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Abstract Throughout the past six months, no number has
dominated the public media more persistently than the re-
production number of COVID-19. This powerful but sim-
ple concept is widely used by the public media, scientists,
and political decision makers to explain and justify politi-
cal strategies to control the COVID-19 pandemic. Here we
explore the effectiveness of political interventions using the
reproduction number of COVID-19 across Europe. We pro-
pose a dynamic SEIR epidemiology model with a time-
varying reproduction number, which we identify using ma-
chine learning. During the early outbreak, the basic repro-
duction number was 4.22+1.69, with maximum values of
6.33 and 5.88 in Germany and the Netherlands. By May 10,
2020, it dropped to 0.67+£0.18, with minimum values of 0.37
and 0.28 in Hungary and Slovakia. We found a strong cor-
relation between passenger air travel, driving, walking, and
transit mobility and the effective reproduction number with
a time delay of 17.24+2.00 days. Our new dynamic SEIR
model provides the flexibility to simulate various outbreak
control and exit strategies to inform political decision mak-
ing and identify safe solutions in the benefit of global health.

Keywords COVID-19 - epidemiology - SEIR model -
reproduction number - machine learning

1 Motivation

Since the beginning of the new coronavirus pandemic in De-
cember 2020, no other number has been discussed more
controversially than the reproduction number of COVID-
19 [36]. Epidemiologists use the basic reproduction num-
ber Ry to quantify how many new infections a single infec-
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tious individual creates in an otherwise completely suscepti-
ble population [13]. The public media, scientists, and politi-
cal decision makers across the globe have started to adopted
the basic reproduction number as an illustrative metric to ex-
plain and justify the need for community mitigation strate-
gies and political interventions [21]: An outbreak will con-
tinue for Ry > 1 and come to an end for Ry < 1 [25]. While
the concept of Ry seems fairly simple, the reported basic re-
production number for COVID-19 varies hugely depending
on country, culture, calculation, stage of the outbreak [36].
Knowing the precise number of Ry is important, but chal-
lenging, because of limited data and incomplete reporting
[12]. It is difficult—if not impossible—to measure Ry directly
[50]. The earliest COVID-19 study that followed the first
425 cases of the Wuhan outbreak via direct contact tracing
reported a basic reproduction number of 2.2 [33]. However,
especially during the early stages of the outbreak, informa-
tion was limited because of insufficient testing, changes in
case definitions, and overwhelmed healthcare systems [47].
Most basic reproduction numbers of COVID-19 we see in
the public media today are estimates of mathematical mod-
els that depend critically on the choice of the model, the
initial conditions, and numerous other modeling assump-
tions [12]. To no surprise, the mathematically predicted ba-
sic reproduction numbers cover a wide range, from 2.2-3.6
for exponential growth models to 4.1-6.5 for more sophisti-
cated compartment models [36].

Compartment models are a popular approach to simulate
the epidemiology of an infectious disease [29]. A prominent
compartment model is the SEIR model that represents the
timeline of a disease through the interplay of four compart-
ments that contain the susceptible, exposed, infectious, and
recovered populations [6]. The SEIR model has three char-
acteristic parameters, the transition rates § from the suscep-
tible to the exposed state, o from the exposed to the in-
fectious state, and y from the infectious to the recovered
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state [25]. The latter two are disease specific parameters as-
sociated with the inverses of the latent period A = 1/o dur-
ing which an individual is exposed but not yet infectious,
and the infectious period C = 1/¥ during which an individ-
ual can infect others [32]. For COVID-19, depending on the
way of reporting, these two times can vary anywhere be-
tween A = 2 to 6 days and C = 3 to 18 days [40,42,44]. The
most critical feature of any epidemiology model is the tran-
sition from the susceptible to the exposed state. This transi-
tion typically scales with the size of the susceptible and in-
fectious populations S and 7, and with the contact rate 3, the
inverse of the contact period B = 1 /3 between two individ-
uals of these populations [25]. The product of the infectious
period and the contact rate defines the reproduction number
R = Cp [12]. Community mitigation strategies and politi-
cal interventions seek to reduce the contact rate 3, and with
it the reproduction number R, to control the outbreak of a
pandemic [44].

The first official case of COVID-19 in Europe was re-
ported on January 24, 2020. Within only 45 days, the pan-
demic spread across all 27 countries of the European Union
[15]. On March 17, for the first time in its history, the Euro-
pean Union closed all its external borders to prevent a fur-
ther spreading of the disease [16]. Within the following two
weeks, many local governments supplemented the European
regulations with lockdowns and national travel restrictions.
In response, passenger air travel within the European Union
dropped by up to 95% [18]. These drastic measures have
stimulated a wave of criticism, especially because initially,
it was entirely unclear to which extent they would succeed
in reducing the number of new infections [38].

In this study, as Europe begins to relax these constraints,
we correlate the effect of Europe-wide travel restrictions to
the outbreak dynamics of COVID-19. We introduce a dy-
namic SEIR model with a time-varying contact rate f3(¢)
that transitions smoothly from the initial contact rate f3y at
the beginning of the outbreak to the effective contact rate
B¢ under global travel restrictions and local lockdown. We
express the time-varying contact rate 8(r) = R(z)/C as a
function of the effective reproduction number R(¢) and use
Bayesian inference to learn the evolution of the reproduc-
tion number for each country of the European Union from
its individual outbreak history [15]. Our model allows us
to precisely quantify the initial basic reproduction number
Ry, the effective reproduction number Ry, and the adaptation
time #* to achieve this reduction, which are important quan-
titative metrics of the effectiveness of national public health
intervention. Our model also specifies the exact time delay
At between the implementation of political actions and their
effects on the outbreak dynamics of COVID-19. This time
delay is particularly important to plan exit strategies and es-
timate risks associated with gradually or radically relaxing
current local lockdowns and global travel restrictions.

2 Methods

Epidemiology modeling. We model the epidemiology of
the COVID-19 outbreak using an SEIR model with four
compartments, the susceptible, exposed, infectious, and re-
covered populations, governed by a set of ordinary differen-
tial equations [34], see Appendix,

S =—BSI/N
E=+BSI/N — aE

I = +aE — vyl
R = + vI.

The transition rates between the four compartments, 3, o,
and ¥, are inverses of the contact period B = 1/f, the la-
tent period A = 1/, and the infectious period C = 1/7, and
N =S+ E +1+R is the total population. We interpret the
latency rate o and the infectious rate 7y as disease-specific
for COVID-19, and assume that they are constant across all
27 countries of the European Union. We interpret the con-
tact rate B = B(¢) as behavior specific, and assume that it is
different for each country and can vary in time to reflect the
effect of societal and political actions. For easier interpre-
tation, we express the contact rate $(r) = R(¢)/C in terms
of the time-varying effective reproduction number R(¢). For
the effective reproduction number, we postulate a hyperbolic
tangent type ansatz,

R(t) =Ro— 3[1+tanh ([t —1*]/T)][Ro — R].

This ansatz ensures a smooth transition from the basic re-
production number Ry at the beginning of the outbreak to
the current reproduction number R, under travel restrictions
and lockdown, where #* is the adaptation time and T is the
transition time, see Appendix.

COVID-19 outbreak and mobility data. We draw the
COVID-19 outbreak data for all 27 countries of the Eu-
ropean Union [15]. From these data, we extract the newly
confirmed cases as the difference between today’s and yes-
terday’s reported cases. We sample all European air traffic
data from the Eurocontrol dashboard, a pan-European Or-
ganization dedicated to support European aviation [19]. In
addition, we approximate car, walking, and transit mobility
using a database generated from cell phone data [4]. These
data represent the relative volume of location requests per
city, subregion, region, and country, scaled by the baseline
volume on January 13, 2020. We smoothen the weekday-
weekend fluctuations in outbreak and mobility data by ap-
plying a moving averaging window of seven days.

