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3D bioprinted mesenchymal
stromal cells in skin
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Skin tissue regeneration and repair is a complex process involving multiple cell
types, and current therapies are limited to promoting skin wound healing.
Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue
repair through their multidifferentiation and paracrine effects. However, there
are still difficulties, such as the limited proliferative potential and the
biological processes that need to be strengthened for MSCs in wound
healing. Recently, three-dimensional (3D) bioprinting has been applied as a
promising technology for tissue regeneration. 3D-bioprinted MSCs could
maintain a better cell ability for proliferation and expression of biological
factors to promote skin wound healing. It has been reported that
3D-bioprinted MSCs could enhance skin tissue repair through anti-
inflammatory, cell proliferation and migration, angiogenesis, and extracellular
matrix remodeling. In this review, we will discuss the progress on the effect
of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as
well as the perspective and limitations of current research.
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Introduction

Skin is the first barrier to protect us from invading pathogens and environmental

challenges. However, skin tissue injury is common due to trauma and pathological

situations such as diabetes mellitus and vascular disorder (1). Wound healing is a complex

process which approximately may divide into three phases: inflammation, proliferation,

and extracellular matrix (ECM) remodeling (2–4). Multiple cell types, such as platelets,

neutrophils, macrophages, fibroblasts (FBs), and myofibroblasts, take part in the skin
Abbreviations

MSCs, mesenchymal stromal cells; 3D, three-dimensional; ECM, extracellular matrix; ESCs, embryonic
stromal cells; iPSCs, induced pluripotent stromal cells; dECM, decellularized extracellular matrix; FBs,
fibroblasts; ECs, endothelial cells; HDFs, human dermal fibroblasts; BMSCs, bone marrow stromal cells;
ADSCs, adipose-derived stromal cells; HUC-MSCs, human umbilical cord-derived mesenchymal
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wound healing process, regulated by biological factors (5). As a

result of various reasons, including physiological inflammatory,

infection, or systemic diseases, it turns into a chronic wound,

which brings an enormous economic burden and influences the

population’s health (6, 7). Over the decades, the field of skin

tissue regeneration has made progress in acute and chronic

wound healing. However, there is not enough solid evidence to

support general therapeutic modalities that noticeably improve

wound healing, including negative pressure or hyperbaric oxygen

therapy. Further studies are needed to figure out a superior

therapeutic method of skin wound healing (8).

Mesenchymal stromal cells (MSCs) make a novel and

effective contribution to wound healing. They can be obtained

from bone marrow, adipose, umbilical cord tissue (9–11), etc.

Unlike embryonic stromal cells (ESCs) or induced pluripotent

stromal cells (iPSCs), MSCs are easy to isolate from original

tissues with less severe ethical issues and a lower risk of

teratoma formation (12, 13). Both clinical and preclinical

studies suggested that MSCs can accelerate re-epithelization,

neovascularization, and collagen deposition to promote wound

healing (14, 15). Recently, MSCs have been introduced as a

new treatment for wound healing because of their biological

characteristics and paracrine function, which could secrete

various bioactive factors, such as vascular endothelial growth

factor (VEGF), hepatocyte growth factor (HGF), transforming
TABLE 1 Research about 3D-bioprinted MSCs in skin tissue regeneration.

Bioprinting
strategies

Bioinks and seeded cell

LIFT Blood plasma/alginate and FBs/KCs/
BMSCs/ADSCs

Bioprinted cells ma
apoptosis or DNA

HA–fibrinogen and ADSCs/ECFCs Bioprinted cells trig
cell–cell contacts

Fibrin-collagen gel and AFSs/BMSCs Bioprinted cells incr
wounds due to se

Extrusion and inkjet
printing

S-dECM and EPCs/ADSCs Bioprinted cells acc
in vivo.

Extrusion-based Collagen/alginate and ADSCs Bioprinted cells acce
and formation of

Gelatine/alginate/PMNT and
UC-MSCs

Bioprinted cells acc
preferable cell pr

Gelatine/alginate/SNAP and ADSCs Bioprinted cells enh
promoted severe
VEGF signaling p

Alginate and BMSCs Bioprinted cells ma
extracellular vesic

GelMA/curcumin and ADSCs Bioprinted cells mit
as promoted cell

Core–shell (c/s)
extrusion-based

GelMA/succinylated chitosan/dextran
aldehyde (D) and BMSCs/HUVECs

Bioprinted cells sho
wound healing in

Gelatin/chitosan and MSC (T0523)/
HUVECs

Bioprinted cells incr
TGF-α, PDGF, d
neovascularizatio

MSCs, mesenchymal stromal cells; FBs, fibroblasts; KCs, keratinocytes; BMSCs, bone m

forward transfer; ECFCs, endothelial colony-forming cells; dECM, decellularized ext

derived mesenchymal stromal cells; GelMA, gelatin methacryloyl; HUVEC, huma

transforming growth factor-α; PDGF, platelet-derived growth factor.
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growth factor β1 (TGF-β1), KGF, IL-8, and IL-6 (16, 17).

