with 23–32% depending on the scenario (the larger q and/or c2;I, the larger this relative increase, see Table 4,
rightmost column).

6 Discussion

To estimate an overall mean, two-stage sampling is a logistically convenient way to collect data from a multilevel
population. In practice, resources (time and money) for sampling are limited. Thus, this paper presents optimal
sample sizes per design stage that either maximize the precision of the population mean estimate for the available
research budget, or minimize the research budget for the required precision for estimation. Such optimal designs
were derived for three TSS schemes: sampling clusters with probability proportional to cluster size, and then the
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same number of individuals per cluster (TSS1); sampling clusters with equal probability, and then the same

percentage of individuals per cluster (TSS2); and sampling clusters with equal probability, and then the same

number of individuals per cluster (TSS3).
The optimal sample size equations were derived allowing cluster size to be informative, that is, to be related to

the outcome variable of interest. It turned out that the optimal designs given in Table 2 are quite robust against

misspecification of the degree of informativeness of cluster size w. As shown in section 3.2 and in Table S.8 (S.

M.1), the relative efficiency of the optimal TSS1 assuming w ¼ 0 (i.e. non-informative cluster size) versus the

optimal TSS1 assuming w > 0 (i.e. informative cluster size), when the true w > 0 was close to one. Nevertheless,

ignoring informative cluster size is risky for two reasons. First, assuming w ¼ 0 one would be tempted to combine

the unweighted average of cluster means with TSS3, because this strategy (i.e. combination of sampling scheme

and estimator) is unbiased and efficient for w ¼ 0. However, this strategy is biased and inefficient if the true w > 0.

Thus, assuming w > 0 is always prudent because it leads to combining the unweighted average of cluster means

with TSS1, that is, choosing a strategy which is unbiased and highly efficient both for informative and non-

informative cluster size. Second, assuming w ¼ 0 can lead to underestimating the research budget for the desired

power level, because the research budget is an increasing function of w (see Figure 2, and Table 4, rightmost

column). This applies not only to TSS1, but also if, because of practical constraints, one has to choose TSS2 or

TSS3 as a sampling scheme. For these two reasons, we recommend assuming w > 0 at the design stage of the

survey.
The optimal designs of the three TSS schemes were compared with each other and with SRS under the con-

straint of a fixed budget. In contrast to what was the case under the constraint of a fixed total sample size,15 SRS

can be less efficient than TSS, because it is more expensive to construct a sampling frame of all individuals in the

population than of those from the selected clusters only (c0 > 0), and because it is more costly to sample and

measure geographically dispersed individuals than those that are grouped in a natural cluster (e.g. school, general

practice) (csrs > c1). Under informative cluster size, the optimal TSS1 was shown to be the most efficient sampling

scheme for many cluster size distributions, followed by TSS2, and then TSS3. We thus recommend TSS1, pro-

vided all cluster sizes are known before sampling.
The optimal design depends on several unknown parameters (i.e. the intraclass correlation q, the informative-

ness parameter w, and the cluster size distribution’s coefficient of variation sN, skewness fN, and kurtosis gN). To
address this issue the maximin approach was proposed. For the considered TSS schemes, this strategy consists of

plugging the worst-case value for each unknown parameter into the optimal design equations in Table 2. For q, w,
and gN, the largest plausible value is the worst-case value. If all plausible values for sN � 1, then the largest

plausible value for fN is also the worst-case value. The worst-case value for sN can be obtained with an R code,

Table 4. Maximin design (nMD
F , kMD

F , nMD
I , kMD

I ) and budget C needed to detect a standardized difference of medium size (d ¼ 0:5) with
a power of 90% using a two-tailed test with a ¼ 0:05 and assuming

ry;F
ry;I

2 1
3
; 3

� �
, as a function of the maximum w, the maximum q, the

cost per individual in France c1;F and in Italy c1;I, and the cost for sampling a cluster in France c2;F and in Italy c2;I.