Machine learning. To analyze the evolution of the effec-
tive reproduction number for each country, and predict pos-
sible exit scenarios, we identify the initial exposed and in-
fectious populations Ey and Iy and the effective reproduc-
tion number R(¢) using the reported COVID-19 cases in all
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27 countries of the European Union [15]. For each coun-
try, our simulation window begins on the day at which the
number of reported cases surpasses 100 individuals and ends
on May 10, 2020 for the initial simulation and on June 20,
2020 for the prediction. We fix the latency and infectious
periods to A = 2.5 days and C = 6.5 days [31,33,47]. To
account for uncertainties in the initial exposed and infec-
tious populations Eg and Iy and in the effective reproduction
number R(t), we use Bayesian inference with Markov-Chain
Monte-Carlo to estimate the following set of model param-
eters ¥ = {Eo,lo,0,Ro,R,t*,T}. Here, o represents the
width of the likelihood p(D(z)|9) between the time-varying
reported new cases D(¢) and the simulated affected popula-
tion D(t,19). We adopt a Student’s t-distribution for the like-
lihood between the data and the model predictions [11, 30]
with a confirmed case number-dependent width,

p(D(t)|9) ~ StudentTy_4( mean = D(t,19),

width = 6/D(1,9)).

We apply Bayes’ rule to obtain the posterior distribution of
the parameters [41, 45] using the prior distributions in Ta-
ble 1 and the reported case numbers [15],

p(D(t)|D(t,9)) p(9)
p (D)) '

We solve this distribution numerically using the NO-U-Turn
sampler [26] implementation of the python package PyMC3
[46]. We use two chains: The first 1000 samples are used
to tune the sampler, and are later discarded; the subsequent
1000 samples are used to estimate the set of parameters 1.
Chain convergence requires a geometric ergodicity between
the Markov transition and the target distribution. In PyMC3
this is detected by split R statistics, which identifies conver-
gence by comparing the variance between the chains. From
the converged posterior distributions, we sample multiple
combinations of parameters that describe the time evolution
of reported cases. These posterior samples allow us to quan-
tify the uncertainty on each parameter.

p(¥|D(1)) =

Table 1 Prior distributions for the initial exposed and infectious
populations E, and Iy, width of likelihood o, basic and effective re-
production numbers Ry and R, adaptation time ¢*, and transition
time 7.

[ Parameter | Distribution ]

Ey LogNormal(log(D(r = A)),1.5)
Iy LogNormal(log(D(t = 0)),1.5)
c HalfCauchy(8 = 1)

Ry Normal(2.5,2)

R Normal(2.5,2)

t* Normal(10,10)

T LogNormal(log(3),1.5)

To probe the effect of different exit strategies, we explore

three possible projections of the effective reproduction num-
ber R(¢) for each posterior parameter sample set and pre-
dict the outbreak dynamics for a 40-day period after our
initial manuscript submission, from May 10 until June 20,
2020. The first scenario assumes a constant effective repro-
duction number R(¢) = Ry, the second and third scenarios
simulate the effect of a linear return from R, to the country-
specific basic reproduction number Ry, either rapidly within
one month, or more gradually within three months. In the
revision of our manuscript, we added the reported daily new
cases from May 10 until June 20, 2020 to compare our
model predictions against the real case data.

3 Results

Figure 1 illustrates the outbreak dynamics of COVID-19 for
all 27 countries of the European Union. The dots represent
daily new cases. The brown and red curves illustrate the fit
of the SEIR model and the effective reproduction number
for the time period until May 10, 2020. The gray shaded
area highlights the model predictions for the 40-day period
of gradual reopening, from May 10 until June 20, 2020. The
dashed brown, orange, and red curves illustrate the projec-
tions for three possible exit strategies: a constant continua-
tion at the effective reproduction number R; from May 10,
2020, a gradual return to the basic reproduction number Ry
within three months, and a rapid to Ry within one months.

Table 2 and Figures 2 and 3 summarize the basic repro-
duction number Ry at the beginning of the COVID-19 out-
break and the effective reproduction number R, as of May
10, 2020. The basic reproduction number Ry has maximum
values in Germany, the Netherlands, and Spain, with 6.33,
5.88, and 5.19 and minimum values in Bulgaria, Croatia,
and Lithuania with 1.29, 0.93, and 0.91. The population
weighted mean of the basic reproduction number across the
European Union is Ry = 4.22 £ 1.69. The effective repro-
duction number R; is significantly lower than the initial ba-
sic reproduction number Ry. In most countries, it is well be-
low the critical value of R; = 1.0. It has maximum values in
Sweden, Bulgaria, and Poland all with 1.01, 0.99, and 0.96
and minimum values in Lithuania, Hungary, and Slovakia
with 0.41, 0.37, and 0.28. The population weighted mean of
the basic reproduction number across the European Union is
R =0.67%0.18.

Figure 4 provides a direct correlation between the reduc-
tion in mobility and the effective reproduction number of the
COVID-19 outbreak across Europe. The purple, blue, grey,
and black dots represent the reduction in air traffic, driv-
ing, walking, and transit mobility, the red curves show ef-
fective reproduction number with 95% confidence interval.
The mean time delay At highlights the temporal delay be-
tween reduction in mobility and effective reproduction num-
ber. Spearman’s rank correlation p, a measure of the statisti-
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Fig. 1 Outbreak dynamics of COVID-19 across Europe and prediction of different exit strategies. The dots represent daily new cases. The
brown and red curves illustrate the fit of the SEIR model and the effective reproduction number for the time period until May 10, 2020. The gray
shaded area highlights the model predictions from May 10 until June 20, 2020. The dashed brown, orange, and red curves illustrate the projections
for three possible exit strategies: a constant continuation at the effective reproduction number R; from May 10, 2020, a gradual return to the basic
reproduction number Ry within three months, and a rapid to Ry within one months.
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Table 2 Parameters of the COVID-19 outbreak across Europe. Basic reproduction number Ry, effective reproduction number R;, adaptation
time #*, adaptation speed 7', and time delay Az for fixed latency period A = 2.5 days and infectious period C = 6.5 days.

[ Country [ Population ] Ry | R | t* | T | At ]
Austria 8.840.521 4.38+0.36 | 0.45+0.01 13.37£0.68 6.49+0.47 8.33£1.70
Belgium 11.433.256 5.004+0.73 | 0.54+0.03 | 13.31+2.84 | 19.30+1.57 4.00+2.35
Bulgaria 7.025.037 1.2940.04 | 0.99+0.07 | 37.04+1.99 1.64+1.56 43.00+£2.83
Croatia 4.087.843 0.9340.22 | 0.49+0.03 | 22.36+2.90 2.46+3.61 27.33+£2.36
Cyprus 1.189.265 3.354+1.14 | 0.50+0.02 6.60+2.87 8.02+1.47 14.00+0.00
Czech Republic 10.629.928 2.9240.47 | 0.60+0.01 | 14.04+1.71 8.44+1.12 14.00+1.73
Denmark 5.793.636 2.004+0.05 | 0.81+0.01 | 24.74+0.29 1.724+0.45 24.00+2.92
Estonia 1.321.977 3.124+0.78 | 0.45+0.04 | 10.72+3.80 | 14.194+2.87 12.50+2.06
Finland 5.515.525 1.62+0.05 | 0.924+0.01 | 25.05+0.51 1.20+0.68 24.25+2.49
France 66.977.107 3.464+0.29 | 0.62+0.02 | 24.79+1.30 | 10.58+1.17 10.50+1.50
Germany 82.905.782 6.334+0.64 | 0.584+0.01 17.06+£1.39 | 12.41+0.71 3.25+£1.92
Greece 10.731.726 1.66+£0.12 | 0.61+0.02 | 18.934+0.87 4.38+1.22 17.33+£3.09
Hungary 9.775.564 1.9740.55 | 0.37+0.15 | 25.62+6.55 | 20.23+7.33 31.67+1.89
Ireland 4.867.309 1.9440.06 | 0.57+0.03 | 30.78+0.53 5.94+1.28 30.00+3.46
Italy 60.421.760 4254042 | 0.74£0.01 | 19.24+1.57 | 12.06+£1.13 5.004+0.71
Latvia 1.927.174 || 2.504+0.89 | 0.76+0.01 6.9941.32 2.704+0.90 14.67+1.89
Lithuania 2.801.543 0.914+0.88 | 0.41+0.09 | 26.23+9.88 2.25+6.25 34.67+1.89
Luxembourg 607.950 || 2.42+1.21 | 0.46%0.01 5.774+4.20 8.78+1.88 10.00+2.35
Malta 484.630 2.084+0.14 | 0.51+0.03 | 16.24+0.42 1.21£0.51 23.00£0.00
Netherlands 17.231.624 || 5.88+0.88 | 0.4940.03 7.614+3.12 | 23.254+1.92 0.754+2.77
Poland 37.974.750 2.624+0.26 | 0.96+0.01 18.15+1.47 7.38+1.47 20.33+0.94
Portugal 10.283.822 || 5.10+£0.86 | 0.7340.02 8.93+£1.86 | 10.40+1.22 8.67+£2.62
Romania 19.466.145 6.064+0.84 | 0.954+0.01 8.12£1.60 | 11.55+0.70 8.33+£2.36
Slovakia 5.446.771 1.464+0.04 | 0.28+0.03 | 31.80+0.47 2.654+0.70 || 40.25+0.43
Slovenia 2.073.894 3.834+0.96 | 0.44+0.03 4.65+3.50 | 15.33+1.96 6.334+2.36
Spain 46.796.540 || 5.1940.50 | 0.57+0.01 | 15.90+1.17 | 10.704+0.69 5.50+2.60
Sweden 10.175.214 1.8940.09 | 1.01£0.03 | 29.70+1.30 7.9942.65 23.75+£2.77

