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Abstract
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled

by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population

structure and kinship among individuals to adjust association tests on markers; however,

the adjustment also compromises true positives. The modified MLMmethod, Multiple Loci

Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates

in a stepwise MLM to partially remove the confounding between testing markers and kin-

ship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed

Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM con-

tains testing markers, one at a time, and multiple associated markers as covariates to con-

trol false positives. To avoid model over-fitting problem in FEM, the associated markers are

estimated in REM by using them to define kinship. The P values of testing markers and the

associated markers are unified at each iteration. We named the new method as Fixed and

random model Circulating Probability Unification (FarmCPU). Both real and simulated data

analyses demonstrated that FarmCPU improves statistical power compared to current

methods. Additional benefits include an efficient computing time that is linear to both num-

ber of individuals and number of markers. Now, a dataset with half million individuals and

half million markers can be analyzed within three days.

Author Summary

Genome-Wide Association Studies (GWAS) can reveal genetic-phenotypic relationships,
but have limitations. To control false positives, population structure and kinship are incor-
porated in a fixed and random effect Mixed Linear Model (MLM). However, because of
the confounding between population structure, kinship, and quantitative trait nucleotides
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(QTNs), MLM leads to false negatives, missing some potentially important discoveries.
Here, we present a new method, Fixed and random model Circulating Probability Unifica-
tion (FarmCPU). FarmCPU performs marker tests with associated markers as covariates
in a fixed effect model and optimization on the associated covariate markers in a random
effect model separately. This process enables efficient computation, removes the con-
founding, prevents model over-fitting, and controls false positives simultaneously. Farm-
CPU controls false positives as well as MLM with reductions in both false negatives and
computing times. Researchers will not only be able to analyze big data, but will also have
greater success with fewer mistakes when mapping genes of interest.

Introduction
Genome-Wide Association Studies (GWAS) use direct statistical tests as opposed to direct
genetic inferences carried out in linkage analyses. Associations between a genetic marker and a
phenotype happen for many reasons in addition to the genetic linkage between the tested
genetic markers and functional causal polymorphisms[1–4]. Population structure and kinship
among individuals are two common indirect, non-causal associations that lead to false posi-
tives[5–7]. The most effective strategy to eliminate false positives is either 1) fitting population
structure as covariates in a General Linear Model (GLM)[8], or 2) fitting both population
structure and each individual’s total genetic effect as covariates in a Mixed Linear Model
(MLM)[9] to make adjustments for testing markers.

Population structure is normally represented by proportions of individuals belonging to
subpopulations, commonly known as theQmatrix[10,11], or by principal components (PCs)
[8,12,13] derived from genetic markers covering the whole genome. Because subpopulations in
theQmatrix are fitted as fixed effects, the statistical tests on genetic markers (S) can be per-
formed with GLM, one marker at a time. The model can be conceptually presented as y =Q+S
+e, where y and e are phenotype and residuals, respectively. This model is also known as theQ
model.

Similarly, the entire set of genetic markers can be used to derive a kinship (K) matrix to
define the relationship among individuals. Total genetic effects of individuals are fitted as ran-
dom effects with variance and covariance structure defined by K. Conceptually,MLM with
bothQ and K can be written as y =Q+K+S+e and is also known as theQ+Kmodel [9]. Previ-
ous studies demonstrated that both theQ and Q+Kmodels control false positives better than
naïve models such as the t-test, which only fits the testing markers[8,9]. In general, theQ+K
model performs better than theQmodel or the Kmodel alone when they can not be inclusively
represented each other[9,14].

Compared with GLM, MLM is much more computing intensive. Many algorithms have
been developed to reduce the computational burden, including EMMA[15] (Efficient Mixed-
Model Association), EMMAX[16] (EMMA eXpedited), P3D[17] (Population Parameters Pre-
viously Determined), GEMMA[18] (Genome-Wide Efficient Mixed-Model Association),
FaST-LMM[19] (Factored Spectrally Transformed Linear Mixed Model), and GRAMMAR-
Gamma[20] (fast variance components-based two-step method). However, the statistical
power of these algorithms remains the same as the regular MLM.

Another problem with MLM is that its advantage disappears for complex traits when they
are associated with population structure. The MLMmethod was compared with a naïve test
(without control over population structure and kinship) in an association study on 107 traits
from 199 Arabidopsis thaliana individuals genotyped at 250,000 Single Nucleotide
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Polymorphisms (SNPs)[21]. Both the MLM and naïve methods revealed the known genes
without obvious inflation of P values in statistical tests on traits associated with disease resis-
tance, development, and ionomics. However, for traits of flowering time, the naïve method
encountered inflated P values; consequently, the signals of known flowering time genes were
indistinguishable from the background noise. In contrast, the MLMmethod controlled infla-
tion well, but the signals of known genes also faded into the background, similar to the naïve
method. Thus, for complex traits associated with population structure such as flowering time,
incorporating Q and K in a MLM controls P-value inflation well, but also weakens the real
associations.

Two strategies have been developed to solve the confounding problem and improve statisti-
cal power for MLMmethods. The first strategy, the Compressed MLM (CMLM), clusters indi-
viduals into groups and fits genetic values of groups—rather than genetic effects of individuals
—as random effects. The CMLMmethod improves statistical power compared to regular
MLMmethods[17]. Furthermore, the Enriched CMLM (ECMLM), continually improves sta-
tistical power by optimizing the group kinship definition, rather than using the average kinship
algorithms constantly[22].

The second strategy changes the definition of kinship among individuals. Only the associ-
ated genetic markers are used as pseudo Quantitative Trait Nucleotides (QTNs) to derive kin-
ship instead of all, or a random sample of genetic markers. Pseudo QTNs are expected to
closely track some of the causative QTNs, and are selectively used to derive kinship for a spe-
cific testing marker. Whenever a pseudo QTN is correlated with the testing marker, it is
excluded from those used to derive kinship. In the FaST-LMM-Select method, a pseudo QTN
is considered correlated if it is within a 2Mb interval on either side of the testing marker[23].
Instead of using a 2Mb interval, the Settlement of MLM Under Progressively Exclusive Rela-
tionship (SUPER) method applies a threshold on Linkage Disequilibrium (LD) between the
pseudo QTNs and the testing marker. Selectively including and/or excluding pseudo QTNs to
derive kinship for a specific testing marker improves statistical power compared to deriving a
overall kinship from all, or a random sample of genetic markers[24].