Moreover, as a cell-free therapy, extracellular vesicles (EVs)

derived from MSCs have become a promising wound healing

treatment. Extracellular vesicles contain abundant messenger

RNA (mRNA), microRNAs (miRNAs), and long noncoding

RNA (LncRNA) to regulate the activity of host cells and

promote wound healing, avoiding risks related to cell transplant

(18). Exosomes derived from MSCs have been confirmed that

remarkably promote angiogenesis (19, 20), increase collagen

synthesis (21), and expression of growth factors (22) in wound

healing. Despite all the advantages of MSCs therapy, there are

still difficulties, such as the limited proliferative potential and

the biological processes that need to be strengthened.

Recently, three-dimensional (3D) bioprinting as additive

manufacturing technology has been applied to fabricate

tissues/organs to achieve the controllable spatial distribution

of living cells and biological materials (23–25). With

biocompatibility biomaterials, such as decellularized

extracellular matrix (dECM), alginate and hyaluronic acid,

3D-bioprinted cells have been used for tissue repair (26). In

the field of skin tissue regeneration, 3D-bioprinted

bioengineered skin grafts containing FBs, endothelial cells

(ECs), or human dermal fibroblasts (HDFs), have been proved

could enhance skin wound repair (27, 28). In recent years, a

variety of research explored the potential of MSCs as effective
Biological features References
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seed cells for the treatment of skin wound healing. 3D-

bioprinted MSCs maintained a better ability to proliferate

increased biological factors to promote skin wound healing

(29, 30). With their ability to differentiate and paracrine

effect, MSCs show infinite potentialities based on 3D

bioprinting technology (31).

Accordingly, in this review, we will discuss current

knowledge about the role of MSCs and 3D bioprinting in the

treatment of skin wound healing, as well as the perspective

and limitations of recent research.
The process of skin wound repair

Following injury, mammalian wound healing is

traditionally divided into three phases: inflammation,

proliferation, and ECM remodeling (32). The first stage of

wound healing, inflammation, will happen from the

moment of tissue damage. Platelets, neutrophils,

macrophages, and fibrin matrices work together to prevent

ongoing blood and fluid losses as well as infection. In

contrast, macrophages are considered vital for coordinating

other issues in the wound healing process (33). The

second stage, proliferation, is attributed to the proliferation

and migration of fibroblasts, myofibroblasts, and

keratinocytes. These different cell types are associated with

angiogenesis and re-epithelialization to restore the barrier

function of the epidermis (2, 34). In the third stage, ECM

remodeling, all the activities after injury cease.

Macrophages and myofibroblasts will undergo apoptosis,

leaving collagen and other extracellular matrix proteins

(35). Matrix metalloproteinases secreted by macrophages,

fibroblasts, and endothelial cells strengthen the repaired

tissue (36). However, the incongruity of any stage will

occur in chronic wounds or keloid scar formation (37).

Chronic wounds or impaired wound healing are defects

in the skin for more than 6 weeks (38). Typically, chronic

wounds may be divided into three types: vascular

dysfunction, diabetes, and pressure ulcers (39).

Inappropriate physiological inflammatory reactions,

underlying systemic diseases, such as diabetes mellitus and

vascular disorders, and infections will lead to impairments

of cell proliferation and migration and extracellular matrix

damage (6, 8). The formation of myofibroblasts is

compromised, partly due to hypoxic conditions or vascular

insufficiency, which will contribute to the lack of

granulation tissue and delayed wound healing (40).

Unfortunately, damaged tissue could not regain the

properties of unwounded tissue (41). Importantly, nonhealing

and dysfunctional healing cause lifelong disability and a

significant economic burden (42). Therefore, the emphasis of

research should be on enhancing wound healing and

regeneration of original tissues in the future.
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MSCs and skin wound healing

Recently, MSCs have become a promising therapy in the field

of regenerative medicine because of their pluripotency, self-

renewal, and paracrine of biological factors (43). MSCs,

possibly derived from the mesoderm, could differentiate into

various mesenchymal tissue lineages, such as chondrocytes,

adipocytes, osteoblasts, and even myoblasts (44). The most

MSCs used in skin regeneration are adult stromal cells because

of less ethical controversy and substantial legal restrictions (45).