|

European Union || 446.786.293 || 4.2221.69 | 0.67£0.18 | 18.61£6.43 | 10.82£4.65 || 17.24%2.00 |

basic reproduction number Ro [-] effective reproduction number Rt [-]
iLomm™ WM 6.0 03 EMm[] TEmE11
Fig. 2 Basic reproduction number Ry of the COVID-19 outbreak Fig. 3 Effective reproduction number R; of the COVID-19 out-
across Europe. The basic reproduction number characterizes the initial break across Europe. The effective reproduction number characterizes
number of new infectious created by one infectious individual. It has the current number of new infectious created by one infectious individ-
maximum values in Germany, the Netherlands, and Spain, with 6.33, ual. It has maximum values in Sweden, Bulgaria, and Poland all with
5.88, and 5.19 and minimum values in Bulgaria, Croatia, and Lithuania 1.01, 0.99, and 0.96 and minimum values in Lithuania, Hungary, and

with 1.29, 0.93, and 0.91. Slovakia with 0.41, 0.37, and 0.28 as of May 10, 2020.
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Fig.4 Correlation between reduction in mobility and effective reproduction number of the COVID-19 outbreak across Europe. Purple, blue,
grey, and black dots represent reduction in air traffic, driving, walking, and transit mobility; red curves show effective reproduction number R(7)
with 95% confidence interval. The mean time delay At highlights the temporal delay between reduction in mobility and effective reproduction
number. Spearman’s rank correlation p, measures of the statistical dependency between mobility and reproduction, and reveals the strongest
correlation in the Netherlands, Germany, Ireland, Spain, and Sweden with 0.99 and 0.98.
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Fig. 5 Parameters of the COVID-19 outbreak across Europe. Basic
reproduction number Ry, effective reproduction number R;, adaptation
time ¢* and time delay Ar. The adaptation time ¢* characterizes the
time between the beginning of the outbreak and the reduction in the ef-
fective reproduction number; the time delay Az characterizes the mean
time between the reduction in air travel, driving, walking, and transit
mobility and the reduction in the effective reproduction number.

cal dependency between both variables, reveals the strongest
correlation in the Netherlands, Germany, Ireland, Spain, and
Sweden with 0.99 and 0.98. Only in Slovakia, Slovenia and
Lithuania, where the number of cases has not yet plateaued
and the effective reproduction number does not show a clear
smoothly decaying trend, there is no significant correlation
between mobility and the effective reproduction number.

Figure 5 summarizes the learned basic reproduction
number Ry, the effective reproduction number R;, the adap-
tation time ¢*, and the time delay Ar for all 27 countries of
the European Union. The adaptation time ¢* characterizes
the time between the beginning of the outbreak at 100 con-
firmed cases and the reduction in the effective reproduction
number and is a quantitative measure for the reaction time
in the population. The time delay Ar characterizes the mean
time between the reduction in air travel, driving, walking,
and transit mobility and the reduction in the effective repro-
duction number and is a quantitative measure for the effect
of mobility.

Table 2 and Figures 6 and 7 summarize the adaptation
time #* and the time delay Ar. The adaptation time #* has

adaptation time [days]
5 HEE [mm 35

Fig. 6 Adaptation time * between beginning of the outbreak and
reduction of the effective reproduction number across Europe. The
adaptation time characterizes the time between the beginning of the
outbreak at 100 confirmed cases and the reduction in the effective re-
production number. It has maximum values in Bulgaria and Slovakia
with 37.04 and 31.80 days and minimum values in Luxembourg and
Slovenia with 5.77 and 5.64 days.

time delay [days]

0O mm™ T 40

Fig. 7 Time delay At between reduction of air travel and reduc-
tion of the effective reproduction number across Europe. The time
delay characterizes the mean time between the reduction in air travel,
driving, walking, and transit mobility and the reduction in the effective
reproduction number. It has maximum values in Bulgaria and Slovakia
with 43.00 and 40.25 days and minimum values in Germany and the
Netherlands both with 3.25 and 0.75 days.

maximum values in Bulgaria and Slovakia with 37.04 and
31.80 days and minimum values in Luxembourg and Slove-
nia with 5.77 and 5.64 days. The mean adaptation time


https://doi.org/10.1101/2020.05.01.20088047
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.01.20088047.this version posted July 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Kevin Linka et al.

across the European Union is t* = 18.61 4 6.43 days. The
time delay A¢ has maximum values in Bulgaria and Slovakia
with 43.00 and 40.25 days and minimum values in Germany
and the Netherlands both with 3.25 and 0.75 days. The mean
time delay across the European Union is Ar = 17.24 +2.00
days.

4 Discussion

Mathematical models can inform political inter-
ventions. As many countries begin to explore safe exit
strategies from total lockdown, shelter in place, and national
travel restrictions to manage the COVID-19 pandemic,
political decision makers are turning to mathematical
models for advise [10]. A powerful quantitative concept to
characterize the contagiousness and transmissibility of the
new coronavirus is the basic reproduction number Rq [50].
This number explains—in simple terms—how many new
infections are caused by a single one infectious individual
in an otherwise completely susceptible population [13].
However, against many false claims, the basic reproduction
number does not measure the effects of public health
interventions [12]. Here, we quantify these effects, for
every point in time, for every country, using the effective
reproduction number R(¢), a time-dependent metric that
changes dynamically in response to community mitigation
strategies and political actions. We learn the effective repro-
duction number from case data of the COVID-19 outbreak
across Europe using Bayesian inference and systematically
correlate it to political interventions.