Both above strategies conduct genetic marker tests one at a time. However, testing multiple
markers simultaneously is more advantageous, and can be done by fitting pseudo QTNs in
addition to the testing markers in a stepwise MLM, named Multi-Locus Mixed-Model
(MLMM)[25]. The overall kinship derived from all available markers is used to define the vari-
ance and covariance structure of individuals' genetic effects. After the pseudo QTNs have con-
verged in the final stage of the regression, the P values of pseudo QTN markers are calculated
from the MLM with all pseudo QTNs as covariates. Then, genetic markers are tested one at a
time with all pseudo QTNs included as covariates in a MLM. The MLMMmethod outperforms
the regular MLM.

Our objective was to develop an improved statistical method that completely eliminates the
confounding, and simultaneously improves statistical power and reduces computing time.

Idea
Herein, we present a new statistical method that was inspired by the ongoing developments in
GWAS analyses, especially the modifications that have improved statistical power. With these
developments, statistical methods have been advanced from the naïve method (e.g., t-test) to
GLM[8], fromMLM[9] to CMLM[17], from FaST-LMM-Select[23] to SUPER[24], and from
single marker testing to multiple loci testing (MLMM)[25]. The improvements in statistical
power reflect two types of adjustments for testing genetic markers. The first type of adjustment
controls false positives and increases power by fitting covariates such asQ, K, and pseudo
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QTNs. The second type of adjustment reduces confounding issues by either refining how K is
derived from all the markers, or selectively including or excluding pseudo QTNs based on their
relationship with the testing markers (Fig 1A).

With the only exception on the naïve method, all the above methods incorporate the first
type of adjustment. However, only a few methods incorporate the second type of adjustment.
For example, CMLM replaces individuals’ genetic effects with groups’ genetic effects. MLMM
adds pseudo QTNs as covariates, which are adjusted by using a step-wise regression procedure.
The FaST-LMM-Select and SUPER methods selectively include pseudo QTNs to derive kinship
for a specific testing marker. However, the confounding between testing markers and covari-
ates still remains a problem. For example, MLMM retains the kinship un-adjusted. FaS-
T-LMM-Select removes markers in kinship that are adjacent (within 2Mb) to testing markers
[23]. Yet, a common biological phenomenon is that LD exists at further distances, even across
chromosomes. SUPER takes LD into account across the whole genome. However, the exclusion
of confounding is limited by the LD threshold[24].

Fig 1. Conceptual development and procedure of FarmCPU. The proposed method, FarmCPU, was inspired by the method development demonstrated
on the left panel (a). These methods start with a naïve model (e.g. t-test) that tests marker effect, one at a time, i.e. ith marker (si), on the phenotype (y) with a
residual effect (e). Next, GLM controls false positives by fitting population structure (Q) as covariates to adjust the test on genetic markers indicated by the
blue arrows. MLM fits bothQ and kinship (K) as covariates. However, bothQ andK remain constant for testing all the markers. NeitherQ nor K receives
adjustment from association tests on markers. MLMM add pseudo QTNs as additional covariates (S). These pseudo QTNs are estimated through a stepwise
regression procedure. Consequently, these pseudo QTNs receive adjustment from association tests on markers as indicated by the red arrow. However,
bothQ andK remain constant for testing all the markers. Although similar to MLM, FaST-LMM-Select controls false positives by fittingQ andK as covariates;
theK of FaST-LMM-Select is incorporated with association tests on markers as indicated by the red arrow. However,Q remains constant. FarmCPU
completely removes the confounding between the testing marker and bothK andQ by combining MLMM and FaST-LMM-Select, but allowing a fixed effect
model and a random effect model to perform separately. The fixed effect model contains the testing marker and pseudo QTNs to control false positives. The
pseudo QTNs are selected from associated markers and evaluated by the random effect model, withK defined by the pseudo QTNs. The fixed effect model
and random effect model are used iteratively until a stage of convergence is reached, that is, when no new pseudo QTNs are added. The right panel (b)
displays the fixed effect model above the dashed line and the random effect models below the dashed line. The t pseudo QTNs (S1 to St) are fitted as
covariates to test markers one at a time, e.g., ith marker (si) in the fixed model. As the pseudo QTNs are fitted as covariates for each marker, Not Available
(NA) is assigned as the test statistic for all markers that are also pseudo QTNs—as the genetic marker is completely co-linear to the pseudo QTNmarker.
However, each pseudo QTN has a test statistic corresponding to every marker, creating a matrix (lightly shaded) with elements of Pij, i = 1 to t and j = 1 to m.
The most significant P value of each pseudo QTN (the vector on the right of shaded area) is used as the substitution for the NA of the corresponding marker.
The pseudo QTNs are optimized by using the SUPERmethod in the randommodel to incorporate both test statistics from the fixed effect model and genetic
map information in the genotype data. The random effects are the individuals’ genetic effects (u) with variance and covariance matrix, Var(u), defined by the
Singular Value Decomposition (SVD) on the pseudo QTNs by using the FaST-LMM algorithm. The updated set of pseudo QTNs go back into the fixed model.
The process continuously repeats until no more pseudo QTNs are added.

doi:10.1371/journal.pgen.1005767.g001
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To address the residual confounding problem, our idea was to divided MLMM into two
parts: Fixed Effect Model (FEM) and a Random Effect Model (REM), and use them iteratively.
FEM contains testing markers, one at a time, and multiple associated markers as covariates to
control false positives. For the convenience of illustration, the associated markers were named
as pseudo Quantitative Trait Nucleotides (QTNs). To avoid model over-fitting problem in
FEM, pseudo QTNs were estimated by REM, where the pseudo QTNs are used to define kin-
ship. FEM and REM are used iteratively until no change on pseudo QTNs. The P values of test-
ing markers and pseudo QTNs are unified at each iteration. Simultaneously, our method
completely controls false positives, eliminates confounding, and improves computational effi-
ciency through the following four strategies:

1. Use a single marker test with a FEM to retain efficient computation and to completely
remove the confounding between kinship and the testing marker.