w maxð Þ q maxð Þ c1;F c2;F c1;I c2;I

Maximin budget

split CF
CI

nMD
F nMD

I kMD
F kMD

I C

0 0.1 10 200 10 200 1 13.42 13.42 14.04 14.04 9386.54

10 200 20 200 0.74 13.42 9.49 14.04 16.38 11077.36

10 200 10 400 0.64 13.42 18.97 14.04 12.39 12002.01

10 200 20 400 0.50 13.42 13.42 14.04 14.04 14079.82

0.2 10 200 10 200 1 8.94 8.94 24.33 24.33 14084.50

10 200 20 200 0.79 8.94 6.32 24.33 27.44 16002.68

10 200 10 400 0.60 8.94 12.65 24.33 22.13 18692.58

10 200 20 400 0.50 8.94 8.94 24.33 24.33 21126.75

0.35 0.1 10 200 10 200 0.98 11.31 11.10 18.52 19.08 11734.95

10 200 20 200 0.74 11.31 7.85 18.52 21.91 13620.31

10 200 10 400 0.61 11.31 15.70 18.52 17.09 15317.98

10 200 20 400 0.49 11.31 11.10 18.52 19.08 17670.90

0.2 10 200 10 200 0.97 7.54 7.40 32.58 33.63 18187.89

10 200 20 200 0.79 7.54 5.23 32.58 37.39 20365.46

10 200 10 400 0.57 7.54 10.47 32.58 30.97 24601.40

10 200 20 400 0.49 7.54 7.40 32.58 33.63 27402.39
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given in S.M.2 (section 2). However, a numerical evaluation showed that if the largest plausible value for sN is 1,
this is the worst-case value for sN. The R code also returns the worst-case value for fN in the rather unrealistic case
that some plausible values for sN > 1. The maximin approach has the advantages of being relatively simple to
implement, and being robust against misspecification of the unknown parameters by maximizing the minimum
efficiency over the ranges of their plausible values. An alternative approach is to obtain estimates of the nuisance
parameters from a pilot study and use these in the sample size calculation. However, q risks to be underestimated
(and thus the main survey to be under-powered), unless the pilot study samples a large number of clusters and of
individuals per cluster, which means a sizeable portion of the limited resources for the main survey has to be
devoted to the pilot study.41 The underestimation is likely to be even more severe for skewness and kurtosis, given
that their traditional estimators are biased downwards unless the sample size is large or (only for the skewness)
cluster size is normally distributed.42 For all these reasons, we recommend the maximin approach. Relatedly, to
improve the planning of future surveys, empirical studies should report values of these nuisance parameters like in
Table S.7 (S.M.1).

The results of this paper also allow to efficiently plan surveys for comparing different populations, provided the
samples are independent. For TSS1, a procedure to derive maximin sample sizes and maximin budget split
between populations was obtained by extending Van Breukelen and Candel’s28 findings to informative cluster
size. Analogous extensions for TSS2 and TSS3 could be explored. However, when either cluster size is non-
informative (w ¼ 0), or the cluster size distribution as well as the informativeness parameter a1 is the same in
both populations (e.g. treated and control groups in a cluster randomized trial), we have that lF � lI ¼ b0;F � b0;I
(see equation (2)) and then the equations given in this paper reduce to simpler expressions as also derived by Van
Breukelen and Candel28 (i.e. those for TSS1 with w ¼ 0).

Finally, in this paper the model-based approach to survey sampling was adopted. However, the results of this
paper are valid also under the design-based approach, provided model (1) and assumption 4 hold and inference is
then based on the sampling scheme.15 Future research could extend the results of this paper by considering
dichotomous outcomes, three-level populations, and by deriving the optimal design for longitudinal studies to
monitor trends.
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Appendix

Notation

Section Symbol Definition
2 K number of clusters in the population

j index for clusters
Nj size of cluster j in the population

Npop ¼
PK

j¼1 Nj population size
k number of clusters in the sample

hN ¼ Npop

K population mean of cluster size
r2N population variance of cluster size

sN ¼ rN
hN

population coefficient of variation of cluster size

fN ¼ E Nj�hNð Þ3
� �

r3N
population skewness of cluster size

gN ¼ E Nj�hNð Þ4
� �

r4N
population kurtosis of cluster size

�N ¼
Pk

j¼1
Nj

k average population size of the sampled clusters
m number of individuals sampled with SRS
i index for individuals

Yij outcome variable of interest
eij effect of individual i in cluster j
r2e population variance of eij
�j component of cluster effect that does not depend on cluster size
r2� population variance of �j
b0 average of all cluster-specific means in the population
a0 intercept of the relation between cluster effect and cluster size
a1 slope of the relation between cluster effect and cluster size

uj ¼ a0 þ a1Nj þ �j effect of cluster j
E ujð Þ ¼ 0 and V ujð Þ ¼ r2u ¼ r2� þ a21r

2
N¼population mean and variance of uj

l average of all individual outcomes in the population
l̂ population mean estimator

V l̂ð Þ sampling variance of l̂

quN ¼ E uj Nj�hNð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�þa2

1
r2N

p
rN

correlation between uj and Nj

w ¼ q2uN
1�q2uN

� �
degree of informativeness of cluster size

r2y ¼ r2� þ r2e total unexplained outcome variance

q ¼ r2�
r2y

intraclass correlation coefficient
pj inclusion probability of cluster j
pijj conditional inclusion probability of individual i
nj number of individuals sampled per cluster for TSS2

p ¼ nj
Nj

proportion of individuals sampled per cluster for TSS2

374 Statistical Methods in Medical Research 30(2)



�n ¼
Pk

j¼1
nj

k average sample size of the sampled clusters
n number of individuals sampled per cluster for TSS1 and TSS3.

Expected value of �n for TSS2
pi inclusion probability of individual i under SRS

3.1 C budget for sampling and measuring
c2 (average) cost for sampling a cluster
c1 (average) cost for sampling an individual from a sampled cluster
c0 extra-cost due to constructing the sampling frame for SRS compared

with the sampling frame for TSS
csrs (average) cost for sampling an individual directly from the

population
V l̂ð Þ	 sampling variance of l̂ under the optimal design

n	 optimal number of individuals per cluster
k	 Optimal number of clusters

p	 ¼ n	
hN

optimal proportion of individuals to sample per cluster for TSS2

cr ¼ c2
c1

cluster-to-individual cost ratio
3.2 a type I error rate

c type II error rate
zq qth percentile of the standard normal distribution

g q;wð Þ numerator of V l̂ð Þ	 in Table 2 excluding r2y
l0 value of l under H0

d0 ¼ l�l0
ry

standardized difference for one-sample t-test

3.3 RE D1 vs D2ð Þ ¼ VD2 l̂ð Þ	
VD1 l̂ð Þ	 relative efficiency of optimal design D1 versus optimal design D2

4 kMD maximin number of clusters
5 lF; lI; r

2
y;F; r

2
y;I population mean and total unexplained outcome variance in France

(F), and Italy (I)

Vmax � r2y;F þ r2y;I maximum plausible upper-bound for r2y;F þ r2y;I

q maxð Þ and w maxð Þ largest plausible values assumed for q and w
d ¼ lF�lIffiffiffiffiffiffi

Vmax
2

p standardized difference for unpaired two-sample t-test

nMD maximin number of individuals per cluster
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