The classical SEIR model can predict a natural
equilibrium and herd immunity. The SEIR model has
advanced to the model of choice for the outbreak dynamics
of COVID-19 [36]. It belongs to a class of infectious disease
models that epidemiologists characterize as compartment
models [14]. Compartment models represent the population
via a sequence of compartments through which the pop-
ulation passes as the disease progresses. Out of the many
different compartment models, the SEIR model seems best
suited to mimic the epidemiology of COVID-19 via four
compartments: the susceptible, exposed, infectious, and
recovered populations. For more than three decades [6],
epidemiologists have successfully applied the SEIR model
to understand the outbreak dynamics of the measles, chick-
enpox, mumps, polio, rubella, pertussis, and smallpox [25].
For this class of diseases, the outbreak ends as the number
of daily new cases, B S1, decreases. As such, the classical
SEIR model is self-regulating: It naturally converges to an
endemic equilibrium, at which either the susceptible group
S, or the infectious group I, or both have become small
enough to prevent new infections [32]. In epidemiology,
this equilibrium is known as herd immunity [22]. In a ho-

mogeneous, well-mixed population, herd immunity occurs
once a fraction of (1 —1/Ry) of the population has become
immune, either through the disease itself or through vacci-
nation, see Appendix. For the basic reproduction number of
Ro =4.22£1.69 we found in this study, the herd immunity
threshold would be 78%. This value is lower than 94% for
the measles, 89% for chickenpox with, 86% for mumps
and rubella, and 80% for polio [3], but significantly higher
than the values of 16% to 27% for the seasonal flu [7]. The
countries with the highest prevalence, Luxembourg with
0.72%, Sweden with 0.71%, and Spain with 0.64% [15],
do currently not even come close to these values, not even
when including asymptomatic cases that are believed to
increase the prevalence by an order of magnitude [43],
resulting in 7.2%, 7.1%, and 6.4%. Knowing the precise
basic reproduction number of COVID-19 will be critical to
estimate the conditions for herd immunity and predict the
success of vaccination strategies.

The dynamic SEIR model can predict the effects
of public health interventions. The classical SEIR
model is a valuable tool to understand the interplay of the
susceptible, exposed, infectious, and recovered populations
under unconstrained conditions. However, for the current
COVID-19 pandemic, similar to SARS, MERS, or Ebola,
the dynamics of these four populations are tightly regulated
by public health interventions [10] including isolation,
quarantine, physical distancing, and community contain-
ment [9, 53]. This implies that model parameters like the
contact rate 8, the rate at which an infectious individual
comes into contact and infects others, are not constant,
but modulated by social behavior and political action [5].
Here we explicitly account for a dynamic contact rate f3(¢)
and express it as a function of the time-varying effective
reproduction number R(¢) [55]. This allows us to “bend
the curve” and predict temporary equilibrium states, far
away from the equilibrium state of herd immunity, but
stable under current conditions [32]. Yet, these states can
quickly become unstable again once the current regulations
change [53]. Our dynamic SEIR model allows us to study
precisely these scenarios.

The time-varying effective reproduction number
reflects the strength of public health interventions.
To model temporal changes in the reproduction number, we
propose a hyperbolic tangent type ansatz for the effective re-
production number R(¢). This functional form can naturally
capture the basic reproduction number Ry, the converged
reproduction number under the current constraints R;, the
adaptation time ¢*, and the transition time 7', see Appendix.
Figure 11 illustrates how our hyperbolic tangent type
model compares against a constant and a random walk type
reproduction number. The constant reproduction number
in Figure 11, left, nicely captures the exponential increase
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during the early stages of the outbreak, but fails to “bend the
curve” before herd immunity occurs. Nonetheless, several
recent studies have successfully used an SEIR model with
a constant reproduction number to model the outbreak
dynamics of COVID-19 in China [42] and in Europe [34]
by explicitly reducing the total population N to an affected
population N* = 1 N. The scaling coefficient n = N*/N is
essentially a fitting parameter that indirectly quantifies the
level of confinement [5]. For example, when averaged over
30 Chinese provinces, the mean affected population was
N =5.19-1077 £2.23 + 107, suggesting that the effect
of COVID-19 was confined to only a very small fraction
of the total population [42]. The Gaussian random walk
in Figure 11, left, naturally captures the effects of public
health interventions, however, in a daily varying, rather
unpredictable way. It is a valuable method to analyze case
data retrospectively, but since it does not allow for a closed
functional form, it is not very useful to make informed
predictions. We conclude that the hyperbolic tangent based
ansatz in Figure 11, middle, with four physically meaning-
ful parameters, is the most useful approach to represent the
time-varying effective reproduction number R(¢) for our
current purposes.

Bayesian inference identifies basic and effective
reproduction numbers from reported cases. Unfortu-
nately, we can neither measure the basic nor the effective
reproduction number directly. However, throughout the
past six months, the COVID-19 pandemic has probably
generated more quantitative data than any infectious disease
in history. Parametric Bayesian methods offers incredible
opportunities to evaluate these data and learn correlations
and trends [39]. Here we learn the effective reproduction
number R(z) directly from the reported COVID-19 cases
in all 27 countries of the European Union, starting from
the day of the first reported case on January 24, until May
10, 2020. This not only allows us to identify the model
parameters and confidence intervals, but also to quantify
correlations between travel restrictions and reduced effec-
tive reproduction numbers. Table 2 and Figures 2 and 3
summarize our basic reproduction numbers R and effective
reproduction numbers R; for all 27 countries. Our mean
basic reproduction number of Ry = 4.22 £ 1.69 exceeds
the first estimates of 1.4 to 2.5 from the World Health
Organization based on a tracing study that reported a value
of 2.2 during the early outbreak in Wuhan [33]. However,
our results agree well with the more recent values of 5.7
for the Wuhan outbreak [47] and with a recent review that
suggested values from 4.1 to 6.5 calculated with SEIR
models [36]. Our basic reproduction number of 4.22 is
lower than the numbers of 18 for measles, 9 for chickenpox,
7 for mumps, 7 for rubella, and 5 for poliomyelitis [3].
Compared to the SARS coronavirus with a range from 2 to

5 [36], our values of SARS-CoV-2 in Table 2 are rather on
the high end, suggesting that the new coronavirus would
spread more rapidly than SARS [54]. Knowing the precise
basic reproduction number is critical to estimate the number
of contacts to trace, if we want to successfully control the
dynamics of COVID-19 through contact trancing [24].

Political mitigation strategies reduce the effective
reproduction number with a time delay of two weeks.
Freedom of movement is the fundamental principle of the
European Union. On March 13, 2020, the World Health Or-
ganization declared Europe the epicenter of the COVID-19
pandemic with more reported cases and deaths than the rest
of the world combined [51]. To prevent a further spreading
of the pandemic, four days later, for the first time in history,
the European Union closed all its external borders [16]. In
the following two weeks, the local governments augmented
the European regulations with local lockdowns and national
travel restrictions. Figure 4 shows that these measures had
an enormous effect on the mobility within the European
Union: By March 22, 2020, the average passenger air travel
in Europe was cut in half, and as of May 10, it is reduced
by 86% in Germany, 92% in France, 93% in Italy, and
95% in Spain [18]. These drastic actions have triggered an
ongoing debate about the effectiveness of different outbreak
strategies and the appropriate level of constraints [38].
Table 2 and Figures 4 to 7 summarize our time-varying
effective reproduction number R(¢) and highlight the time
delay of its reduction with respect to the European travel
restrictions. An important socio-economical metric is mean
time delay of At = 17.24 £2.00 days between the reduction
of air traffic, driving, walking, and transit mobility and
the inflection point of the reproduction number curve.
Figures 5 and 7 show that this time delay varies hugely
across Europe with the fastest response of 0.75 days in
the Netherlands, followed by Germany with 3.25 days,
Belgium with 4.00 days, and Italy with 5.00 days. These
fast response times naturally also reflect decisions on the
national level. France had the first reported COVID-19
case in Europe on January 24, 2020 and acted rigorously
and promptly by introducing the first national measures on
March 16 [52]. Similarly, Italy, Spain, and Germany had
introduced their national measures on March 9, March 9,
and March 13, 2020 [48]. Figures 5 and 7 clearly highlight
the special role of Sweden, where the government focusses
efforts on encouraging the right behavior and creating social
norms rather than mandatory restrictions: The time delay of
23.75 days is above the European Union average of 17.24
days, and Sweden is one of the few countries where the
effective reproduction number has not yet decreased below
one. Taken together, these results confirm that, especially
during the early stages of an outbreak, controlling mobility
can play a critical role in spreading a disease [8]. However,
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these drastic political measures have stimulated an active
ongoing debate when and how it would be safe to lift these
restrictions.

