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A B S T R A C T   

Estimation of model accuracy plays a crucial role in protein structure prediction, aiming to evaluate the quality 
of predicted protein structure models accurately and objectively. This process is not only key to screening 
candidate models that are close to the real structure, but also provides guidance for further optimization of 
protein structures. With the significant advancements made by AlphaFold2 in monomer structure, the problem of 
single-domain protein structure prediction has been widely solved. Correspondingly, the importance of assessing 
the quality of single-domain protein models decreased, and the research focus has shifted to estimation of model 
accuracy of protein complexes. In this review, our goal is to provide a comprehensive overview of the reference 
and statistical metrics, as well as representative methods, and the current challenges within four distinct facets 
(Topology Global Score, Interface Total Score, Interface Residue-Wise Score, and Tertiary Residue-Wise Score) in 
the field of complex EMA.   

1. Introduction 

Proteins serve as the foundation for sustaining life activities and 
cellular functions, playing a crucial role in the majority of biological 
processes [1]. Understanding the tertiary structure of the protein is 
decisive for comprehending its function and its interactions with other 
molecules. With the development of artificial intelligence, protein 
structure prediction has made great progress. Estimation of model ac-
curacy (EMA) is an important part of protein structure prediction. The 
efficient EMA method may identify errors in experimental structures and 
reflect the reliability of prediction models, thereby guiding model 
refinement and promoting the development of innovative drug and 
vaccine design based on structure. EMA methods constitute a crucial 
category of the Critical Assessment of Protein Structure Prediction 
(CASP) experiments [2–4]. EMA was first introduced in CASP7 (2006), 
emphasizing the significance of EMA in protein tertiary structure pre-
diction [5]. Since 2012, another important worldwide competition 
Continuous Automated Model EvaluatiOn (CAMEO) [6] has introduced 
a weekly online automated blind evaluations of protein structure pre-
diction servers and EMA servers, which complements the biennial CASP 
experiments and accelerating the advancement of EMA methods. 

The EMA methods can be roughly divided into consensus methods, 

quasi-single model methods and single model methods [7]. Based on the 
assumption that the correct structure information is contained in the 
repeated structural patterns of the model pool, consensus methods 
extract consensus information from protein structure models through 
clustering. Representative methods include the MULTICOM series [8,9], 
the MUfoldQA series [10,11], the ModFOLDclust series [12,13], clustQ 
[14], Pcons [15], APOLLO [16]. From the CASP results, it appears that 
consensus methods perform better than single model methods in most 
protein targets [7]. Quasi-single model methods take a single protein 
model as input and compare it for structural similarity with a set of 
internally generated models. Representative methods include the Mod-
FOLD series [17–19], QMEANDisco [20]. The single model method 
extracts the sequence, geometric structure, and physical and chemical 
features of a single protein model, and inputs it into the neural network 
to predict the quality of local residues or global topology. With the rapid 
development of deep learning technology in the field of protein structure 
prediction, the performance of single model methods has gradually 
equaled or even surpassed consensus methods, becoming a research 
hotspot for EMA. The representative methods mainly include the Voro 
series [21–23], DeepUMQA series [24,25], GraphQA [26], AlphaFold2 
[27], DeepAccNet series [28], QDistance [29], Qdeep [30], Ornate [31], 
AngularQA [32], ProQ series [33–40], 3DCNN [41], QAcon [42], 
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SVMQA [43], DeepQA [44], QMEAN [45], ProSA [46,47]. These 
monomer EMA methods are of great significance to the EMA field and 
lay the foundation for complex EMA. More detailed descriptions of these 
methods can be found in the reviews [48–50]. 

With AlphaFold2 (AF2) has made significant breakthroughs in pre-
dicting protein tertiary structures and self-assessment, researchers have 
shifted their attention from monomers to protein complexes [27,51,52]. 
Currently, the accuracy of protein complex modeling is much lower than 
that of monomer modeling [7]. Complex EMA methods are critical to 
improve their prediction accuracy. Therefore, the development of EMA 
methods for complexes has become particularly important. The CASP15 
EMA methods have shifted the focus on interfaces to highlight the 
importance of protein-protein interactions in understanding the func-
tion and stability of quaternary structure [7]. In addition, the Critical 
Assessment of PRediction of Interactions (CAPRI) [53] aims to evaluate 
the ability of protein docking methods to predict protein-protein in-
teractions. CAPRI has established a close relationship with CASP and 
successfully held the fifth joint CASP-CAPRI experiment [54–58]. 
Complex EMA involves the comprehensive evaluation using various 
metrics. Specifically, reference metrics refers to the various metrics and 
scores used to assess the accuracy of a structural model whereas statis-
tical metrics are used to evaluate the capabilities of different methods 
for predicting such metrics and scores. The complex assessment in 
CASP15 includes three distinct tracks: SCORE, QSCORE, and Local [7]. 
For the SCORE track, reference metrics Oligo-GDTTS [7,59] and 
TM-score [60] are used to evaluate the overall topology of complexes, 
with the state-of-the-art methods being MULTICOM_qa [61], developed 
by Jianlin Cheng’s research group. The QSCORE track uses reference 
metrics DockQ-wave [7,62] and QS-score [63] to assess the quality of 
the interface, with the top-ranking methods including the Mod-
FOLDdock series [64] developed by the research group led by McGuffin. 
For the Local track, reference metrics lDDT [65], CAD-score [66] and the 
newly proposed PatchDockQ [62] and PatchQS [63] are employed to 
assess the accuracy of interface residues in each model, where the 
top-ranking research groups include the DeepUMQA3 [67], developed 
by Guijun Zhang’s research group. Furthermore, the performance of 
EMA methods was estimated according to several statistical metrics, 
such as Pearson [68], Spearman [68], and AUC ROC [3,69]. These sta-
tistical metrics were then weighted and transformed into a Z-score for 
the purpose of scoring and ranking [7]. 