2. Include pseudo QTNs as covariates in the FEM to control false positives.

3. Estimate pseudo QTNs by using a maximum likelihood method in a REM to incorporate a
map of markers and avoid model over-fitting.

4. Unification of P values of pseudo QTNs in conjunction with tests on the other markers.

The first strategy gives the benefits of efficient computation and the elimination of con-
founding between kinship and testing markers. The second strategy applies the first type
adjustment on the testing markers. The third strategy incorporates a marker map into the esti-
mation of pseudo QTNs by using the SUPER method. The pseudo QTNs are derived through a
maximum likelihood method in REM and then used to derive kinship among individuals.
Regardless of the number of pseudo QTNs, genetic variance and residual variance are the only
unknown parameters. The limited number of parameters avoids the problem of model over-fit-
ting. The fourth strategy enhances the MLMM's algorithm for calculating the P values of
pseudo QTNs. Because all pseudo QTNs are examined for each genetic marker tested, we iden-
tify and use only the most significant P value among all tests for each pseudo QTN.

Our proposed method requires that the FEM and REM proceed in an iterative fashion. The
FEM tests markers, one at a time, and uses a set of pseudo QTNs as covariates. The model can
be written as:

yi ¼ Mi1b1 þMi2b2 þ . . .þMitbtþ Sijdjþei ð1Þ

where yi is the observation of the ith individual; Mi1, Mi2,. . ., Mit are the genotypes of t pseudo
QTNs, initiated as an empty set; b1, b2, . . ., bj are the corresponding effects of the pseudo
QTNs; Sij is the genotype of the i

th individual and jth genetic marker; dj is the corresponding
effect of the jth genetic marker; and ei is the residuals having a distribution with zero mean and
variance of s2

e .
Each of the testing markers receives a P value except those designated as pseudo QTNs and

used as covariates. Initially, these pseudo QTN markers are assigned “NA" (Not Available) for
their P value. As each pseudo QTN is examined for each testing marker, the NA is replaced
with the most significant P value for that pseudo QTN, which becomes the P value of its corre-
sponding marker. We call this process substitution (Fig 1B).

After substitution, every marker has its own P value. The P values and the associated marker
map are used to update the selection of pseudo QTNs by using the SUPER algorithm[24] in a
REM as follow:

yi ¼ ui þ ei ð2Þ
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where yi and ei stay the same as in Eq (1) and ui is the total genetic effect of the i
th individual.

The expectations of the individuals’ total genetic effects are zeros. The variance and covariance
matrix of the individuals’ total genetic effects is G ¼ 2Ks2

a, where s
2
a is an unknown genetic

variance and K is kinship derived from the pseudo QTNs.
The set of pseudo QTNs that maximizes the likelihood of the REM, Eq (2), is used to replace

the pseudo QTNs in the FEM, Eq (1). The iteration stops when no change occurs in the esti-
mated set of pseudo QTNs. We named this method Fixed and randommodel Circulating
Probability Unification (FarmCPU). The FarmCPU procedure is further detailed in the online
methods section.

In addition to its potential for increasing statistical power, FarmCPU has two other benefits.
First, FarmCPU is computationally efficient. Marker testing is conducted by a FEM that has a
computing time complexity linear to the number of markers and individuals. Second, P values
for non-pseudo QTNmarkers are not inflated. All markers influential to phenotype are
included in the model, either as pseudo QTNs or as markers associated with pseudo QTNs.
Because association tests on all markers are performed with pseudo QTNs as covariates, signifi-
cant P values are not expected for non-pseudo QTNmarkers.

By performing association tests on real and simulated data and comparing results to current
methods, we demonstrated FarmCPU's improved statistical power, increased computational
efficiency, and ability to control false positives, i.e. Type I error.

Results
We analyzed real data to demonstrate new findings and overlaps with known associated loci by
using FarmCPU. We simulated data to examine the null distribution and statistical power
under different levels of Type I error and False Discovery Rate (FDR). Simulated data were also
used to examine FarmCPU's computational efficiency in response to variations in number of
markers and sample size.

Enrichment on candidate genes in Arabidopsis thaliana
We reanalyzed a published dataset and performed enrichment study on candidate genes to val-
idate the associated loci. When we reanalyzed the 107 traits of 199 Arabidopsis thaliana sam-
ples genotyped at 250,000 SNPs[21] with FarmCPU and three other methods (naïve, GLM,
and MLM), we were able to repeat the previous results by using the naïve and MLMmethods
(Fig 2A). FarmCPU not only controlled inflation of P values well, but also identified new loci
and known associated loci, especially for flowering time (S1 File).

To validate the associated loci on flowering time, we extracted the known candidate genes
and conducted an enrichment study. We divided the whole genome into small regions (10,000
base pairs) and categorized each region into either a gene region containing at least one candi-
date gene or a non-gene region containing no candidate genes. We calculated an enrichment
coefficient as the ratio between the numbers of gene regions versus non-gene regions. An
enrichment coefficient of 1 is expected for a random association. For the top association, the
enrichment coefficient equaled 2.4 for the naïve and GLMmethods, 3.8 for the MLMmethod,
and 8.9 for the FarmCPUmethod (Fig 2B). For the top ten hits, the averaged enrichment coef-
ficients were 1.7, 2.3, 2.8, and 4.0 for naïve, GLM, MLM, and FarmCPU, respectively.