MSCs would accelerate skin wound healing by regulating

multiple phases of wound reconstruction, including

inflammatory response, cell proliferation, wound angiogenesis,

and wound remodeling (46). Fifty years ago, Friedenstein et al.

have been isolated bone marrow stromal cells (BMSCs) from

bone marrow (47). In the last few decades, adipose-derived

stromal cells (ADSCs) have been a new source of MSCs

introduced to wound healing because they are obtained from

adipose tissues with less invasive methods and less ethical

concerns (16). Including human umbilical cord-derived

mesenchymal stromal cells (HUC-MSCs), MSCs play an

important role in wound healing (Figure 1).
MSCs and anti-inflammatory/
immunoregulatory

There is an amount of literature about skin wound healing,

pointing out that skin wound healing is a complex process that

depends on many cell types. Molecular and cellular mechanisms

are critical for the process of cutaneous wound healing. At the

early stage of wound healing, keratinocytes and inflammatory

cells seem necessary. First, leukocytes, especially neutrophil

granulocytes, transmigrate to the injury site to initiate and

perpetuate inflammation (48, 49). Inflammation is a self-defense

mechanism against noxious stimuli in the early stages of wound

healing, with a significant objective of removing necrotic debris

and pathogenic microorganisms from the wound bed and

controlling local area damage (50). MSCs can cooperate with

various immune cells to modulate inflammatory responses such

as B cells, T cells, natural killer (NK) cells, neutrophils, and

macrophages (51, 52). Moreover, MSCs promote the

polarization of macrophages to an M2-like phenotype, which

reduces inflammation and immunosuppressive function through

a prostaglandin E2-dependent mechanism (53). Recent studies

have demonstrated that MSCs encourage the polarization of

macrophages toward an anti-inflammatory, reparative M2

phenotype by a paracrine mechanism. It has been reported that

MSCs could secrete transforming growth factor beta (TGF-β)

(54), C-X-C motif chemokine ligand 12 (CXCL12) (55), tumor

necrosis factor-α-induced gene/protein-6 (TSG-6) (56), and

prostaglandin E2 (53) to induce macrophage M2 polarization
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FIGURE 1

MSCs promote skin tissue regeneration through anti-inflammatory and immunoregulatory, cell migration and proliferation, angiogenesis, and ECM
remodeling. MSCs, mesenchymal stromal cells; ECM, extracellular matrix.
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(53, 57). The cell–cell interaction between MSCs and macrophages

in the progress of skin wound healing can accelerate skin tissue

regeneration (58).

Meanwhile, MSCs also inhibit the proliferation of activated

helper T (Th) cells (59). Mo et al. found that MSCs suppressed

Th2 inflammation by regulating macrophage activation via

soluble mediators rather than direct cell-to-cell contact (60).

Besides, the extracts of MSCs could suppress Th2 cells and

reduce the expression of IL-17 and IFN-γ, which further

demonstrate that MSCs inhibit Th2 cells through paracrine

factors (61, 62). In clinical, the immunomodulatory ability of

MSCs could reverse the ratio of Th1 cells to Th2 cells, with

an increase in Th1 and a decrease in Th2 achieving a new

balance (63). This interaction could decrease the production

of interferon γ (IFN-γ) and interleukin (IL)-17 and increase

the production of IL-4 secreted by Th cells, thus leading to T

cells polarizing from a pro-inflammatory to an anti-

inflammatory phenotype (64).

MSC sheet technology enables cultured MSC harvest

without enzymatic treatment or cell or protein disruption

using temperature-responsive cell culture dishes (65). With
Frontiers in Surgery 04
this application, changes in culture temperature cause

oscillation between hydrophilic and hydrophobic states. Cells

adhere to and proliferate on the surface of the culture dish at

37 °C, and a monolayer cell sheet with ECM detach

spontaneously at temperatures below 32 °C without enzymatic

digestion (66). Application of MSCs sheet also brings

preferable wound healing and less scar formation, believed

that it can suppress macrophage infiltration and chemotactic

response of macrophages (67, 68). In clinical research, MSCs

could reduce the expression of inflammation and oxidative

stress-related proteins to improve diabetic foot ulcers (DFU)

healing by Nrf2 (69). It has been reported that MSCs therapy

may reduce inflammation and has been applied in acute and

chronic liver injury, which suggests MSCs improve tissue

regeneration using their anti-inflammatory properties (70).
MSCs and proliferation/migration