2. Methods of complex model accuracy estimation 

2.1. Overview 

With significant advances in monomer structure prediction, complex 
model accuracy estimation has become a research hotspot. In order to 
comprehensively evaluate the complex model accuracy, various refer-
ence and statistical metrics have been proposed. Based on the compo-
sition and functions of the quaternary structure, we classify and describe 
them through four facets: Topology Global Score (TGS), Interface Total 
Score (ITS), Interface Residue-Wise Score (IRWS), and Tertiary Residue- 
Wise Score (TRWS) (Fig. 1). TGS assesses the accuracy of the topological 
structure, ITS evaluates the precision of inter-molecular interactions 
within the complex, IRWS focuses on the accuracy of individual residue 
at the interface, and TRWS highlights the quality of per-residue in ter-
tiary structure. Representative methods in each facet are listed in  

Fig. 1. Schematic diagram of the four quality assessment facets defined as Topology Global Score (TGS), Interface Total Score (ITS), Interface Residue-Wise Score 
(IRWS), and Tertiary Residue-Wise Score (TRWS) of the complex. 

Table 1 
Brief description of reference metrics, statistical metrics, representative methods 
and CASP15 performance of EMA in four facets. Based on the data from the 
CASP15 official website (https://predictioncenter.org/casp15), the sum of Z- 
scores for the CASP15 representative methods is calculated by all metrics, which 
can be used to rank the prediction accuracy of methods.  

Facets Reference 
metrics 

Statistical 
metrics 

Representative 
methods 

CASP15 
performance 
(Z-score) 

Topology 
Global Score 
(TGS) 

TM-score 
Oligo- 
GDTTS 

Pearson 
Spearman 
ROC AUC 
Top1 loss 

MULTICOM_qa 7.555 
ModFOLDdock 
series 

7.095 

VoroIF-jury 6.487 
GraphGPSM 3.003 

Interface Total 
Score 
(ITS) 

QS-score 
DockQ 
DockQ- 
wave 

Pearson 
Spearman 
ROC AUC 
Top1 loss 

ModFOLDdock 
series 

7.286 

VoroIF-GNN 4.043 
DeepUMQA3 3.789 

Interface 
Residue- 
Wise Score 
(IRWS) 

lDDT 
CAD-score 
PatchQS 
PatchDockQ 

Pearson 
Spearman 
ROC AUC 

DeepUMQA3 13.950 
ModFOLDdock 
series 

8.898 

VoroIF-GNN 6.971 
VoroIF-jury 6.948 
GraphCPLMQA / 

Tertiary 
Residue- 
Wise Score 
(TRWS) 

lDDT Pearson 
ASE 
ROC AUC 
PR AUC 

AlphaFold2 / 
ColabFold / 
DeepUMQA1,2 /  
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Table 1. The definition of common metrics is represented in supple-
mentary material. For these four facets, this section introduces the 
reference metrics, statistic metrics and their characteristics. Then we 
summarize the main advantages of the representative methods in the 
past two years, and discuss the key challenges and further development 
directions in the field. 

2.2. Topology global score (TGS) 

Assessing the topological similarity between prediction models and 
the native structure of proteins is crucial for ensuring the biological 
reliability and practicality of these models. The TGS facet assessment of 
complexes usually employed the reference metrics Oligomer Global 
Distance Test Total Score (Oligo-GDTTS) [7] and the Template Modeling 
Score (TM-score) [60]. Oligo-GDTTS is conceptually similar to GDT [70] 
for complex, which calculates the maximum number of atoms in the 
modeled structure corresponding to the experimental structure within a 
specified threshold (i.e.1, 2, 4, 8 Å) by superimposing the predicted 
structure with the experimental reference structure. It does not penalize 
residues over the threshold range [59,60]. The value range of 
Oligo-GDTTS is usually between 0 and 1. The closer the score is to 1, the 
more similar the prediction model is to the reference structure. TM-score 
is a widely used reference metric for assessing the quality of protein 
structure models, which eliminates the dependence on protein length in 
the previous evaluation metrics by using protein size-dependent values 
[60]. It is employed to evaluate all residue pairs in alignment, instead of 
setting a specific distance cutoff and computing error scores below the 
cutoff. As a result, TM-score focuses on global topology features and may 
ignore local structural details [71]. Two monomer protein structures 
with a TM-score> 0.5 are considered to have the same topology [71]. 
For complex models, they are considered acceptable quality if the 
TM-score is above 0.7 and high quality if the TM-score is above 0.8 [72]. 
When the reference structure is unknown, the predicted TM-score (pTM) 
[27] derived from AF2 assumes the existence of a distribution of prob-
able structures and uses the pairwise error matrix to find the expected 
value of the TM-score for the predicted structure. Considering the 
different advantages of Oligo-GDTTS and TM-score in EMA, they are 
often used in combination in CASP to meet the need for a more 
comprehensive and accurate assessment of protein models. To further 
objectively and fairly analyze the accuracy and reliability of the 
assessment, statistical metrics Pearson, Spearman, the area under the 
Receiver Operating Characteristic curve (ROC AUC), and Top1 loss are 
employed to ensure overall performance on all targets. Particularly, 
Top1 loss refers to the difference between the selected top model and the 
true best model for the target protein and focuses on ranking the optimal 
model [73]. These statistical metrics collectively reflect the compre-
hensive performance of evaluation methods. 