Overlaps with known loci in multiple species
We compared FarmCPU with other six methods selected from different categories. These
methods are: (1) naïve method (t-test); (2) GLM[8]; (3) MLM[9,26]; (4) CMLM[17]; (5) FaS-
T-LMM-Select[23], and (6) MLMM[25]. Except FarmCPU and t-test, all the other methods
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Fig 2. Reanalysis of 107 traits and power enrichment evaluation on 23 flowering time traits in Arabidopsis thaliana. Four methods were employed to
reanalyze the 107 traits of 199 Arabidopsis thaliana samples genotyped at 250,000 SNPs (a), including a naïve method (t-test), GLM, MLM, and FarmCPU.
The first three PCs were included in the GLM and MLM to control population structure. FarmCPU did not use any PCs. The horizontal axis indicates the 107
traits grouped into four categories: resistance, developmental, ionomics, and flowering time. The vertical axis indicates the number of associated SNPs at
three significance levels (0.01, 0.05 and 0.1) after Bonferroni multiple test corrections. The previous results were replicated by using the naïve and MLM
methods. The naïve method, without any control on population structure and kinship, generates many associated SNPs. The associations due to genetic
linkage to known genes are indistinguishable from the background noise. In contrast, the MLMmethod controls the inflation of P values well; however, the
associations due to genetic linkage to known genes are also weakened and indistinguishable from the background. The GLMmethod generates results that
are between the naïve method and the MLMmethod. Interestingly, for each flowering time trait, FarmCPU revealed multiple genetic loci. Enrichment analysis
was performed to evaluate the four statistical methods (b) on the 23 flowering time traits by using flowering time genes. The random hits are expected to have
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included the first three PCs as covariates [14]. We examined datasets from multiple species,
including Arabidopsis thaliana[21], human[27,28], maize[29], mouse[30], and pig[31]. The
results are summarized in Fig 3 and S1–S4 Figs and S1–S6 Tables.

FarmCPU outperformed other methods with respect to controlling inflation of P values,
identifying new associated markers, and overlapping with known loci. Taking flowering time
at 16°C in Arabidopsis thaliana as example, the P values were overwhelmingly inflated under
the naïve method (Fig 3). More than 4,000 markers associated with flowering time at a thresh-
old of 1% after Bonferroni multiple test correction. One-half of the markers had P values that
deviated from expectation. Thus, the naïve method was unable to distinguish the real signals
from the background noise. GLM reduced the inflation, however, 10% of markers still had P
values that deviated from expectation. The MLM, CMLM, and Fast-LMM-Select controlled
inflation well, but identified no associated markers above the threshold of 1% after Bonferroni
multiple test correction. MLMM not only controlled inflation well, but also identified two asso-
ciated loci above a threshold of 1% after Bonferroni multiple test correction. Besides the two
loci identified by MLMM, FarmCPU identified another three associated loci. The new identi-
fied loci included the known gene FLOWERING LOCUS C (FLC)[32] that controls flowering
time in Arabidopsis thaliana (S1 Table).

Null distribution
We examined null distribution of FarmCPU compared with two other extreme methods. One
is the naïve method, t-test, which is expected to exhibit inflation of P values. The other is the
MLMmethod, which controls inflation well. Three datasets with different level of population
stratification were used to examine null distribution. The first is Arabidopsis thaliana with con-
nected subpopulations. The second is the East Asian lung cancer dataset with mild-isolated
subpopulations. The third is the WTCCC1 controls dataset with distinct-isolated subpopula-
tions. The plots of the first three PCs are displayed in S5 Fig. The null distributions are summa-
rized in Fig 4, and S7–S9 Tables. Null distributions were investigated under three confounding
level settings:

Setting I: Markers associated with no QTNs. We randomly shuffled simulated pheno-
types to completely break the association between phenotypes and genotypes. There is no QTN
controlling the shuffled phenotypes. No inflation of P values was expected, even with the naïve
t-test (Fig 4A). As expected, the three methods behaved the same and have a uniform distribu-
tion between 0 and 1.

Setting II: Markers associated with QTNs on different chromosomes. We simulated
phenotypes with QTNs restricted to partial chromosomes and used the SNPs on other chromo-
somes to derive the null distribution. For the Arabidopsis thaliana data, we put all QTNs on
chromosomes 1–3. There were no QTNs on chromosome 4 and 5. The P values of markers on
chromosomes 4 and 5 were expected to have uniform distribution. As expected, we observed
the P values by using t-test were inflated. The inflation was due to the LD across chromosomes.
The t-test was not able to correct the inflation. In contrast, MLM fall into the range of uniform
distribution (Fig 4).

Interestingly, we observed that FarmCPU controlled inflation of P values as well as MLM
(Fig 4). The pseudo QTNs absorbed the phenotypic variation. To further investigate how
FarmCPU controls the inflation on human data, we put QTNs on chromosome 1–10 only.
Then we used P values of markers on chromosomes 11–22 and X to examine number of false

an enrichment coefficient of 1. For the first hit, the enrichment coefficients are 2.4, 2.4, 3.8, and 8.9 for t-test, GLM, MLM, and FarmCPU, respectively. For the
top ten hits, the enrichment coefficients are 1.7, 2.3, 2.8, and 4.0 for t-test, GLM, MLM, and FarmCPU, respectively.

doi:10.1371/journal.pgen.1005767.g002
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Fig 3. Association studies of flowering time in Arabidopsis thaliana. The flowering time at 16°C was measured on 199 Arabidopsis thaliana individuals
genotyped with 250,000 SNPs. Seven statistical methods were employed to conduct the association studies: (a) t-test (naïve method), which tests the
additive genetic effect of markers, one marker at a time, with the marker as the only explanatory variable; (b)GLM; (c)MLM; (d) CMLM; (e)
FaST-LMM-Select; (f)MLMM; and (g) FarmCPU. All methods, except the t-test, MLMM and FarmCPU, included the first three PCs derived from the genetic
markers as covariates. FarmCPU identified five associated SNPs after Bonferroni multiple test correction, including three within a distance of 50,000 base
pairs to known genes such as FLC. MLMM identified two associated SNPs after Bonferroni multiple test correction, and overlapped with the five associated
SNPs from FarmCPU results. With all other methods, these genes are indistinguishable from the background noise.

doi:10.1371/journal.pgen.1005767.g003
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positives against expected. At different P-value thresholds, the numbers of false positives fall
into the 95% confidence interval of expected uniform distribution (S8 and S9 Tables).

Setting III: Markers associated with QTNs on same chromosome. As the above two set-
tings are hardly real in practice, we spread QTNs throughout all the chromosomes. For the
Arabidopsis thaliana data, the simulated QTNs were spread over all the chromosomes (1 to 5).
Then, we classified SNPs into QTN areas and non-QTN areas. A QTN area included a QTN
and nearby SNPs within 100,000 base pairs on each side. All other SNPs were classified into
non-QTN areas. We used SNPs located in non-QTN areas to derive the null distribution.
Again, the t-test method exhibited the inflation problem. The MLM showed minor “inflation”,
which was possibly due to linkage to the nearby real QTNs. FarmCPU had a lesser inflation
than MLM with respect to being closer to the null distribution (Fig 4).