The intermediate stage of wound healing contains

proliferation and migration of keratinocytes, the proliferation
frontiersin.org
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of fibroblasts, matrix deposition, and angiogenesis. Stationary

keratinocytes are converted to flat migratory keratinocytes to

start re-epithelialization (27). In this stage, fibroblasts

stimulate wound healing by proliferating and synthesizing a

large amount of ECM components such as collagen and

elastic fibers under the stimulation of trauma (71). MSCs

stimulate the migration and proliferation of keratinocytes by

the expression of epidermal growth factor (EGF) and

transforming growth factor-α (TGF-α) (72). The treatment of

MSCs improves the survival rate of fibroblasts and enhances

the healing effects (73). Evidence shows that BMSCs improve

the proliferation and migration of dermal fibroblasts (74). In

vivo, MSCs increased the expression of CK19 and

proliferating cell nuclear antigen (PCNA) and promoted the

regeneration of dermal tissue (75, 76). Specifically, PCNA

participates in cell proliferation by mediating DNA

polymerase while blocking the PCNA production in cells

severely affects cell division, which takes a significant part in

the synthesis of DNA and its repair, cell proliferation, and

progression of the cell cycle (77, 78). Studies show treatment

of MSCs could elevate the expression of PCNA, promote

wound healing, and enhance re-epithelialization (79–81).

Animals treated with MSCs show improving wound healing

with no detectable side effects related to increasing viability,

proliferation, and migration of epithelial cells (82). In vivo,

the application of MSCs could promote re-epithelialization by

enhancing the proliferation of epidermal keratinocytes (83).

Moreover, MSCs strengthened the dermal and epidermal cell

proliferation ability in a dose-dependent manner and

positively impacted oxidative stress injury, which could

improve cutaneous wound healing (84). All the evidence

indicates that MSCs have a positive effect on wound healing.
MSCs and angiogenesis

Angiogenesis plays an essential role in the process of wound

healing. Creating new capillaries will bring oxygen and nutrients

to growing tissues and remove catabolic wastes. Therefore,

angiogenesis contributes to the repair of wound tissue (85).

Angiogenesis is strictly regulated by a variety of factors,

mainly through the secretion of proangiogenic factors, such as

VEGF and platelet-derived growth factor (PDGF), leading to

stimulating endothelial cell proliferation and migration and

angiogenesis (86). Rehman et al. found that MSCs secreted

synergistic proangiogenic growth factors, such as VEGF and

HGF, which enhance angiogenesis (87). The previous review

reported that MSCs could promote re-epithelialization,

angiogenesis, collagen synthesis, and neovascularization by

secretion of multiple growth factors including VEGF, HGF,

TGF-β1, KGF, IL-8, and IL-6 during the progress of wound

healing (88). MSCs improved cell viability, migration, and

angiogenesis of the high glucose-damaged human umbilical
Frontiers in Surgery 05
vein endothelial cells (HUVECs) through paracrine, increasing

the expression of IL-6, TNF-α, ICAM-1, VCAM-1, BAX, P16,

P53, and ET-1(89). Different experimental models mimic the

effect of MSCs in wound healing, performed preferentially in

rodents. Subcutaneously injecting MSCs into the full-thickness

wounds of mice will result in more angiogenesis and promote

wound healing (90). With treatment of MSCs, the density of

neovascularization in wound bed was increased, also with the

expression of VEGF, while the expression of IL-10, IL-6, IL-

1β, and TNF-α were significantly decreased (91). Meanwhile,

MSCs could enhance angiogenesis and improve the survival

rate of graft skin in vivo (92). MSCs also positively impacted

vascular regeneration and endothelial leukocyte adhesion

modulation in critical ischemic skin (93).
MSCs and ECM remodeling

Late-stage healing involves remodeling of ECM, resulting in

scar formation and barrier restoration (28). During the wound

remodeling stage, fibroblasts differentiate into myofibroblasts,

and the granulation tissue gradually becomes fibrotic; collagen

gradually increases; the wound begins to contract, and

eventually, scar tissue is formed (94). MSCs would release

plenty of cytokines and growth factors with anti-fibrotic

properties (95, 96). In the early progress, MSCs improve

collagen remodeling through synthesizing collagen types I and

III of wound healing while reducing scarring in the late stage

by inhibiting collagen formation (97). Treated with MSCs,

fibroblasts secret more HGF and increase collagen production.