In CASP15, we have witnessed recent advances in the complex EMA 
methods. Consensus methods are in a domination state in the perfor-
mance assessment of TGS facet, which extract highly consistent struc-
tural information from a multitude of different models and apply a 
combination of evaluation strategies that are functionally complemen-
tary to each other. The leading consensus methods include MULTI-
COM_qa [61] of Jianlin Cheng’s research group, VoroIF-jury [74] of 
Venclovas’s research group, ModFOLDdock [64] of McGuffin’s research 
group, and so on [29]. MULTICOM_qa combines pairwise similarity 
scores (PSS) and interface contact probability scores (ICPS) to predict 
the global accuracy of complex structure [61]. The average Pearson of 
the MULTICOM_qa method is 0.683, which is 14.6 % higher than that of 
using an assembly consensus baseline predictor known as “AC” (only 
structure comparison score), and achieves an average Top1 loss of 0.152 
on 40 targets, which is 14.1 % lower than that of “AC” [61,75]. This 
result shows that MULTICOM_qa is able to effectively assess the overall 
quality of the model, reasonably select the best model, and perform best 
in the CASP15 SCORE track [61]. VoroIF-jury specializes in protein as-
sembly modeling and uses a scoring strategy that focuses on interface 

accuracy, much of which comes from the VoroMQA interface energy 
ranking models predicted by various modeling methods [74]. In addi-
tion, ModFOLDdock aims to enhance the correlation between predicted 
and reference scores, placing second in the SCORE track at CASP15 [64]. 
Despite the excellent performance of consensus methods, there are 
obvious limitations. Firstly, consensus methods require high computa-
tional costs to obtain consensus information on a large number of 
structures by comparing several different models, especially for large 
proteins. Secondly, the extensive integration of AF2 in most of the 
current algorithms leads to significant similarities between the pool of 
candidate models and a strong dependence on the accuracy of the AF2 
models. Single model methods employed by participants in CASP15 
appeared less constrained by these potential influences. The running 
times of representative consensus methods and single model methods 
are illustrated in Fig. S1. Obviously, the computational costs of single 
model methods are much lower than consensus methods. 

Recently, with the advancements of deep learning, single model 
methods have become increasingly important. Single model methods 
have gradually caught up with or surpassed the consensus method [7]. 
Single model methods assess models without the need for using struc-
tural information from other server models. The single model method 
GraphGPSM [77] (group name: GuijunLab-Threader) participated in 
CASP15, which was designed to guide protein structure modeling and 
selecting. This method based on equivariant graph neural network 
(EGNN), achieves information interaction between graph nodes and 
edges through a message passing mechanism [77]. CASP15 blind test 
results demonstrated a strong correlation between the predicted and 
actual TM-score of the models. GraphGPSM predicted 35 targets in 
CASP15, and the mean absolute error (MAE) of the predictions based on 
the TM-score in relation to the native structure was 0.126, which was the 
smallest average bias among top-ranked servers [78]. Since GraphGPSM 
primarily relies on TM-score, many improvements are still needed to 
capture the interface relationships of complexes and score them accu-
rately. GraphGPSM is at the leading status among all the single model 
methods entered in CASP15. 

2.3. Interface total score (ITS) 

Protein-protein interfaces refer to the contact surface or binding re-
gion between two or more proteins. As a key part of protein-protein 
interactions, the properties of the protein-protein interface affect 
many important processes that regulate cellular functions, such as signal 
transduction, metabolism, immune responses, and so on [79]. There-
fore, specialized metrics must be designed to measure the 
protein-protein interface prediction quality of the prediction models 
(illustrated in Fig. 1, ITS). As two important reference metrics to eval-
uate ITS, DockQ [62] and QS-score [63] have been widely used in CASP 
experiments and CAPRI rounds [54,57,58]. 

DockQ primarily focuses on binary interactions, which evaluates the 
accuracy of protein docking models by integrating scores of Fnat, LRMS, 
and iRMS [62,80,81]. Fnat measures the proportion of contact residues 
in the predicted complex interface that match those in the reference 
complex interface. The interface is defined as the region within 5 Å of 
any pair of heavy atoms in two interacting molecules. LRMS is calcu-
lated as the Root Mean Square Deviation for the model’s ligand, after 
superimposing the receptors of the predicted and reference complexes. 
For iRMS, the atomic contact cutoff for the receptor-ligand interface in 
the target is redefined to 10 Å [62]. The quality of models with a DockQ 
below 0.23 is considered as “incorrect”, between 0.23 and 0.49 as 
“acceptable”, between 0.49 and 0.8 as “medium”, and above 0.8 as 
“high” [62]. The predicted DockQ score (pDockQ) [82] uses a combi-
nation of the average predicted lDDT (plDDT) of interface residues and 
the logarithm of the number of interface contacts to fit the observed 
DockQ. pDockQ can accurately assess protein docking quality when the 
native structure is unknown. Its improved version, pDockQ2 [83], uses 
the predicted alignment error (PAE) of all interfaces to quantify the 
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quality of each interface of a multimer and accurately distinguish those 
large, high-confidence but incorrect interfaces. In addition, the interface 
pTM (ipTM) [84] derived from AlphaFold-Multimer (AFM) is an inter-
face version of pTM, which greatly advances the high-confidence pre-
diction of protein-protein interactions. For higher-order complexes 
containing more than two interfaces, it is clearly not sound to average 
each interface to derive its total score. In this case, DockQ-wave was 
introduced to provide a more accurate assessment of complex interfaces, 
which weights the DockQ scores based on the number of distinct inter-
face residues in the native structure [7,62]. DockQ-wave splits the 
complex into dimers for one-by-one analysis, and in some cases may 
have missed some interface contact residues in the overall structure. To 
alleviate this challenge, the QS-score was used as an auxiliary reference 
metric to evaluate the interface accuracy by overall assessment of the 
shared contacts of the high-order complex [63]. The evaluation employs 
different cutoff values for this metric, classifying prediction models into 
four quality categories: Incorrect (QS-score < 0.1), Low (QS-score: 
0.1–0.3), Medium (QS-score: 0.3–0.7), and High (QS-score > 0.7) [63]. 
Considering the complementary advantages between DockQ and 
QS-score, CASP15 integrated the two metrics to evaluate ITS. In addi-
tion, statistical metrics similar to TGS, such as Pearson, Spearman, ROC 
AUC, and Top1 loss, were used to measure and rank the predictive 
performance of the different methods for all targets. Generally, with the 
development of protein structure prediction and deep learning tech-
nology, great progress has been made in ITS accuracy estimation 
methods. In recent years, ModFOLDock series of McGuffin research 
group [64], VoroIF-GNN of Venclovas research group [76] and some 
other representative methods [61,85,86] have emerged. 