To compare FarmCPU with the other extreme method, t-test, at different resolution of
defining false positives, we spread the simulated QTNs across all the chromosomes in human
lung cancer data. A marker was considered belonging a non-QTN area is if there is no QTN on
either side of the marker within a specific distance (10,000, 50,000, 100,000, 500,000, 1,000,000
base pairs (bps)). Numbers of false positives of FarmCPU and t-test under different P-value
thresholds were recorded. The numbers of false positives of FarmCPU were lower in order of

Fig 4. Null distribution of P values under different settings of confounding levels. The first setting contains no QTNs (left panel). The second setting
restricts QTNs to first three chromosomes and left the rest two chromosomes as control (middle panel). The last setting spread QTNs on all five
chromosomes (right panel). All the SNPs under first setting and all the SNPs on chromosome four and five under second settings were used to derive null
distributions (a and b). The tests of SNPs on chromosomes one to three, including the ones used as QTNs are displayed in the middle panel at bottom (d).
Under the third setting, SNPs are classified into the QTN areas and the non-QTN areas. A QTN area includes a QTN and its adjacent SNPs within 100,000
base pairs on each side. The rest are the non-QTN areas. The null distribution of non-QTN SNPs is displayed on the top right (c) and tests on the SNPs in
QTN areas is displayed on the bottom right (e). Three statistical methods were examined: FarmCPU, Naïve (t-test) and MLM. The MLM included top six PCs,
derived from 10% of SNPs sampled randomly, and used as covariates to control population structure. FarmCPU did not include PCs. The data is a structured
Arabidopsis thaliana population that includes 1,178 individuals with 214,545 SNPmarkers. P values were from the association tests on a simulated trait
controlled by 100 QTNs with heritability of 50% and QQ plots over 100 replicates are displayed.

doi:10.1371/journal.pgen.1005767.g004
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magnitude than the ones by using t-test for all combinations between resolutions and levels of
P-value thresholds (S7 Table).

As the third setting mixed QTN-areas and non-QTN-areas, the real association signals were
also mixed into the null distribution. False positives should be investigated in conjunction of sta-
tistical power under same FDR and Type I error. These are summarized in the following section.

Statistical power under different levels of FDR and Type I error
Genetic markers were classified into the ones on QTN-area and non-QTN area to evaluate sta-
tistical power under different levels of FDR and Type I error. The markers on non-QTN areas
were used to derive null distribution. For a specific level of Type I error, power was defined as
the proportion of QTNs detected. For each level of power, the corresponding FDR was defined
as the proportion of false positives (See Materials and Methods section for details). FarmCPU
was compared with other common methods under different scenarios, including levels of non-
genetic effect, complexity of genetic architecture, and variation of applications such as incorpo-
rating PCs.

Comparisons with common methods. We compared FarmCPU with a variety of com-
mon methods. First, we compared FarmCPU with three major types of methods: naïve (t-test),
GLM and MLM. The comparisons were performed on simulated traits with heritability of 50%
controlled by varied number of QTNs (2, 5, 10, and 100). FarmCPU was consistently superior

Fig 5. Power in structured populations at different levels. Three methods were employed to examine these populations, including GLM, MLM and
FarmCPU. The top panel (a to e) and bottom panel (f to j) display the low and high levels of population structure, represented by Arabidopsis and human
populations, respectively. The dataset from Arabidopsis population consists of 1,178 individuals genotyped with 250,000 SNPs. The dataset from human
population consists of 1,500 individuals genotyped with 500,000 SNPs. The population structures are displayed by the scatter plot on the first two principal
components derived from 10% of SNPs sampled randomly from Arabidopsis thaliana (a) and human (f), respectively. Additive genetic effects were simulated
with 10 and 100 QTNs. The QTNs were randomly sampled from all the SNPs in each dataset. Residuals with normal distribution were added to the genetic
effect to form phenotypes with heritability of 0.5. Power was examined under different levels of FDR and Type I error. A positive SNP is considered a true
positive if a QTN is within a distance of 50,000 base pairs on either side, otherwise is considered a false positive. Power under different levels of FDR is
displayed in subfigures b, c, g, and h. Power under different levels of Type I error is displayed in subfigures d, e, i, and j.

doi:10.1371/journal.pgen.1005767.g005
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to both GLM and MLM (Fig 5 and S6 and S7 Figs). As expected, we observed a positive correla-
tion between number of true QTNs and number of pseudo QTNs identified in FarmCPU
model (S8 Fig). Second, we compared FarmCPU with the three methods that also use informa-
tion from selected pseudo QTNs: MLMM[25], PC Select[33], and FaST-LMM-Select[23]. The
comparisons were performed on a simulated trait with heritability of 50% controlled by 100
QTNs. The FaST-LMM-Select and PC Select methods produced the same results when the
same marker-based PCs were used. Therefore, we used FaST-LMM-Select with the first 5 PCs
generated from Eigensoft[8,34] (which were the same five suggested by PC Select). The results
also demonstrated that FarmCPU outperformed these three methods (S9 Fig). Third, the com-
parison studies were conducted with several modified MLMmethods, such as FaST-LMM,
MLMM, and BOLT-LMM[35,36]. Both Power versus FDR and Type I error results showed
that FarmCPU outperformed the modified MLMmethods (S10 Fig). Statistical power was dis-
played with different levels of magnification on type I error (S11 Fig). In all comparisons, we
found that FarmCPU outperformed the existing methods.

Heritability levels. We simulated phenotypes controlled by 100 QTNs with varied levels
of heritability, low (30%), moderate (50%), and high (70%). We found that FarmCPU was con-
sistently superior to GLM and MLM. For example, for the trait with 50% heritability, we
recorded the number of true and false positives among 100 replicates by using a threshold of
1% after Bonferroni multiple test correction. There were 639, 513, and 520 true QTNs that
were detected by FarmCPU, MLM and GLM, respectively, at a cost of 32, 250, and 257 false
positives (S12 Fig).