With the inhibition of excessive fibrogenesis, fibroblast

proliferation, and α-smooth muscle actin expression, MSCs can

reduce scar formation during wound healing (98). MSCs also

inhibited fibrosis by decreasing the expression of profibrotic

genes and protein, promoting extracellular matrix regeneration,

inhibiting fibroblast contraction, and reversing myofibroblast

activation (99). It has been reported that MSCs were capable of

myofibroblast suppression and anti-scar formation in vivo and

in vitro (100). MSCs have been considered significant in skin

wound repair. However, further research is still needed to

increase the biological regulation of wound healing.
MSC-EVs and skin wound healing

Although mesenchymal stem cells could regulate

inflammation, promote cell proliferation and migration, and

improve angiogenesis during skin wound healing, a few

disadvantages limit its wide application. Mesenchymal stem cell

therapy may have a problem with storage and transportation,

as well as the risk of cancer and deformities. As a result, it is

not a definitive treatment without a long-term study on safety

(101). EVs, including exosomes, have taken part in various
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pathological physiology processes and significantly contributed to

MSCs (102). It has been reported that EVs derived from MSC

carried a large number of regulatory factors, such as active

protein, miRNA, and lncRNA (103). EVs play a key role in

several biological processes that activate downstream target cells

through a paracrine effect (104). Like MSCs, researchers have

discovered that EVs derived from MSCs could modulate the

inflammatory response, accelerate cell proliferation, promote

angiogenesis, and regulate ECM remodeling during wound

healing (105).

In the early stage, exosome derived from MSCs (MSCs-exo)

helps monocytes translate into M1 macrophages through many

immunomodulatory proteins released, such as tumor necrosis

factor-alpha (TNF-α), macrophage colony-stimulating factor

(MCSF) and retinol-binding protein 4(RBP-4) (106). The

expression level of oxidative stress-related proteins and

inflammatory cytokines is reduced (69). MSC-EVs upregulate

the expression of monocyte chemoattractant protein-1and

macrophage inflammatory protein-1α reduces early

inflammation and oxidative stress (69, 107). In the proliferation

stage, MSC-EVs are internalized by fibroblasts as well as

epidermal keratinocytes and promote cell migration and

proliferation by expression of N-cadherin, cyclin 1, proliferating

cell nuclear antigen, collagen type I and III (22). Besides, MSC-

EVs are enriched in vascular endothelial growth factor A

(VEGF-A), platelet-derived growth factor BB (PDGF-BB), and

noncoding RNAs, which promote proliferation and

angiogenesis of vascular endothelial cells (19, 108). In the late
FIGURE 2

There are multiple strategies of 3D bioprinting, including inkjet bioprinting
bioprinting (D), and DLP-based bioprinting (E). DLP, digital light processing; S

Frontiers in Surgery 06
stage, MSC-EVs prevented fibroblast-to-myofibroblast

differentiation by increasing the ratio of collagen III to collagen

I and the ratio of TGF-β3 to TGF-β1 to reduce scar formation

(109). Therefore, MSC-EVs have become a hot topic in the

field of skin wound regeneration as a cell-free therapy.
Three-dimensional (3D) bioprinting

Inspired by traditional inkjet printer technology, Thomas

Boland directly printed viable mammalian cells onto

hydrogel-bases papers with a cell printer, successfully

exploring the field of 3D bioprinting technology used in tissue

engineering (110). Bioink is a biomaterial composed of living

cells, biological factors, and biological glue (111). With

sufficient mechanical properties and biocompatibility, bioink

can provide a stable and harmless environment of

proliferation and differentiation for cells (112). Depending on

the type of cell deposition, 3D bioprinting technology can be

classified into three main strategies: drop-based, filament-

based, and plane-based (113) (Figure 2).
Drop-based bioprinting

Inkjet or laser bioprinting are two commonly used strategies

of drop-based 3D bioprinting. In inkjet-based bioprinting, inkjet

bioprinters utilize heat or mechanical compression to create and
(A), laser bioprinting (B), extrusion-based bioprinting (C), SLA-based
LA, stereolithography.
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eject drops. In this bioprinting process, various volumes of ink

drops are created based on computer control, in which each

drop of bioink contains 104–304 cells (114). Laser-based

bioprinting utilizes the laser-induced forward transfer (LIFT)

effect to print different biomaterials and living cells (115).