ModFOLDdock brings together a range of single model, clustering, 
and deep learning methods to form consensus assessments, which was 
optimized for positive linear correlations with observed scores [64]. For 
assessing different facets of model quality, two variants of Mod-
FOLDdock, namely ModFOLDdockR and ModFOLDdockS, have been 
developed. ModFOLDdockR adds the VoroMQA method [23] based on 
the standard version, improving the ability to select top1-ranked 
models. In CASP15, ModFOLDdockR outperformed other methods 
except “AC” on the Pearson of ITS, which highlights the ability of 
ModFOLDdockR to accurately assess the quality of complex protein in-
teractions. Although ModFOLDdockR shows good performance on most 
targets, it relies heavily on the model pool of CASP scenario [64]. To 
overcome this problem, the quasi-single model method ModFOLDdockS 
constructs a reference model pool using a set of protein structures 
generated by their own developed MultiFOLD method [87]. Mod-
FOLDdockS combines the convenience of a single model as input with 
the evaluation ability of consensus methods based on generating 
ensemble information, providing a more robust and accurate score for 
protein interface quality evaluation. While the ModFOLDdock series 
exhibited leading performance in the ITS during CASP15, it is note-
worthy that it has yet to surpass the consensus baseline method “AC” 
[7]. This demonstrates that there is still considerable room for 
improvement in the quality assessment of ITS. Moreover, with the 
ongoing advancements in deep learning technology, single model 
methods may eventually surpass the current baseline method. 

The single model method VoroIF-GNN derives interface contacts 
from the Voronoi tessellation of atomic balls to construct the graph and 
predict the accuracy of each contact using an attention-based GNN [76]. 
It shows better performance compared to single model methods of other 
groups in ITS of CASP15, and the performance of the single model 
method DeepUMQA3 [67] is comparable to VoroIF-GNN. In particular, 
VoroIF-GNN and DeepUMQA3 outperform consensus methods on most 
nanobody-antigens and proteins with structural flexibility on Pearson 
[7]. The reason is that the rapid evolution of viral protein sequences may 
hinder multiple sequence alignment (MSA) [88], resulting in less accu-
rate structural modeling. This highlights the great potential of single 
model methods, which require only a single protein complex structure as 
input and do not directly use additional information (e.g., MSA) to 

accurately evaluate and select antibody-antigen complex proteins. It is 
worth noting that MULTICOM_qa achieved the best performance on TGS 
of CASP15, while ranking only 16th on ITS [75]. This suggests that TGS 
and ITS characterize complexes from different perspectives, and it may 
not be possible to comprehensively assess the quality of protein models 
using only one method. Based on the current advances of EMA and the 
results of the CASP15 blind test, it can be concluded that in terms of 
accurately evaluating inter-molecular interactions, current complex 
EMA methods face difficulties in surpassing the baseline “AC”; the 
performance of consensus methods is better than that of single model 
methods in most proteins; single model methods demonstrate the po-
tential to surpass consensus methods on antibody-antigens and proteins 
with structural flexibility. 

2.4. Interface residue-wise score (IRWS) 

The interface residues of protein-protein are critical for maintaining 
the structural stability of protein complexes. Mutations in interface 
residues may affect the interactions of protein complexes, leading to 
changes in their functions. In order to accurately evaluate the quality of 
local residues on the protein interface, the local Distance Difference Test 
(lDDT) [65] and the contact area difference-based score (CAD-score) 
[66] are used in CASP or CAMEO, which are based on contacts to assess 
the difference of the relative positions of neighboring atoms between the 
prediction model and the native structure. 

lDDT can accurately assess the local geometry at protein binding 
sites by calculating the local distance difference of the atomic pairs 
between the model and the reference structure at specific distance 
thresholds (e.g., 0.5 Å, 1 Å, 2 Å, 4 Å) [65]. CAD-score utilizes the van 
der Waals radii to consider the size of the atoms, and quantifies the 
contact from a physical viewpoint by calculating the difference in con-
tact area of the residues between the model and the reference structure 
[66]. The value range of lDDT and CAD-score is usually between 0 and 1. 
The closer the score is to 1, the closer the prediction model is to the 
native structure. lDDT and CAD-score, originally designed for assessing 
the local predictive accuracy of tertiary structure, do not explicitly 
penalize additional interface contacts such as residues that should be at 
the surface but are mistakenly modeled on the interface and their cal-
culations may be primarily influenced by intrachain contacts [7,89]. To 
alleviate these problems, PatchDockQ and PatchQS introduced in 
CASP15, generate two local patches for each interface residue [7]. These 
patches pair with their target structure counterparts and form dimers to 
calculate DockQ and QS-score, providing a more targeted assessment of 
interchain contacts. Considering the complementary strengths of lDDT, 
CAD-score, PatchDockQ, and PatchQS, CASP15 combines these metrics 
to evaluate IRWS. Unlike TGS and ITS, which are often used for model 
selection, IRWS focuses more on guiding protein structure refinement 
[28]. Therefore, CASP15 does not employ the statistical metric Top1 loss 
in IRWS, but only Pearson, Spearman, and ROC AUC to measure the 
reliability of predictions regarding interface residues. Representative 
methods include the DeepUMQA series [24,25,67] of Guijun Zhang’s 
research group, the ModFOLDdock series [64] of McGuffin’s research 
group and the VoroIF-GNN [76] and VoroIF-jury [74] of Venclovas’ 
research group, which have conducted significant work in this facet. 