Exit strategies will have different effects in individual
countries. Political decision makers around the globe are
currently trying to identify safe exit strategies from global
travel restrictions and local lockdown. Mathematical models
can provide guidelines and answer what-if scenarios. Our
predictions in Figure 1 show projections of the number of
total cases, for three possible exit strategies from lockdown:
a continuation at a constant effective reproduction number
R:, a gradual return to the basic reproduction number Ry
within three months, and a rapid to Ry within one months.
Naturally, the case numbers increase in all three cases, with
the steepest increase for the most rapid return. Interestingly,
our method provides significantly different confidence
intervals for different countries suggesting that a controlled
return will be more predictable in some countries like
Austria and less in others. Our projections suggest that in
Sweden, were policy makers had encouraged each individ-
ual to take responsibility for their own health rather than
enforcing political constraints, the projected case numbers
will follow the current curve, without major deviations.
Strikingly, in most countries, the newly reported case
numbers upon gradual reopening, from May 10 to June 20,
2020, follow the dashed brown curves of the prediction with
a constant effective reproduction number. This suggests that
most countries have learnt how to successfully control the
pandemic and manage new outbreaks.

Limitations. Just like any infectious disease model, our
model inherently faces limitations associated with data
uncertainties from differences in testing, inconsistent diag-
nostics, incomplete counting, and delayed reporting. For our
specific study of COVID-19, we encounter a few additional
limitations: First, although a massive amount of data are
freely available through numerous well-documented public
databases, the selection of the model naturally limits what
we can predict and it remains challenging to map the
available information into the format of the SEIR model.
Second, the initial conditions for our exposed and infectious
populations will always remain unknown and many new
first cases have been reported throughout the past couple
of weeks. To reduce the influence of unknown initial
conditions, our parametric Bayesian inference algorithm
learns these populations alongside the effective reproduc-
tion number. Third, in its current state, our model does
not distinguish between community mitigation strategies,
local public health recommendations, and global politi-
cal actions [9]. We are currently integrating the current
approach into a global network model that will provide
more granularity to include other community mitigation
strategies in addition to mobility. Fourth, our current model

is not directly informed by mobility data. We have recently
proposed a new method that uses a stochastic process to
directly incorporate mobility as a latent variable into the
present SEIR model framework [35]. Fifth, and probably
most importantly, our current knowledge limits our ability
to make firm predictions about the recovered group, which
will be critical to estimate the return to normal. Recent
studies have shown that the unreported asymptomatic pop-
ulation is huge, up to an order of magnitude larger than the
reported symptomatic population traced in our study [43].
A related challenge is that the number of reported cases
strongly depends on the testing strategy of each country. A
possibility to eliminate testing bias could be to use death
counts rather than case counts [23]; however, this would
also require a consistent Europe-wide definition of death
with versus death caused by COVID-19. In general, more
targeted tests will be needed to identify the size of the
asymptomatic population and explore whether it behaves
differently in terms of contact rate and infectious period,
which would both radically change the overall reproduction
number. As more data become available, we are confident
that we will learn from uncertainty quantification, become
more confident in our model predictions, and learn how to
quickly extract important trends.

5 Conclusion

We quantified the effectiveness of public health interven-
tions using the effective reproduction number R, the time-
varying reproduction number of the COVID-19 pandemic,
across all 27 countries of the European Union. We adopted
an SEIR epidemiology model with a dynamic effective re-
production number, which we learned for each country from
its individual reported cases using Bayesian inference . We
found that, during the early stages of the COVID-19 out-
break, the basic reproduction number across Europe was
Ro = 4.22 £ 1.69. Massive public health interventions as
well as social learning have successfully reduced the effec-
tive reproduction number to Ry = 0.67 £0.18 by May 10,
2020. Strikingly, this reduction displays a strong correlation
with mobility in the form of air travel, driving, walking and
transit mobility with a mean time delay of 17.24+2.00 days.
This time delay is an important metric as we seek to identify
safe exit strategies from current lockdown and travel restric-
tions. To highlight the predictive potential of our model, we
simulated different exit strategies from lockdown that either
maintain the current status quo, gradually return to normal,
or rapidly return to the early exponential growth. Upon grad-
ual reopening, from May 10 to June 20, 2020, the newly re-
ported case numbers in most countries followed the predic-
tion that maintained the current effective reproduction num-
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ber suggesting that most countries were able to successfully
manage the pandemic and control new outbreaks. Our dy-
namic epidemiology model provides the flexibility to sim-
ulate the effects and timelines of various outbreak control
and exit strategies to inform political decision making and
identify solutions that minimize the impact of COVID-19
on global health.

Appendix

The SEIR model. The SEIR model is a popular model in
the epidemiology of infectious diseases [25]. It represents
the timeline of a disease through four compartments that
characterize the dynamics of the susceptible, exposed, infec-
tious, and recovered populations [6]. The transition between
these populations is governed by a set of ordinary differen-
tial equations [29],

S =—-BSI/N — uS+uN

E=+BSI/N — aE — UE N
I = +af — vyl —ul

R = + vl — UR.

The transition rates between the four populations, the con-
tact rate 3, the latency rate o, and the infectious rate v, are
inverses of the contact period B = 1/, the latent period
A =1/a, and the infectious period C = 1/¥. The set of equa-
tions (1) includes vital dynamics at an equivalent birth and
death rate u, such that the sum of all four equations, (1.1) to
(1.4), is equal to zero,

S+E+I+R=0. ()

This implies that the sum of the four populations is constant
and equal to the total population N,

S+E+I1+R=const. =N. 3)

For the SEIR model with vital dynamics (1), the basic repro-
duction number Ry, the number of new infections caused by
one infectious individual in a completely susceptible popu-
lation [13], is

__« B
Cotpy+u

Ro €]
The magnitude of Ry plays a critical role in the outbreak dy-
namics of an infectious disease [36]. Here we are interested
in studying the outbreak dynamics of COVID-19, for which
the time period is short, and we can neglect the effects of
vital dynamics. This implies that the set of equations (1) re-
duces to the following system,

S =—-BSI/N

E=+BSI/N — aE )
I = +afE — vyl

R = + 71,

and the basic reproduction number (4) simplifies to the fol-
lowing expression,

Ro=pB/y=CB=C/B. (6)

Many infections diseases, including COVID-19, display a
significant latent period during which individuals have been
infected but are not yet infectious themselves. These indi-
viduals are represented through the exposed population E.
A special case of the SEIR model is the SIR model, which
follows from the set of equations (5) with & — oo as

S=-BSI/N
I =+BSI/N —yI (7)
R= + vl.

While the SIR model is conceptually simpler and lends it-
self to closed form solutions, for the outbreak dynamics of
the COVID-19 pandemic, the invisible exposed, but not yet
infectious population plays a critical role. Throughout this
study, we therefore focus on the SEIR model. We reparam-
eterize the absolute SEIR model (5) and scale it by the total
population N, to obtain the fractions of the susceptible, ex-
posed, infectious, and recovered populations,

s=S/N e=E/N i=I/N r=R/N. (8)

This introduces the relative SEIR model,

s =—PBsi

e=+Psi —ae

i = + ae — yi ©)
P= + i,

parameterized in the fractional populations, s, e, i, and r,
which sum up to one,

st+e+i+r=1. (10)

Endemic equilibrium. The hallmark of a typical epidemic
outbreak is that it begins with a small infectious population
Iy. The infectious population I(¢) increases, reaches a peak,
and then decays to zero [25]. Throughout the outbreak, the
susceptible population S(¢) decreases, but the final suscep-
tible population S.. always remains larger than zero. This
final state is called the endemic equilibrium. To estimate the
endemic equilibrium of the COVID-19 pandemic, we divide
equation (5.1) by equation (5.4),
S BSI

R yNI (n

Separation of the variables and using the definition of the
basic reproduction number Ry = f3/7 yields the following
equation,

' Ry

S Rog, (12)
S N
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which we integrate in time,
1dS Ro dR
— dt — 70 R
J §dt N dt

to obtain the following expression,

dt, 13)

In(S(1)) ~ In(S(0)) = —Ro[ R(r) — R(0) /N (14)

Here S(0) and R(0) are the initial susceptible and recov-
ered populations and S(z) and R(¢) are these populations at
time 7. Using In(S(¢)) —In(S(0)) = In(S(¢) /S(0)) and apply-
ing the exponential function on both sides of the equation
introduces the following explicit representation for the sus-
ceptible population at time 7,

S(t) = 5(0) exp(—Ro[R(t) — R(0)]/N). (15)

According to equation (8), we scale the populations with the
total population N as sop = S(0)/N and ro = R(0)/N, and
evaluate equation (15) at the limit # — oo with 5. = S(e0)/N,
e = 0,10 =0, and 7. = R(e0) /N = 1 — 5., to obtain the fol-
lowing expression for the susceptible population at endemic
equilibrium,

Seo = 50 €XP(—Ro[7eo —10]) = 1 — Feo. (16)

This transcendental equation has an explicit solution in
terms of the Lambert function W,

S = —W(=soRoexp(—Ro[1—7r0]))/Ro
en = 0 a7
loc p— 0

Foo =1 +W(—soRoexp(—Ro[1—r0]))/Ro.