During the process, the incident laser light causes the ejection

of bioink droplets, which are subsequently received on a

receiving substrate (116, 117). It has been reported that inkjet

printing can be combined with gene delivery to effectively

control stromal cell differentiation while bioprinting neural

stromal cells (NSCs) (118). Sorkio et al. used laser-based

bioprinting to demonstrate tissues mimicking the structure of

the corneal tissue with stromal cells (119). A separate study

indicated that MSCs could keep the predefined structure and

maintain cell competency for tissue repair (120). Inkjet and

laser bioprinting allow the printing of cells, materials, and

protein molecules rapidly and inexpensively. However, the

smooth printing process would frequently disrupt by the

clogging of nozzles because of bioink gelation and the unequal-

sized drops in inkjet bioprinting (121). Meanwhile, long-

fabrication times and gravitational settling of cells in solution

are other challenges in drop-based bioprinting (122).
Filament-based bioprinting

Extrusion-based bioprinting is the most popular approach

in the research of filament-based bioprinting strategy. Based

on mechanical driven force (displacement driven) or

pneumatic driven force (pressure driven), extrusion

bioprinting mechanisms can directly dispense the higher

viscosity bioinks out of the biomaterial cartridge (123).

During the development of extrusion-based bioprinting, the

scaffold of acellular polymers, such as polycaprolactone (PCL),

polylactic acid (PLA), and poly lactic-co-glycolic acid (PLGA),

was used for 3D cell culture by extrusion printing (124–126).

With the different applications of bioinert hydrogel materials

such as sodium alginate, extrusion bioprinting can print

bioinks of living cells to a particular flow out as seamless

circular cylindrical filaments with computer manufacturing

(127, 128). Extrusion-based bioprinting device creates a

scaffold of adipose-derived mesenchymal stromal cells

(ADSCs) in alginate-gelatin (Alg-Gel) hydrogel for tissue

repair and regeneration (129). Moreover, this technology can

provide a kidney organoid with highly reproducible cell

numbers and viability (130). Extrusion-based bioprinting

brings a promising future of producing rapid and high-

throughput organoids for drug screening, disease modeling,

and tissue repair. However, rapid speed and high pressure can

enhance shear stress, which decreases cell viability (131). The

current research focuses on extrusion bioprinting study

intensively on cell-instructive hydrogels as bioinks to provide

a cell-friendly microenvironment (132).
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Plane-based bioprinting

Compared with other 3D bioprinting strategies, plane-based

bioprinting technology, such as digital light processing (DLP)

and stereolithography (SLA) bioprinting, has significant

advantages in efficiency, printing resolution, and working

conditions (133). DLP-based bioprinting employs projection

light to biomaterials to obtain the predesigned structures. In

contrast, SLA-based bioprinting achieves photo

polymerization by a light pencil scanning the surface of liquid

bioink (133, 134). With light-based techniques, DLP/SLA-

based bioprinting can print the entire layer with higher

accuracy and speed (135). Through a DLP-based 3D printer,

Ma et al. printed a 3D triculture hepatic model encapsulated

kind of cells, including induced iPSCs and ADSCs. The

microstructure can promote maturation and maintain the

functions of cells (136). With SLA-based bioprinting

technology, the 3D cell-laden hydrogel scaffolds represent

high cell viability and cell adhesion (137). Although this

technique has shown the characteristics of high precision, fast

speed, and mild condition, its running cost, and the lack of

compatible bioinks limit its broader applicability (138).
3D-bioprinted MSCs in skin tissue
regeneration

Traditional 2D cell cultures cannot recreate the native three-

dimensional (3D) cell microenvironment, which provides cell–

matrix and cell–cell interactions that readjust cell morphology and

gene expression (139–141). 3D bioprinting is a promising

biofabrication strategy, using living cells and biomaterials as bioink

to create artificial multicellular tissues (142). In the field of skin

tissue repair, 3D bioprinting is currently being explored in

developing more complex synthetic skin models (143, 144).

Nowadays, various biomaterials have been widely investigated as

scaffolds for bioprinting in tissue engineering and skin wound

healing (145, 146). Usually, hydrogel containing FBs, keratinocytes

(KCs), and HUVECs are bioprinted as scaffolds directly applied

on the wound bed (147). Jin et al. had taken advantage of the

acellular dermal matrix (ADM) and HUVECs as bioink to 3D-

bioprinted functional skin model, which maintained the ECM

components to promote cell viability and form the vascular

network and framework (148). Recently, 3D bioprinting has been

successfully performed using multiple mesenchymal stromal cell

types for tissue repair, including cardiovascular, hepatic, and skin

(149). 3D-bioprinted MSCs preserved proangiogenic properties

and secreted more EVs containing a greater variety of proteins

(150). However, not much research focuses on adult stromal cells

as seeded cells in skin wound regeneration (Table 1).