The single-model method DeepUMQA3 (group name: GuijunLab- 
RocketX) [67] introduces residue-level ultrafast shape recognition 
(USR) to capture the relationship between residues and the overall 
protein topology, and then combines 1D features, 2D features, and 
voxelized embeddings to evaluate the quality of interface residues. 
These features are fed into a residual neural network that combines 
triangle updating and axial attention for predicting each residue’s lDDT 
score [67]. The method ranked 1st in the IRWS (Local track) of CASP15 
and showed best performance on all four reference metrics lDDT, 
CAD-score, PatchDockQ and PatchQS. Notably, DeepUMQA3 achieved 
the highest Pearson of lDDT on three of the five nanobody-antigens and 
all three antibody-antigens, which were hard to predict in the CASP 
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experiments [78]. Considering that a connection exists between 
sequence, structure and quality, a single model method GraphCPLMQA 
[50] based on DeepUMQA series is further proposed, which uses em-
beddings from the protein language model ESM [90] and a deep 
graph-coupled network to assess residue-level protein model quality. 
For both five nanobody-antigens and three antibody-antigens, the 
GraphCPLMQA method enhanced the average Pearson based on lDDT by 
36.5 % and 8.6 %, respectively, compared to DeepUMQA3 [50,67]. In 
addition, the ModFOLDdock series demonstrate strong performance in 
accurately identifying interface residues and assessing interface residues 
of antibody-antigens [64]. Other representative methods that demon-
strate comparable performance to ModFOLDdock series are the single 
model method VoroIF-GNN [76] and the consensus method VoroIF-jury 
[74]. 

Accurately assessing the quality of interface residues is a critical task, 
requiring not only the determination of whether these residues are 
actually part of the interface but also the evaluation of the modeling 
accuracy of these interface residues. The progress of EMA methods in 
IRWS and the results of CASP15 show that while single model methods 
are well beyond consensus methods [7], obvious disparities in predictive 
performance exist across various targets, which suggests that there is 
still room for improvement in single model methods. Future EMA 
methods should focus on accurately identifying the true residues at the 
interface to improve prediction accuracy and better guide complex 
modeling. 

2.5. Tertiary residue-wise score (TRWS) 

Although AF2 has made breakthroughs in tertiary structure predic-
tion, there are still challenges in multi-domain protein assembly and the 
structure modeling of proteins with multiple conformations. Thereby, as 
an indispensable part of tertiary structure prediction, the self-assessment 
of tertiary structure remains a research topic worthy of our attention, 
which identifies high-confidence regions of prediction models, 
providing guidance for applications of model refinement [91], molec-
ular replacement [92], and template identification [93]. In 
self-assessment of tertiary structure, a widely used reference metric 
lDDT is used in TRWS, which accurately reflects the precision of the 
atomic environment around each residue in the model [65]. In addition, 
the statistical metrics Pearson, ROC AUC, the area under the 
precision-recall curve (PR AUC), and Accuracy Self Estimate (ASE) were 
used in combination to analyze the performance of different methods on 
TRWS in CASP15. The definition of ASE is in the Supplementary Text S8. 
Based on the official results of tertiary structure self-assessment of 
CASP15, the current methods perform the same as or better than the 
consensus method [7], such as ColabFold [94], AF2 [27], and Deep-
UMQA2 [25]. 

ColabFold of Steinegger’s research group [94] accelerates prediction 
of protein structures through combining the fast homology search of 
MMseqs2 [95] with AF2, which ranks 1st in tertiary structure 
self-assessment on the sum of the four statistical metrics (Pearson’s r, 
ASE, ROC & PR AUC) in CASP15. The other top-performing methods 
also include FoldEver, AF2, and MUFold [96], providing accurate 
per-residue confidence estimates at performance comparable to 
consensus method [7]. It is worth noting that the performance differ-
ences between these methods are minimal. This result may be attributed 
to the fact that most of the top-performing groups integrated AF2 into 
their methods to some degree, where AF2 not only predict highly ac-
curate models but also provide reliable per-residue confidence estimates 
[7]. However, these AF2-dependent methods face challenges in ranking 
and selecting the best model among many similar poor models of hard 
targets. Therefore, it may be necessary to consider developing an eval-
uation method independent of modeling techniques as complementary 
method to address the challenge of ranking and selecting the best model. 