The endemic equilibrium condition (17) confirms that,
unless S(0) = 0, the final susceptible population will always
be larger than zero, S > 0 [32].

Public health interventions. The classical SEIR
model (1) assumes that the disease develops freely and that
the contact rate 3, latency rate @, and infectious rate 7y are
constant throughout the course of the outbreak. It is obvious
that the contact rate 8 will change in response to community
mitigation strategies and political actions, e.g., local lock-
down and global travel restrictions [20]. Here, to account
for the effects of public health interventions, we introduce
a time-varying contact rate 3(¢) and rewrite the system of
equations (5),

S =—B(t)SI/N
E=+B(t)SI/N — aE

I = +aE —yI
R = + 1.

(18)

We make a hyperbolic tangent type ansatz for the contact

rate (1),
B(t) = Bo— 3[1 +tanh ([t —"]/T)][Bo— B, (19)

where Py is the initial contact rate at the onset of the pan-
demic, B; is the contact rate in response to public health
interventions, ¢* is the adaptation time, and 7 is the tran-
sition time. For easier interpretation, we reparameterize the
system (18) in term of the time-dependent effective repro-
duction number R(t) = B(¢)/7,

S = —R(t)ySI/N

E =+R(t)ySI/N — oE

I = +aE — vyl
R = + vI.

(20)

With equation (19), the effective reproduction number takes
the following hyperbolic tangent type form,

R(t) =Ro— 5[1+tanh ([t —1*]/T)][Ro — R/]. 1)

This ansatz ensures a smooth transition from the initial ba-
sic reproduction number Ry = fB/7 at the beginning of the
outbreak to the effective reproduction number R, = f;/7 in
response to public health interventions, where ¢* and T are
the adaptation and transition times. From equation (16), we
can estimate the constrained equilibrium in response to pub-
lic health interventions,

st = —W(—sRexp(—R[1—nr]))/R

ek = 0

w0 22)
re =1 +W(—stRoexp(—R[1—r(]))/Ry,

where s¢ = s+ 72 and ry = r= 7 are the fractions of the
susceptible and recovered populations at time r = ¢* + T /2,
the time at which the effective reproduction number has
fully adopted the new value R(¢) = R;. Importantly, this con-
strained equilibrium is not equivalent to the natural endemic
equilibrium, s., < 5% and r¥, < r., since Ry < Ry.

Time-varying effective reproduction number. Figures
8 to 10 illustrate the outbreak dynamics of our SEIR model
with a time-varying effective reproduction number. The gray
curves highlight the hyperbolic tangent type nature of the ef-
fective reproduction number R(¢), the dark red, red, orange,
and blue curves illustrate the dynamics of the susceptible S,
exposed E, infectious /, and recovered R populations. Un-
less stated otherwise, we use a latent period of A = 2.5 days,
an infectious period of C = 6.5 days, a basic reproduction
number of Ry = 4.5, a reproduction number under public
health interventions of R = 0.75, and adaptation and tran-
sition times of * = 20 days and 7 = 15 days. In all sim-
ulations, the effective reproduction number R(z) transitions
gradually from the initial basic reproduction number R at
the beginning of the outbreak to the effective reproduction
number R; associated with the public health interventions.
The adaptation time ¢* marks the midpoint of the transi-
tion and the transition time 7 is its duration. The outbreak
is more pronounced for larger basic reproduction numbers
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Fig. 8 SEIR model with time-varying effective reproduction num-
ber. Increasing the basic reproduction number Ry increases the ini-
tial growth, and with it the number of cases. The temporary equi-
librium for the smaller basic reproduction number of Ry = 2.5 is
s% =0.948 and rZ, = 0.052 and for the larger basic reproduction num-
ber of Ry = 5.0 is s, = 0.544 and rZ, = 0.456. Latent period A = 2.5
days, infectious period C = 6.5 days, basic reproduction number Ry =
[5.0,4.5,4.0,3.5,3.0,2.5], effective reproduction number R; = 0.75,
adaptation time t* = 20 days, and transition time 7 = 15 days.
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Fig. 9 SEIR model with time-varying effective reproduction num-
ber. Increasing the reproduction number R; decreases the effect of in-
terventions and increases the number of cases. The temporary equilib-
rium for the smaller effective reproduction number of Ry = 0.4 is 5%, =
0.764 and rZ, = 0.236 and for the larger effective reproduction number
of Ry = 0.9 is s%, = 0.594 and r}, = 0.406. Latent period A = 2.5 days,
infectious period C = 6.5 days, basic reproduction number Ry = 4.5,
effective reproduction number R; = [0.4,0.5,0.6,0.7,0.8,0.9], adapta-
tion time 1* = 20 days, and transition time 7 = 15 days.

Ry as we see in Figure 8, for larger intervention related re-
production numbers R, as we see in Figure 9, and for larger
adaptation times t* as we see in Figure 10.

Constant, hyperbolic tangent, and random walk type
effective reproduction numbers. To illustrate the effect
of different time-varying effective reproduction numbers,
we compare three different methods: a constant effective re-
production number, a smoothly decaying effective reproduc-
tion number of hyperbolic tangent type, and a daily varying
effective reproduction number that follows a Gaussian ran-
dom walk. The constant reproduction number has one pa-
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Fig. 10 SEIR model with time-varying effective reproduction num-
ber. Increasing the adaptation time ¢* to interventions increases the
time spent at a high reproduction number, and with it the number of
cases. The temporary equilibrium for the faster adaptation of r* = 10
days is s, = 0.956 and ri = 0.044 and for the slower adaptation of
t* = 22 days is s%, = 0.550 and r, = 0.450. Latent period A = 2.5
days, infectious period C = 6.5 days, basic reproduction number Ry =
4.5, effective reproduction number R = Ry/6 = 0.75, adaptation time
t* =110,12,14,16,18,20,22] days, and transition time 7' = 15 days.

rameter R; = Ro. The hyperbolic tangent type reproduction
number, R, = Ry — 3[1 + tanh ([t —*]/T)][Ro — R.], has
four parameters, the basic and effective reproduction num-
bers Ry and Ry, the adaptation time ¢*, and the time delay Ar.
The Gaussian random walk has three parameters, the drift u,
the daily stepwidth 7 = 7;/[1.0 — s], and the smoothing pa-
rameter s. Table 3 summarizes the prior distributions for all
three methods. Figure 11 compares the constant, hyperbolic

Table 3 Prior distributions for time-varying effective reproduction
number R(t) of constant, hyperbolic tangent, and Gaussian ran-
dom walk type.