In 2010, Koch and colleagues utilized skin cell lines

(fibroblasts/keratinocytes) and MSCs as bioink for skin
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regeneration based on laser printing. MSCs maintained the

ability to proliferate and did not show an increase in

apoptosis after 3D bioprinting (29). 3D-bioprinted MSCs

increased angiogenesis and wound closure rates due to

secretion of biological factors rather than direct cell–cell

interactions, such as basic fibroblast growth factor (bFGF),

and fibroblast growth factor (FGF) and growth differentiation

factor (GDF) (30). Moreover, Roshangar et al. evaluated a 3D

bioprinting scaffold loaded with MSCs on rat skin burn

defects. Data showed that the scaffold promoted wound

healing by creating a continuous epidermal layer without scar

formation (151).

3D-bioprinted MSCs could improve wound healing in vivo

by generating collagen and enhancing cell proliferation. Besides,

3D-bioprinted MSCs would maintain a preferable cell

proliferation in the nutritionally deficient environment (11). In

addition to utilizing hydrogel and MSCs for 3D bioprinting,

various bioactive substances have been applied to enhance the

abilities of MSCs, such as angiogenesis. A 3D-bioprinted

scaffold loaded with MSCs and SNAP, which could release NO,

can improve the migration and angiogenesis of HUVECs. On

the other hand, the hydrogel scaffolds accelerated the serve

burn wound healing by promoting epithelialization and

collagen deposition (152). It has been reported that 3D-

bioprinted MSCs could accelerate diabetic wound healing by

combining bioink with curcumin and gelatin methacryloyl

(GelMA). 3D-bioprinted MSCs with curcumin could better

exert antioxidant and anti-apoptotic activity to promote wound

healing (10). As widely used biological material with

biocompatibility and multichannel printing technology, Turner

et al. established a regenerative, dual cell delivery 3D core/shell

(c/s) “living dressing” system using MSCs. It indicated that the

construct provided an appropriate microenvironment to

improve the proliferation and differentiation of MSCs (153). In

addition, Turner et al. discovered the 3D core/shell MSCs

dressing would accelerate angiogenesis and anti-inflammatory

to promote wound healing in thermal injury by increasing the

expression of wound healing factors and neovascularization

EGF, PDGF, MMP-9, TGF-α and decreasing pro-inflammatory

factor IL-6 (154).

In the last few decades, new materials and technologies have

been developed to fabricate skin substitutes (31). Compared to

conventional tissue engineering technologies, 3D bioprinting

can deposit different cell types and specific biomaterials with

a high spatial resolution (155). In 2011, Gruene et al. utilized

endothelial colony-forming cells (ECFCs) and ADSCs to build

a layer-by-layer scaffold using laser-assisted bioprinting and

discovered direct cell–cell contacts, which may promote

angiogenesis (156). Skin tissue contains a variety of cell types.

Baltazar et al. have created artificial dermis using bioink

containing human foreskin dermal FBs, human ECs derived

from cord blood human endothelial colony-forming cells

(HECFCs), and human placental pericytes (PCs) suspended in
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rat tail type I collagen and printed epidermis with human

foreskin KCs. The result showed the 3D bioprinting of

artificial dermis enhanced the formation of microvessels and

the epidermal rete in vivo (28). Another research used

endothelial progenitor cells (EPCs) and MSCs to 3D bioprint

a full-thickness skin model. This model accelerated re-

epithelization, wound closure, and neovascularization (157).

For skin appendages, 3D-bioprinted MSCs have been

confirmed could enhance stemness maintenance by sweat

gland (SG) lineage in vitro (158). With 3D bioprinting,

alginate-gelatin and epidermal progenitors could enhance

sweat gland regeneration (159). Through bioprinting an SG-

like matrix, MSCs could differentiate into functional SGs and

facilitate SGs recovery in mice (160). Despite MSCs and 3D

bioprinting technology showing great potential for preparing

artificial skin, future research should concentrate on skin

tissue bioprinting and make it more adaptable to clinical needs.
Discussion

The objective of skin tissue regeneration is to realize

structural and functional reconstruction, at the same time

promoting wound healing and reducing scar formation (161).