Traditional single model methods are independent of modeling 
techniques and aim to provide self-assessment scores for tertiary 

structure based solely on the basic information of a single model. Early 
prominent single model methods mainly rely on knowledge-based sta-
tistical potentials. Representative methods such as ProSA [46,47] build 
mean force potentials on statistics of pairwise interaction distances to 
identify misfolded structures. Starting with ProQ [38], methods aimed 
at predicting the quality of protein models were developed. ProQ in-
corporates structural features, such as atom and residue contacts, sol-
vent accessibility and predicted secondary structure consistency [38]. 
ProQres [39] expanded upon ProQ to estimate the quality of each res-
idue. ProQ3D [33] uses the same input as ProQ3 [40] to train a multi 
layer perceptron model, which integrates Rosetta energy terms, 
including all-atom energy function and centroid energy function. ProQ4 
[35] uses only coarse structural features and a multiple sequence 
alignment to improve estimation accuracy. Similar to ProQ, QMEAN 
[45] combines distance-dependent pairwise potential, solvation poten-
tial, torsion angle potential, secondary structure and solvent accessi-
bility agreement to describe the major geometric features of protein 
structures. QMEANDisco [20] utilizes distance distribution of homolo-
gous model structures, and employs feedforward neural networks to 
weight the multi-template consensus-based distance constraint (DisCo) 
scores and QMEAN scores to obtain the final score. To further describe 
and analyze the physical properties of protein structures, VoroMQA [23] 
introduces statistical potentials based on atom-atom contact areas. Its 
improved version, VoroMQA-dark [97] uses three layers of residue 
neighborhood descriptors to train a feed-forward neural network to 
predict the pre-residue CAD-score. These methods are widely used in the 
EMA field and provide important references for subsequent EMA 
methods. 

The single model methods DeepUMQA series [24,25,67] are inde-
pendent of AF2. DeepUMQA utilizes USR features to characterize pro-
tein topology and employs a residual convolutional network to predict 
residue-wise model quality score. Based on DeepUMQA, DeepUMQA2 
[24,25] further integrates protein sequence co-evolution information 
and protein template structural features, which are fed into an improved 
network with triangular multiplication update and axial attention 
mechanism to evaluate residue quality. In CASP15, “GuijunLab--
Threader” performed structure modeling by replacing the template 
recognition component HHsearch [98] of AF2 with the in-house tem-
plate search method PAthreader [99], and then used DeepUMQA2 to 
evaluate the model quality at the residue level. “GuijunLab-Threader” 
ranks 3rd overall out of 101 groups in the median ASE Z-score for the 
tertiary model self-assessment and ranks 1st among the server groups 
[100]. The result shows that DeepUMQA2 can accurately evaluate the 
residue-wise structure quality, surpassing AF2 and some methods 
derived from it. Moreover, “GuijunLab-Threader” ranks 6th out of 88 
groups in selecting the best model [100]. It is worth noting that the 
success rate of all groups is less than 35% in selecting the best model, 
and only about 2/3 of them exceed the results of random selection (20% 
success rate) [7]. The main reason may be that the five models submitted 
by their respective groups are similar, which makes it difficult to select 
the best model. Further, this also suggests that ranking and selecting 
models by averages of residue-by-residue quality score may not be the 
optimal choice. In summary, great progress has been made in EMA for 
tertiary structure, but there are still challenges in selecting models. The 
development of EMA methods that are independent of modeling tech-
niques is necessary for applications in downstream tasks, and may also 
be a promising way to verify the correctness of experimental structures 
in the future. 

3. Challenges of complex model accuracy estimation 

The widespread application of AF2 and AFM in the field of protein 
modeling has advanced the development of EMA technology, where 
consensus assessment methods perform well on most proteins [7]. With 
the development of deep learning, single model assessment methods 
have also made great progress. Nevertheless, current EMA techniques 
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still face significant challenges in evaluating some complexes, such as 
antibody-antigens, flexible proteins, and large assemblies. 

3.1. Antibody-antigen complex model accuracy estimation 

EMA is crucial to guide the modeling and screen models of immunity 
complexes, which helps to accelerate antibody-based drugs develop-
ment. In recent years, the evaluation of antibody-antigen complexes has 
attracted increasing attention. The results from CASP15 demonstrate 
significant challenges in the modeling of eight immunity complexes 
targets, including five nanobody-antigen and three antibody-antigen 
complexes [7]. This may be attributed to the fact that sequence muta-
tions in the variable region (V region) of antibodies increase their di-
versity, and the highly variable complementarity determining region 
(CDR) loops enable antibodies to bind antigens with high specificity [74, 
101,102]. As show in Fig. 2 for H1140-H1144, multiple nanobodies bind 
to the same antigen target at different epitopes [98]. The “one-to-many” 
interaction mechanism brings great challenges to EMA technology of 
complex. Specifically, the average DockQ of prediction models of 
nanobody-antigen targets H1140-H1144 were 0.036, 0.070, 0.018, 
0.430 and 0.079, respectively. Most poor models might directly lead to 
the failure of consensus assessment methods to accurately select models. 
In these targets, single model methods VoroIF-GNN and DeepUMQA3 
successfully selected the best model for four and three out of the five 
nanobody-antigens, respectively, while “AC” only succeeded on H1143 
(QS-score loss < 0.1) which the high-quality template exists [67,76]. 
With the progress of self-supervised learning in antibody modeling [101, 
103], we think that single model methods combined with pre-trained 
language models on natural antibody sequences (e.g., EATLM [104]) 
may be promising for accurately evaluating the quality of immunity 
complexes and selecting the best model. 