Marker density. It is common that QTNs are not part of testing genetic markers unless
the markers are dense enough. We performed tests with QTNs included, or excluded, from the
genotypic data. The phenotypes were simulated with a heritability of 50% and controlled by
100 QTNs. A QTN was considered detected when a SNP fell into the preset resolution of
10,000, 50,000, or 100,000 base pairs on either side of the QTN. Results indicated that Farm-
CPU outperforms both GLM and MLM (S13 Fig) in either case, including or excluding QTNs
from the testing genetic markers.

Incorporation of population structure. Fitting population structure, such as Q matrix or
PCs, as covariates is an effective way to capture phenotypic variation due to non-genetic effects,
however, the incorporation also causes confounding with causal genes. Therefore, there is side
effect for such incorporation. We examined the tolerance of FarmCPU when fitting PCs as
covariates in both cases, with and without non-genetic effects. We simulated non-genetic
effects by adding and subtracting 50% of phenotypic standard deviation in two ethnic groups
(Korean and Japanese) and leaving the other group (Chinese) unchanged. Non-genetic effects
cause about 25% of phenotype variation. Even without incorporating PCs, FarmCPU outper-
formed FaST-LMM that incorporated PCs (S14 and S15 Figs). As PCs can be the factors to cap-
ture non-genetic effect as discovered in previous studies[33,37], including PCs as covariates in
FarmCPU can also have better power than without the incorporation (S16 Fig).

In situations without non-genetic effects, we also examined the effect of including PCs as
covariates using a human population dataset[38]. PCs were modeled in two ways. First, we
included PCs in the first iteration only. Second, we retained the PCs through all iterations. The
results indicated that FarmCPU was tolerant to fitting PCs in both cases, unless the number of
PCs was too big (e.g., 10) (S17 Fig). This result implies that using FarmCPU with PCs fitted as
covariates can potentially eliminate false positives due to non-genetic effects that are associated
with population structure.

Complexity of quantitative traits. First, we examined FarmCPU in cases where a quanti-
tative trait was controlled by major genes and minor genes. We simulated 100 QTNs with
effects following a geometric distribution, with the most important gene having an additive
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effect of parameter a. The effect of the ithQTN was ai. Two levels of a were tested, 0.9 and 0.95.
In both cases, FarmCPU outperformed MLM (S18 Fig).

Second, for cases of highly complex traits that are controlled by multi genes and each gene
has equal effect. We simulated a trait with 75% heritability controlled by 500 QTNs. All QTNs
were located in the first 10 chromosomes, leaving the other chromosomes as the null control.
FarmCPU outperformed MLM and GLM (S19 Fig).

Effect of iterations. In general, FarmCPU's largest gain in statistical power occurs between
the first and second iterations. As the number of iterations increases, the gains in statistical
power become smaller (S20 Fig). When the number of iterations is set high enough, a stage is
reached after which additional iterations will produce no new pseudo QTNs. We call this the
converged stage of iteration. We found that the converged stage always gives the highest statis-
tical power and is ideal when used for a final analysis.

Effect of substitution methods. Five substitution methods were examined: onsite, mean,
minimum, median, and maximum. Onsite refers to the same method used by the MLMM,
which reports P values of pseudo QTNs from the model that includes only the pseudo QTNs,
without the testing markers. The other methods use the mean, minimum, median, and maxi-
mum P value of each pseudo QTN when examined together with all markers, one at a time.
The results showed that the minimum substitution method outperformed other substitution
methods (S21 Fig).

Effect of stepwise regression. We compared FarmCPU with stepwise GLM that simply
removes the kinship fromMLMM. The results showed that the simple stepwise regression
increases statistical power compared with GLM (S22 Fig). In addition to stepwise regression,
FarmCPU gain statistical power from substitution process and optimization of pseudo QTNs
using bin method in random effect model.

Incorporation of prior knowledge. We compared FarmCPU with GLM in a scenario that
included known true QTNs as covariates to provide additional explanation on how does Farm-
CPU work. When all true QTNs (100%) underlying a trait are known, each genetic marker can
be tested by fitting only the true QTNs as covariates in GLM. When the proportion of known
QTNs is reduced, the statistical power is reduced. Amazingly, FarmCPU, without any prior
knowledge of true QTNs, has higher power than GLM that incorporated 50% known true
QTNs as covariates (S23 Fig).

We expected that using prior knowledge in FarmCPU could further improve statistical
power. To test this expectation, we examined simulated phenotypes by incorporating true
QTNs. The results indicated that the statistical power of FarmCPU improved further with
prior knowledge. Additionally, we found that the greater the proportion of true QTNs incorpo-
rated, the greater the improvement in statistical power (S24 Fig).

Computational efficiency
In addition to improved statistical power, FarmCPU is also computationally efficient. We theo-
retically analyzed the computing time complexity and measured the actual performance for
datasets with specific number of markers and sample size. The factors impacting computing
time were investigated to further improve computational efficiency.

Theoretical complexity. The computing time of the FEM in FarmCPU is linear to number
of markers (m) and sample size (n). For a simple trait, because the number of iterations and
the number of pseudo QTNs (t) underlying a trait are constant, the computational complexity
of the fixed effect model is O(nm). For a complex trait, because bigger sample sizes will be able
to identify more pseudo QTNs, the computational complexity is linear to m and superlinear to
n. When sample size further increases, as the total number of genes is fixed for a trait, the
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computational complexity is linear to both m and n. The FaST-LMM algorithm is used in
REM with a computing time linear to n. Therefor REM in FarmCPU has computational com-
plexity of O(n). REM does not involve tests on genetic markers, therefore, takes only a small
proportion of computing time—especially when m is relative large. Overall, the computational
complexity of FarmCPU is O(nm).