R(t) ... constant

Parameter | Distribution
Ry Normal(2.5,2)

R(t) ... hyperbolic tangent
Parameter | Distribution
Ro Normal(2.5,2)
Ry Normal(2.5,2)
t* Normal(10,10)
T LogNormal(log(3),1.5)

R(t) ... Gaussian random walk

Parameter | Distribution
R(1) GRW(u,71/(1.0—15))
u Normal(0,2)
T Exponential(1/2)
K Uniform(0,1)

tangent, and random walk type effective reproduction num-
bers for the example of Austria. The three graphs illustrate
the number of reported cases as dots, the model fit as or-
ange curves with 95% confidence interval, and the effective
reproduction numbers as red curves with 95% confidence
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Fig. 11 Time-varying effective reproduction number R(t). Comparison of constant, hyperbolic tangent, and random walk type ansatz. The
constant effective reproduction number predicts an exponential increase in the number of cases that fits the initial but not for the later stages of the
COVID-19 outbreak, left. The hyperbolic tangent type reproduction number predicts a smooth early increase and later saturation of the number of
cases, middle. The random walk type reproduction number predicts a daily varying, non-smooth early increase and later saturation of the number
of cases, right. Dots represent reported cases; orange curves illustrate fit with 95% confidence interval; red curves shows effective reproduction
number with 95% confidence interval; here illustrated for the case of Austria.

interval. Of all three methods, the constant ansatz can fit the
early exponential increase of the COVID-19 outbreak, but
not the later saturation. The random walk type ansatz can fit
both the early exponential increase and the later saturation,
but not with a closed form expression. Only the hyperbolic
tangent type ansatz provides both a good fit and a closed
functional form to compare the time lines of the outbreak in
different countries and make informed predictions.

Herd immunity. An important consequence of the basic
reproduction number Ry is the condition for herd immu-
nity [12]. Herd immunity occurs once the immune popula-
tion, in our case the recovered population R, is large enough
to protect susceptible individuals from infection [22]. We
can express herd immunity in terms of the recovered frac-
tion r, or in terms of the absolute recovered population R,

r>1—1/R0 or R>[1—1/R0]N. 23)
Importantly, upon relaxing public health interventions, the
condition for herd immunity is not R > 1 — 1 /R;. Herd im-
munity is not a function of the reproduction number un-
der public health interventions R.—which is usually much
smaller than the basic reproduction number Ro—but will de-
pend on the natural basic reproduction number Ry under un-

constrained conditions.

Acknowledgments

We acknowledge stimulating discussions with Dr. Francisco
Sahli Costabal. This work was supported by a DAAD Fel-
lowship to Kevin Linka and a Stanford Bio-X IIP seed grant
to Mathias Peirlinck and Ellen Kuhl and by the National In-
stitutes of Health Grant UO1 HL119578.

References

1. D. Ambrosi, M. BenAmar, C.J. Cyron, A. DeSimone, A. Goriely,
J.D. Humphrey, E. Kuhl. Growth and remodelling of living tissues:
Perspectives, challenges, and opportunities. J. Royal Soc. Inter-
face 16 (2019) 20190233.

2. M. Alber, A. Buganza Tepole, W. Cannon, S. De, S. Dura-Bernal,
K. Garikipati, G. Karniadakis, W.W. Lytton, P. Perdikaris, L. Pet-
zold, E. Kuhl. Integrating machine learning and multiscale mod-
eling: Perspectives, challenges, and opportunities in the biologi-
cal, biomedical, and behavioral sciences. npj Digital Medicine 2
(2019) 115.

3. R. M. Anderson, R. M. May. Directly transmitted infectious dis-
eases: control by vaccination. Science 215 (1982) 1053-1060.

4. Apple Mobility Trends. https://www.apple.com/covid19/
mobility. accessed: June 25, 2020.

5. A. Arenas, W. Cota, J. Gomez-Gardenes, S. Gomez, C. Granell,
J.T. Matamalas, D. Soriano-Panos, B. Steinegger. Derivation of
the effective reproduction number R for COVID-19 in rela-
tion to mobility restrictions and confinement. medRxiv (2020)
doi:10.1101/2020.04.06.20054320.

6. J. L. Aron, I. B. Schwartz. Seasonality and period-doubling bifur-
cation in an epidemic model. J. Theor. Bio 110 (1984) 665-679.

7. M. Biggerstaff, S. Cauchemez, C. Reed, M. Gambhir, L. Finelli.
Estimates of the reproduction number for seasonal, pandemic, and
zoonotic influenza: a systematic review of the literature. BMC In-
fectious Disease 14 (2014) 480.

8. M. Chinazzi, J. T Davis, M. Ajelli, C. Gioanni, ... A. Vespig-
nani. The effect of travel restrictions on the spread of the
2019 novel coronavirus (COVID-19) outbreak. Science (2020)
doi:10.1126/science.aba9757.

9. D.K. Chu, E.A. Akl, S. Duda, K. Solo, S. Yaacoub, H.J.
Schiinemann. Physical distancing, face masks, and eye protec-
tion to prevent person-to-person transmission of SARS-CoV-2 and
COVID-19: A systematic review and meta-analysis. Lancet 395
(2020) 1973-1987.

10. S. Cobey. Modeling infectious disease dynamics. Science (2020)
doi:20.1126/science.aba5659.

11. J. Dehning, J. Zierenberg, F.P. Spitzner, M. Wibral, J. Pinheiro
Neto, M. Wilczek, V. Priesemann, Inferring COVID-19 spreading
rates and potential change points for case number forecasts. arXiv
(2020) 2004.01105.


https://doi.org/10.1101/2020.05.01.20088047
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.05.01.20088047.this version posted July 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

The reproduction number of COVID-19 and its correlation with public health interventions 15

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

P. L. Delamater, E. J. Street, T. F. Leslie, Y. T. Yang, K. H. Jacob-
sen. Complexity of the basic reproduction number (Rp). Emerg.
Infect. Disease 25 (2019) 1-4.

K. Dietz. The estimation of the basic reproduction number for in-
fectious diseases. Stat. Meth. Med. Res. 2 (1993) 23-41.

P van den Diessche, J. Watmough. Reproduction numbers and
sub-threshold endemic equilibria for compartment models of dis-
ease transmission. Math. Biosci. 180 (2002) 29-48.

European Centre for Disease Prevention and Control. Situa-
tion update worldwide. https://www.ecdc.europa.eu/en/
geographical-distribution-2019-ncov-cases. accessed:
June 25, 2020.

European Commission. COVID-19: Temporary restriction on non-
essential travel to the EU. Communication from the Commission
to the European Parliament, the European Council and the Coun-
cil. Brussels, March 16, 2020.

A. Erlich, D.E. Moulton, A. Goriely. Are homeostatic states sta-
ble? Bulletin Math. Bio. 81 (2019) 3219-3244.

. Eurostat. Your key to European statistics. Air transport of pas-

sengers. https://ec. europa.eu/eurostat; accessed: June 25,
2020.

Eurocontrol. Flights 2020. Daily traffic variation. http://
eurocontrol.int; accessed: June 25, 2020.

Y. Fang, Y. Nie, M. Penny. Transmission dynamics of the COVID-
19 outbreak and effectiveness of government interventions: a data-
driven analysis. J. Med. Virol. (2020) 1-15.

A.S. Fauci, H.C. Lane, R.R. Redfield. Covid-19-Navigating the
uncharted. New Engl. J. Med. (2020) 382:1268-1269.

P. E. M. Fine. Herd immunity: history, theory, practice. Epidemi-
ologic Reviews 15 (1993) 265-302.

S. Flaxman, S. Mishra, A. Gandy, H.J.T. Unwin, ..., S. Bhatt.
Estimating the effects of non-pharmaceutical interventions on
COVID-19 in Europe. Nature (2020) doi:10.1038/541586-020-
2405-7.

J. Hellewell, S. Abbott, A. Gimma, N.I. Bosse, C.I. Jarvis, T.W.
Russell, J.D. Munday, A.J. Kucharski, W.J. Edmunds. Feasibility
of controlling COVID-19 outbreaks by isolation of cases and con-
tacts. Lancet Global Health (2020) 8:e488-496.

H. W. Hethcote. The mathematics of infectious diseases. SIAM
Review 42 (2000) 599-653.

M.D. Hoffman, A. Gelman. The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo. J. Machine
Learning Res. 15 (2014) 1593-1623.