3.2. Complex flexible residues model accuracy estimation 

The biological function of a protein is determined not only by its 
static structure but also by the flexibility and dynamic properties of the 
complex. EMA of flexible complexes is critical to understanding the 
activity of proteins and their regulation mechanisms, which can help 
advance the development of biomedical research [105]. Most EMA 
methods are generally designed for static structures, which present a 
significant challenge to the evaluation of complexes with structural 
flexibility. Taking T1121o of CASP15 as an example (Fig. 3), which is a 
DNA-binding protein complex from Pseudomonas aeruginosa. During 
the process of binding to DNA, its binding pocket and active site appear 
to be exposed as the crossed DUF3322 domain moves [106], suggesting 

that this target has large structural flexibility. According to the blind test 
results of CASP15, the Pearson of T1121o for all groups were below 0.5 
on QS-score, indicating that there is still large room for improvement in 
EMA technology for flexible complex. Moreover, the Pearson of T1121o 
for “AC” was 0.153 on the QS-score, while the single model method 
VoroIF-GNN achieved 0.402 [7,76]. The results show that the single 
model method outperforms the consensus method in the flexible com-
plex, which may be due to the fact that the single model method captures 
the interaction mechanism of flexible complexes by incorporating 
physical and chemical features. To alleviate this challenge, we believe 
that single model methods may help improve evaluation performance by 
comprehensively considering the dynamic and physicochemical prop-
erties of flexible complex. 

3.3. Large assemblies model accuracy estimation 

The evaluation of large assemblies presents significant additional 
challenges due to modeling difficulties and the consumption of enor-
mous computational resources [78]. In CASP15, most consensus 
assessment methods performed well on large assemblies, which may be 
attributed to the fact that the model pool contains high-quality struc-
tures. However, these methods require “chain mapping” during the 
structure alignment process, which is a process of factorial complexity 
that greatly increases computational costs [7,61]. Taking H1111 (8460 
residues) as an example (Fig. 4), it took more than three days to evaluate 
the model by the structurally aligned consensus method on a single CPU, 
resulting in only about half of the groups submitting evaluation scores. 
Similarly, while single model methods perform comparably to consensus 
methods when evaluating large assemblies with more than 3000 resi-
dues, they also face challenges and often exceed the memory limitations 
of a single GPU. In order to overcome computational costs and hardware 
resource limitations, we think that single model methods can adopt a 
“divide and conquer” strategy to rationally divide large models into 
smaller assembly units based on biological function for independent 
assessment. Furthermore, incorporating experimental data into the EMA 
technology may provide a more accurate assessment, which is essential 
for a comprehensive understanding of the structure and function of the 
large assemblies. 

4. Conclusion 

Estimation of model accuracy of protein complexes plays a crucial 
role in the structural biology. In this review, we retrospect the current 
progress in the field of complex EMA from four facets: Topology Global 

Fig. 2. Complex structure of five nanobody-antigen targets H1140-H1144 in 
CASP15, where the antigen is shown in gray and the five antibodies are shown 
in different colors. (All data in the figure are download from the official CASP15 
website: https://predictioncenter.org/casp15). 

Fig. 3. Native structure of T1121o which represents an inactive conformation 
of the DNA-binding protein complex from Pseudomonas aeruginosa. The 
crossed DUF3322 domain is labeled with dashed boxes. The DNA-binding site is 
indicated with a gray circle (T1121o model cited from literature [106]). 
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Score, Interface Total Score, Interface Residue-Wise Score, and Tertiary 
Residue-Wise Score. Further, we also discuss the challenges and provide 
insights that may address these challenges. 

Based on the analysis of the CASP15 blind test results, we can 
conclude that the consensus methods perform well on most protein 
targets, but their performance significantly decreases on targets with a 
poor model pool [89]. In contrast, single model methods demonstrate 
advantages in accuracy assessment and selecting models on challenging 
protein targets, such as antibody-antigen structures and complexes with 
structural flexibility. With the development of artificial intelligence 
technology, we believe that the single model methods have the potential 
to surpass consensus methods by using deep learning to capture the 
mapping relationship between sequence and structure. This may also be 
the future development trend in the complex EMA field. 

With the continuous advancements of structural modeling as well as 
EMA methods, many reference metrics have been developed and 
incorporated into evaluation systems to evaluate complex quality from 
different facets, which makes it difficult to rank the models or use them 
as loss functions in deep learning algorithms. It may be necessary to 
design a single robust reference metric covering different facets of the 
structural properties of the complex for EMA. Moreover, protein struc-
tures resolved by experimental techniques, such as cryo-EM, are not 
necessarily the true structure in the organism, especially for proteins 
with flexibility and multiple conformations. Notably, the structures 
deposited in the PDB may contain experiment errors, which may be 
identified by state-of-the-art EMA methods. Therefore, by integrating 
experimental techniques, the EMA computational methods can provide 
a more comprehensive understanding of protein structure and function. 
All in all, EMA is crucial for the development and benchmarking of 
protein structure prediction methods, we believe that this technology 
will have a broad, far-reaching, and long-lasting impact on the structural 
biology community, ultimately becoming an effective means of driving 
transformative technology in protein complex modeling. 

CRediT authorship contribution statement 

Guijun Zhang: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Supervision, Methodology, Formal analysis, 
Data curation, Conceptualization. Fang Liang: Writing – review & 
editing, Writing – original draft, Visualization, Methodology, Formal 
analysis, Data curation, Conceptualization. Lei Xie: Writing – review & 
editing, Visualization, Methodology, Data curation. Meng Sun: Writing 
– review & editing, Writing – original draft, Visualization, Methodology, 

Formal analysis, Data curation, Conceptualization. Dong Liu: Writing – 
review & editing, Visualization, Methodology, Data curation. Xuanfeng 
Zhao: Writing – review & editing, Visualization, Methodology, Data 
curation. Kailong Zhao: Writing – review & editing, Visualization, 
Methodology, Data curation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

This study is supported by the National Science and Technology 
Major Project (2022ZD0115103), the National Nature Science Founda-
tion of China (62173304). 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.csbj.2024.04.049. 

References 

[1] Matthews BW. Protein science best papers for 2020. Protein Sci: a Publ Protein 
Soc 2021;30(4):713–5. https://doi.org/10.1002/pro.4051. 