MSCs have been considered to have a promising potential in

skin tissue regeneration with their differentiation abilities and

paracrine effect (15). Many studies have shown that MSCs

could regulate inflammation, promote cell proliferation and

migration, and improve angiogenesis during skin wound

healing (15). However, MSCs therapy still has obstacles, such

as its low frequency in tissues and the limited proliferative

potential (162). Recently, studies have focused on the

therapeutic potential of EVs derived from MSCs in skin

wound regeneration. MSC-EVs and exosomes are considered

to affect skin wound healing significantly. Unlike MSC-based

therapy, MSC-EVs therapy has advantages in delivery and

storage, as well as a lack of endogenous tumor-formation

potential (163). One of the most significant advantages of

MSC-EVs therapy is the possibility to inject EVs locally, thus

minimizing the side effects of cell administration (102).

Nevertheless, clinical applications of MSC-EVs require a long-

term study on safety to prevent the development of

uncontrolled immunosuppression in MSC-EVs recipients

(164). Although evidence suggests the therapeutic potential of

MSCs and MSC-EVs, there are still further studies to be done

before MSCs and MSC-EVs could be offered as a common

clinical therapy for skin wound healing.

On the other hand, with the application of 3D bioprinting,

MSCs have more ability to proliferate and secrete biological

factors to enhance cell–cell interaction. As 3D bioprinting

technology developed, in situ bioprinting or “in vivo”

bioprinting has been applied to tissue regeneration, including

skin, cartilage, and bone (165). It’s reported that autologous
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FIGURE 3

3D-bioprinted MSCs promote skin tissue regeneration. MSCs, mesenchymal stromal cells
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dermal fibroblasts and epidermal keratinocytes, along with the

fibrinogen-collagen hydrogel, were directly printed into the

wound of a porcine model, with better re-epithelialization and

reducing the healing time (147). Besides, through cellular self-

assembly bioprinting, upregulated expression of tissue-specific

functional genes indicated increased tissue functionality to

realize multitissue organs-on-a-chip with different cell types

(166). There is substantial evidence supporting various

methods of MSCs culture influence the release of EVs, while

little research concerned EVs derived from 3D-bioprinted

MSCs (167). According to a recent study, Chen et al.

combined 3D core–shell bioprinting and MSCs to increase

MSC-derived EVs’ production (150). In his platform, the 3D-

bioprinted MSCs enriched particles by ∼1,009-fold compared

to traditional 2D culture, expressing higher stemness markers

and preserving proangiogenic properties. Moreover, 3D-EVs

contained hundreds of unique protein profiles compared to

2D-EVs. Supported by 3D bioprinting technology, the

bioprinted 3D structures loaded with EVs recapitulated the

blood-perfused microvessels with a new functional vasculature

in situ (168). Besides, Bari had found that 3D-bioprinted

MSC-EVs could release the secretome from the scaffold with

a fast speed for tissue regeneration (169). Moreover, the

release was governed by the scaffold shape and the application

of different biomaterials, for example, increasing alginate

concentration or cross-linking with protamine. Technological

developments may present new opportunities and challenges

for MSCs in skin tissue regeneration.

Although MSCs and 3D bioprinting technology bring a new

therapeutic strategy for skin wound healing, some obstacles still

need to be overcome. The skin is one of the most vital organs as

a protective barrier against various external agents (170). At
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present, the mechanical strength of 3D bioprinting hydrogels

is insufficient, which could not be satisfied with the unique

physical and mechanical characteristics of human skin. In

addition, the skin contains various appendages, such as sweat

glands, adipose glands, hair follicles, and blood vessels, along

with nerve endings (171). Despite the sweat gland

regeneration function of 3D bioprinting MSCs, 3D bioprinting

skin tissue could not simulate every structure or functional

reconstruction, especially nerve regeneration.

After all, 3D-bioprinted MSCs have played a positive role in

skin wound healing. With the progress of related technologies

and the application of new biomaterials, 3D bioprinting will

hopefully overcome the difficulties mentioned above and

make a big difference in skin tissue regeneration (Figure 3).
Conclusion

Wound healing and skin tissue regeneration have been

critical clinical issues for decades. Various methods have been

used to promote skin wound healing by better regulating

every phase of wound healing. As depicted in the published

studies, 3D-bioprinted MSCs are a promising therapeutic

strategy for skin tissue regeneration because of their preferable

differentiation and paracrine effect of biological factors.

However, interdisciplinary collaboration is still needed to

overcome the difficulties, such as the mechanical strength and

skin appendages of bioprinted MSCs. In conclusion, 3D-

bioprinted MSCs have been proven to have a positive role in

skin tissue regeneration. Further studies are needed to assess

the long-term outcomes and well-designed clinical studies to

apply this strategy in clinical medicine.
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