We compared the theoretical computational efficiency of FarmCPU with the following
common statistical models: GLM, MLM, GRAMMAR-Gamma, FaST-LMM, FaST-LMM-Se-
lect, SUPER, and MLMM. Similar to previous comparisons[6,18,20], we decomposed the total
computational time into three components: building the K, attaining optimization on variance
components, and performing association tests. GRAMMAR-Gamma's (implemented in GenA-
BEL) time for association tests is linear with n, but its times for building the Kmatrix and opti-
mization on variance components are the square and the cube of n, respectively. Both
FaST-LMM-Select and SUPER use an algorithm from FaST-LMM, which prevents formatting
of the Kmatrix. Rather, optimization is directly performed from the singular value decomposi-
tion of the genetic markers used to define kinship among individuals. Because the number of
such markers (M) is much less than the number individuals, these two models have a comput-
ing time complexity that is linear with n. For FarmCPU, times for both optimization on vari-
ance components and performing association tests are linear with n. Comparisons of
FarmCPU and other common methods are summarized in S10 Table.

The largest memory of the REM in FarmCPU is to store the genotype table with n individu-
als and t pseudo QTNs. The memory footprint is linear to n and t. FarmCPU's FEM uses only a
small proportion of the memory footprint compared with the FarmCPU’s REM. Therefore,
FarmCPU's memory complexity is O(nt).

Actual performances. FarmCPU R package was compared with several other packages for
actual computing time and memory usage. The other packages were selected to represent dif-
ferent categories. GLM was represented by PLINK[39]. MLMMwas represented for MLMM R
package. MLM was represented by two packages: EMMAX and GenABEL[40] that uses
GRAMMAR-Gamma algorithm. The versions of these packages and parameter settings are
summarized in S11 Table. When number of analyzed markers was larger than 30,000, all three
MLM-related packages (EMMAX, GenABEL, and MLMM) froze the computer before sample
size increased to 6,000. In contrast, both FarmCPU and PLINK completed the analyses even
when sample sized was increased to 10,000 (Fig 6 and S25 Fig).

Most statistical methods were developed to solve big data with a focus on either marker size
or sample size, but not on both simultaneously. For example, FaST-LMM and GeneABEL
could be used for either larger samples, or more markers, but not for both. For a dataset with
ten thousands individuals and one million markers, both FaST-LMM and GenABEL failed.
FarmCPU completed the analysis on a laptop in less than four hours (S26 Fig). In addition, we
tested several methods (BOLT-LMM v2.1, FaST-LMM v2.07, PLINK v1.07 and FarmCPU) on
a big dataset including 500,000 individuals with 500,000 SNPs each. A simulated phenotype
had a heritability of 30% and was controlled by 3,000 QTNs. All experiments were tested on a
RedHat 7.1 operating system running in a server with a 2.2GHz AMD Opteron(tm) Processor
6376, 512GB RAM, 1TB SSD, and 9.4 TB HDD. FarmCPU and PLINK v1.07 completed the
data analysis in 3 days, and BOLT-LMM v2.1 complete it in one week, FaST-LMM v2.07 was
stopped by the out of memory issue (S27 Fig).

Discussion
False positives can be reduced by fitting covariates to adjust the association tests on markers.
The common covariates are population structure and kinship among individuals. However, the
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confounding between these covariates and testing markers also produce false negatives. The
iterative usage of the fixed effect and random effect models in the FarmCPU method integrates
both the markers and the covariates together by optimizing the covariates and using substitu-
tion. Testing markers in a fixed effect model makes FarmCPU computationally efficient. The
optimization of pseudo QTNs in a random effect model involves only two parameters (genetic
and residual variance components) in addition to the number and size of bins of the SUPER
GWAS method. Therefore, the problem of model over-fitting is much less compared to includ-
ing pseudo QTNs and testing markers in the same model. SUPER's bin method takes the map
information into account, which effectively reduces redundancy among pseudo QTNs.

Detection of non-heritable traits
The REM part of FarmCPU has converging problem for the optimization of genetic and resid-
ual variance components when one of the components is near zero. This issue is common for a
trait with extremely low heritability or a permuted phenotype that has zero heritability. In this
case, no pseudo QTNs are associated with the trait. Fortunately, this situation can be detected
statistically under a threshold (e.g. 1%) after multiple test correction through the fourth step of
the FarmCPU procedure (see online methods). The multiple test correction can be performed
with Bonferroni method at lowest computing time. Permutation test costs more time with ben-
efit of improved power (see details in S28 Fig).

Fig 6. Computing time andmemory usage of five software packages. Three statistical models were performed by the five packages: 1) GLM by PLINK;
2) MLMs by EMMAX, GenABEL, and MLMM; and 3) FarmCPU by FarmCPU. Computing time (a) and memory usage (b) in response to sample size are
displayed. The analyses were performed on a laptop (Asus A53S) running a Linux system (Ubuntu 12.10, 64 bit) with a 4.0 Gb of Random-Access Memory
(RAM) and an Inter duo Core i3-2310M processor at 2.1 GHz. One core was used for this test. All datasets had 60,000 markers, but response was measured
as a function of sample size. The last data point indicates the maximum sample size each software package could process without freezing the computer,
except for PLINK and FarmCPU. The limitations for these two software packages were not reached with the maximum sample size examined.

doi:10.1371/journal.pgen.1005767.g006
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Non-genetic effects
Non-genetic effects cause false positives, especially when they are not correlated with popula-
tion structure. In this case, it is hard to capture them unless indicators can be identified to cap-
ture the non-genetic effects. When the non-genetic effects are correlated with population
structure, fitting population structure as covariates reduce false positives. We tested the perfor-
mance of FarmCPU and MLM when environmental effects were added on phenotypes (using
the Chinese, Japanese, and Korean datasets) to contribute an additional 25% of the phenotype
variance. These added levels of environmental effects meant that the non-genetic effect was
about 170 times greater than the QTN effect. Even in this situation, FarmCPU without fitting
PCs as covariates still outperformed MLM that incorporated PCs as covariates (S14 and S15
Figs). Fitting PCs as covariates in FarmCPU further improved statistical power (S16 Fig).

Unification of testing markers and covariates
Compared with MLMM, FarmCPU uses an improved version for calculating the P values of
the pseudo QTNs. MLMM calculates P values using all pseudo QTNs as covariates in the
model and excludes testing markers, an approach we named “onsite”. Instead, FarmCPU uses
the most significant P value out of each pseudo QTN in conjunction with the tests on all mark-
ers. We named this process "substitution". As demonstrated, substitution dramatically
improves statistical power (S21 Fig).