[2] Kryshtafovych A, Fidelis K. Protein structure prediction and model quality 
assessment. Drug Discov Today 2009;14(7-8):386–93. https://doi.org/10.1016/j. 
drudis.2008.11.010. 

[3] Kryshtafovych A, Barbato A, Fidelis K, Monastyrskyy B, Schwede T, et al. 
Assessment of the assessment: evaluation of the model quality estimates in 
CASP10. Proteins 2014;82(Suppl 2):112–26. https://doi.org/10.1002/ 
prot.24347. 

[4] Kryshtafovych A, Barbato A, Monastyrskyy B, Fidelis K, Schwede T, et al. 
Methods of model accuracy estimation can help selecting the best models from 
decoy sets: assessment of model accuracy estimations in CASP11. Proteins 2016; 
84(Suppl 1):349–69. https://doi.org/10.1002/prot.24919. 

[5] Jauch R, Yeo HC, Kolatkar PR, Clarke ND. Assessment of CASP7 structure 
predictions for template free targets. Proteins 2007;69(Suppl 8):57–67. https:// 
doi.org/10.1002/prot.21771. 

[6] Haas J, Barbato A, Behringer D, Studer G, Roth S, et al. Continuous automated 
model evaluation (CAMEO) complementing the critical assessment of structure 
prediction in CASP12. Proteins 2018;86(Suppl 1):387–98. https://doi.org/ 
10.1002/prot.25431. 

[7] Studer G, Tauriello G, Schwede T. Assessment of the assessment-all about 
complexes. Proteins 2023;91(12):1850–60. https://doi.org/10.1002/prot.26612. 

Fig. 4. Structure of the large assembly H1111 model (8460 residues) down from CASP15 official website, which is divided into two subunits through the “divide and 
conquer” strategy. 

F. Liang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.csbj.2024.04.049
https://doi.org/10.1002/pro.4051
https://doi.org/10.1016/j.drudis.2008.11.010
https://doi.org/10.1016/j.drudis.2008.11.010
https://doi.org/10.1002/prot.24347
https://doi.org/10.1002/prot.24347
https://doi.org/10.1002/prot.24919
https://doi.org/10.1002/prot.21771
https://doi.org/10.1002/prot.21771
https://doi.org/10.1002/prot.25431
https://doi.org/10.1002/prot.25431
https://doi.org/10.1002/prot.26612


Computational and Structural Biotechnology Journal 23 (2024) 1824–1832

1831

[8] Wang Z, Eickholt J, Cheng J. MULTICOM: a multi-level combination approach to 
protein structure prediction and its assessments in CASP8. Bioinformatics 2010; 
26(7):882–8. https://doi.org/10.1093/bioinformatics/btq058. 

[9] Cheng J, Wang Z, Tegge AN, Eickholt J. Prediction of global and local quality of 
CASP8 models by MULTICOM series. Proteins 2009;77(Suppl 9):181–4. https:// 
doi.org/10.1002/prot.22487. 

[10] Wang W, Li Z, Wang J, Xu D, Shang Y. PSICA: a fast and accurate web service for 
protein model quality analysis. Nucleic Acids Res 2019;47(W1):W443–50. 
https://doi.org/10.1093/nar/gkz402. 

[11] Wang W, Wang J, Li Z, Xu D, Shang Y. MUfoldQA_G: High-accuracy protein 
model QA via retraining and transformation. Comput Struct Biotechnol J 2021; 
19:6282–90. https://doi.org/10.1016/j.csbj.2021.11.021. 

[12] McGuffin LJ. Benchmarking consensus model quality assessment for protein fold 
recognition. BMC Bioinforma 2007;8:345. https://doi.org/10.1186/1471-2105- 
8-345. 

[13] McGuffin LJ. Prediction of global and local model quality in CASP8 using the 
ModFOLD server. Proteins 2009;77(Suppl 9):185–90. https://doi.org/10.1002/ 
prot.22491. 

[14] Alapati R., Bhattacharya D. (2018, August) clustQ: Efficient protein decoy 
clustering using superposition-free weighted internal distance comparisons. In: 
Proceedings of the 2018 ACM International Conference on Bioinformatics, 
Computational Biology, and Health Informatics pp. 307–314. https://doi.org/1 
0.1145/3233547.3233570. 

[15] Lundström J, Rychlewski L, Bujnicki J, Elofsson A. Pcons: a neural-network-based 
consensus predictor that improves fold recognition. Protein Sci: a Publ Protein 
Soc 2001;10(11):2354–62. https://doi.org/10.1110/ps.08501. 

[16] Wang Z, Eickholt J, Cheng J. APOLLO: a quality assessment service for single and 
multiple protein models. Bioinformatics 2011;27(12):1715–6. https://doi.org/ 
10.1093/bioinformatics/btr268. 

[17] McGuffin LJ, Aldowsari FMF, Alharbi SMA, Adiyaman R. ModFOLD8: accurate 
global and local quality estimates for 3D protein models. Nucleic Acids Res 2021; 
49(W1):W425–30. https://doi.org/10.1093/nar/gkab321. 

[18] McGuffin LJ. The ModFOLD server for the quality assessment of protein structural 
models. Bioinforma (Oxf, Engl) 2008;24(4):586–7. https://doi.org/10.1093/ 
bioinformatics/btn014. 

[19] Maghrabi AHA, McGuffin LJ. Estimating the quality of 3D protein models using 
the ModFOLD7 server. Methods Mol Biol 2020;2165:69–81. https://doi.org/ 
10.1007/978-1-0716-0708-4_4. 

[20] Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, et al. QMEANDisCo- 
distance constraints applied on model quality estimation. Bioinformatics 2020;36 
(6):1765–71. https://doi.org/10.1093/bioinformatics/btz828. 
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