J. Hsu. Here’s how computer models simulate the future spread of
new coronavirus. Scientific American (2020) February 23, 2020.
D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar,
G. Ippolito, T. D. Mchogh, Z. A Memish, C. Drosten, A. Zumla,
E. Petersen. The continuing 2019-nCoV epidemic thread of novel
coronaviruses to global health - The latest 2019 novel coronavirus
outbreak in Wuhan, China. Int. J. Infect. Diseases 91 (2020) 264-
266.

W. O. Kermack, G. McKendrick. Contributions to the mathemati-
cal theory of epidemics, Part I. Proc. Roy. Soc. London Ser. A 115
(1927) 700-721.

K.L. Lange, R.J.A. Little, J.M.G. Taylor, Robust statistical model-
ing using the T distribution. J. Am. Stat. Ass. 84 (1989) 881-896.
S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R.
Meredith, A. S. Azman, N. G. Reich, J. Lessler. The incubation
period of coronavirus disease 2019 (COVID-19) from publicly re-
ported confirmed cases: estimation and application. Ann. Int. Med.
(2020) doi:10.7326/M20-0504.

M. Y. Li, J. S. Muldowney. Global stability for the SEIR model in
epidemiology. Math. Biosci. 125 (1995) 155-164.

Q. Li, X. Guan, P. Wu, X. Wang, ... Z. Feng. Early transmission
dynamics in Wuhan, China, of novel coronavirus-infected pneu-
monia. New Eng. J. Med. (2020) doi:10.1056/NEJMo0a2001316.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

K. Linka, M. Peirlinck, F. Sahli Costabal, E. Kuhl. Out-
break dynamics of COVID-19 in Europe and the effect of
travel restrictions. Comp Meth Biomech Biomed Eng; in press.
doi:10.1080/10255842.2020.1759560;

K. Linka, A. Goriely, E. Kuhl Global and local mobil-
ity as a barometer for COVID-19 dynamics medRxiv (2020)
doi:10.1101/2020.06.13.20130658.

Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklov. The reproduc-
tive number of COVID-19 is higher compared to SARS coron-
avirus. J. Travel Medicine (2020) doi:10.1093/jtm/taaa021.

B. F. Maier, D. Brockmann. Effective containment ex-
plains sub-exponential growth in confirmed cases of recent
COVID-19 outbreak in mainland China. medRxiv (2020)
doi:10.1101/2020.02.18.20024414.

B. Mason Meier, R. Habibi, Y. Tony Yang. Travel restrictions vio-
late international law. Science 367 (2020) 1436.

G.C.Y. Pang, M. Alber, A. Buganza Tepole, W. Cannon, S. De,
S. Dura-Bernal, K. Garikipati, G. Karniadakis, W.W. Lytton, P.
Perdikaris, L. Petzold, E. Kuhl. Multiscale modeling meets ma-
chine learning: What can we learn? Arch. Comp. Meth. Eng.
(2020) doi:10.1007/s11831-020-09405-5.

S. W. Park, B. M. Bolker, D. Champredon, D. J. D. Earn, M. Li, J.
S. Weitz, B. T. Grenfell, J. Dushoff. Reconciling early-outbreak
estimates of the basic reproductive number and its uncertainty:
framework and applications to the novel coronavirus outbreak.
medRxiv (2020) doi:10.1101/2020.01.30.20019877.

M. Peirlinck, F. Sahli Costabal, K.L. Sack, J.S. Choy, G.S. Kassab,
J.M. Guccione, M. De Beule, P. Segers, E. Kuhl. Using machine
learning to characterize heart failure across the scales. Biomech.
Model. Mechanobio. 18 (2019) 1987-2001.

M. Peirlinck, K. Linka, F. Sahli Costabal, E. Kuhl. Outbreak dy-
namics of COVID-19 in China and the United States. Biomech.
Model. Mechanobio. (2020) doi:10.1007/s10237-020-01332-5.
M. Peirlinck, K. Linka, F. Sahli Costabal, E. Bendavid, J. Bhat-
tacharya, J.P.A. Ioannidis, E. Kuhl. Visualizing the invisible: The
effect of asymptomatic transmission on the outbreak dynamics of
COVID-19. medRxiv (2020) doi:10.1101/2020.05.23.20111419.
K. Prem, Y. Liu, A.J. Kucharski, R.M. Eggo, N. Davies. The effect
of control strategies to reduce social mixing on outcomes of the
COVID-19 epidemic in Wuhan, China: a modeling study. Lancet
Public Health. doi:10.1016/S2468-2667(20)30073-6.

F. Sahli Costabal, K. Matsuno, J. Yao, P. Perdikaris, E. Kuhl. Ma-
chine learning in drug development: Characterizing the effect of
30 drugs on the QT interval using Gaussian process regression,
sensitivity analysis, and uncertainty quantification. Comp. Meth.
Appl. Mech. Eng. 348 (2019) 313-333.

J. Salvatier, T.V. Wiecki, C. Fonnesbeck. Probabilistic program-
ming in Python using PyMC3. Peer] Computer Science 2 (2016)
e55.

S. Sanche, Y.T. Lin, C. Xu, E. Romero-Severson, N. Hengartner,
R. Ke. High contagiousness and rapid spread of severe acute res-
piratory syndrome coronavirus 2. Emerg. Infect. Disease. (2020)
doi:10.3201/e1d2607.200282.

H. Sjodin, A. Wilder-Smith, S. Osman, Z. Farooq, J. Rocklov.
Only strict quarantine measures can curb the coronavirus disease
(COVID-19) outbreak in Italy, 2020. Euro Surveill. 25 (2020)
2000280.

B. Tang, F. Xia, N.L. Bragazzi, Z. McCarthy, X. Wang, S. He,
X. Sun, S. Tang, Y. Xiao, J. Wu. Lessons drawn from China and
South Korea for managing COVID-19 epidemic: insights from
a comparative modeling study. Bull World Health Organ (2020)
doi:10.2471/b1t.20.257238.

G. Viceconte, N. Petrosillo. COVID-19 RO: Magic number or co-
nundrum? Infect. Dis. Rep. 12 (2020) 8516.

World Health Organization. WHO Virtual press conference on
COVID-19.  https://www.who.int.docs/default-source/
coronavirus/transcripts/who-audio-emergencies-corona-


https://doi.org/10.1101/2020.05.01.20088047
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.05.01.20088047.this version posted July 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Kevin Linka et al.

52.

53.

54.

55.

56.

virus-press-conference-full-andfinal-11mar2020.pdf?
sfvrsn=cb432bb3_2 recorded: March 11, 2020; accessed: June
25, 2020.

Wikipedia. 2020 Coronavirus pandemic in Europe. https://
en.wikipedia.org/wiki/2020_corona-virus_pandemic_in_
Europe; accessed: June 25, 2020.

A. Wilder-Smith, D.O. Freedman. Isolation, quarantine, social dis-
tancing and community containment: pivotal role for old-style
public health measures in the novel coronavirus (2019-nCoV) out-
break. J. Travel Med. (2020) doi: 10.1093/jtm/taaa020.

A. Wilder-Smith, C.J. Chiew, V.J. Lee. Can we contain the
COVID-19 outbreak with the same measures as for SARS? Lancet
Infect. Dis. 20 (2020) e102-107.

J. Yuan, M. Li, G. Lv, Z.K. Lu. Monitoring transmissibility and
mortality of COVID-19 in Europe. Int. J. Infectious Disease.
doi:10.1016/j.1jid.2020.03.050.

S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, Y.
Lou, D. Gao, L. Yang, D. He, M. H. Wang, Maggie. Prelimi-
nary estimation of the basic reproduction number of novel coro-
navirus (2019-nCoV) in China, from 2019 to 2020: A data-
driven analysis in the early phase of the outbreak. bioRxiv (2020)
doi:10.1101/2020.01.23.916395.


https://doi.org/10.1101/2020.05.01.20088047
http://creativecommons.org/licenses/by/4.0/