Fresh look of Manhattan plots
FarmCPU's improved statistical power and control on false positives generate a fresh look to
the Manhattan and QQ (“Q” stands for Quantile) plots (Fig 3). The skyscrapers over the Man-
hattan, New York skyline become helicopters above the Manhattan, Kansas skyline. The new
appearance of the Manhattan plot better illustrates the trend of increasing marker density.
When marker density is high enough, spikes are no longer surprising. Most interesting, and
most relevant for data interpretation, is the strongest association in each region of the plot. The
QQ plot from FarmCPU is shaped like a hockey stick with a long shaft that joins the observed
and expected P values together for the majority of markers. The blade of the hockey stick indi-
cates the associations for the markers with observed P values that deviated from the
expectation.

Data with both large amount of individuals and markers
High marker densities and increased sample sizes, driven by the reduction of genotyping cost,
are producing big datasets for analysis[41]. Most statistical methods were developed to solve
big data with a focus on either marker size or sample size, but not both. FarmCPU is computa-
tionally efficient for both sample size and marker density. Among MLMmethods, the CMLM
and FaST-LMMmethods work best with large sample sizes; the P3D/EMMAX and GRAM-
MAR-Gamma (Software: GenABEL R package, v 1.8–0) methods work best with high marker
densities. For example, a dataset with 10,000 individuals and 10,000 markers freezes a com-
puter running GRAMMAR-Gamma, but only takes 3 minutes with FaST-LMM (Software:
FaST-LMM v 2.07). In contrast, a dataset with 1,000 individuals and 1,000,000 markers freezes
a computer running FaST-LMM, but only takes 10 minutes for GRAMMAR-Gamma. For a
dataset with 10,000 individuals and 1,000,000 markers, computers freeze with both FaST-LMM
and GRAMMAR-Gamma. However, FarmCPU solves this dataset in less than four hours (S26
Fig).
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URL: The FarmCPU software package (source code, user manual, demo data, and tutorials)
is available at http://www.ZZLab.net/FarmCPU.

Materials and Methods

FarmCPUmethod
Our proposed method uses the Fixed Effect Model (FEM) and the Random Effect Model
(REM) iteratively. The FEM is employed to testm genetic markers, one at a time. Pseudo
QTNs are included as covariates to control false positives. Specifically, the FEM can be written
as follows:

yi ¼ Mi1b1 þMi2b2 þ . . .þMitbtþ Sijdjþei ð3Þ

where yi is the observation on the ith individual; Mi1, Mi2,. . ., Mit are the genotypes of t pseudo
QTNs, initiated as an empty set; b1, b2, . . ., bj are the corresponding effects of the pseudo
QTNs; Sij is the genotype of the i

th individual and jth genetic marker; dj is the corresponding
effect of the jth genetic marker; ei is the residual having a distribution with zero mean and vari-
ance of s2

e .
The REM is employed to optimize the selection of pseudo QTNs from markers based on

their testing statistics (i.e., P values) and positions by using the SUPER algorithm[24]. Mathe-
matically, the REM can be written as follow:

yi ¼ ui þ ei ð4Þ

where yi and ei stay the same as in Eq (3) and ui is total genetic effect of the i
th individual. The

expectations of the individuals’ total genetic effects are zeros. The variance and covariance
matrix of the individuals’ total genetic effects is G ¼ 2Ks2

a, where s
2
a is an unknown genetic

variance and K is the kinship matrix defined by pseudo QTNs.
The iterative usage of the FEM (1) and the REM (2) is specifically described by the following

steps:

Step 1: Set known candidate QTNs as pseudo QTNs, otherwise leave pseudo QTN set empty.

Step 2: Perform association tests by using the FEM with pseudo QTNs as covariates. Genetic
markers are fitted as fixed effects, one at a time.

Step 3: Substitution: When the testing marker is one of the pseudo QTNs, the testing marker is
not solvable. As each pseudo QTN is examined for every marker, we use the most significant
P value for the corresponding marker. We call this process substitution.

Step 4: If no marker passes a threshold (e.g., 1%) after multiple test corrections, take the result
from Step 3 as final; otherwise, go to Step 5.

Step 5: Whole genome is divided into bins, and the SNP with the most significant P value in
each bin represents the bin. Bin size (e.g. 500; 5,000; and 50,000 kilo base pairs) and number
of bins (e.g. from 10 to 100 with step of 10) are optimized in the REM. The combination of
size and number with the minimum REML value will be used to select pseudo QTNs. In
each iteration, the number of pseudo QTNs is bounded by a function of sample size (e.g.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=log10ðnÞ

p
) to reflect the ability to detect QTNs in the sample.

Step 6: Elimination linear dependence, or near linear dependence among pseudo QTNs. When
two pseudo QTNs have Pearson correlation coefficients above a threshold (e.g., 0.7), remove
the less significant pseudo QTN.

Iterative Usage of Fixed and Random Effect Models for GWAS

PLOSGenetics | DOI:10.1371/journal.pgen.1005767 February 1, 2016 17 / 24

http://www.ZZLab.net/FarmCPU


Step 7: If no new pseudo QTNs are added, or if the specified maximum number of iterations is
reached, stop. Otherwise, go back to Step 2.

Real data
We used previously published datasets from multiple species that included Arabidopsis thali-
ana, human, maize, mouse, and pig.

We used two datasets of Arabidopsis thaliana. The first dataset includes 199 samples, with
216,130 SNPs and 107 phenotypes[21]. When phenotypes had less than 100 records, a minor
allele frequency (MAF) of 0.05 was set to filter the SNPs. The second dataset includes 1,179
samples with 214,545 SNPs. One sample was removed because one-half of the genotypic data
is missing (URL: http://archive.gramene.org/db/diversity/diversity_view). The kinship matrix
and principal components were calculated by GAPIT[42] using 10% of SNPs sampled
randomly.

One human dataset, “WTCCC1 controls dataset”, ID # EGAD00000000002, was obtained
from EMBL-EBI (The European Molecular Biology Laboratory–The European Bioinformatics
Institute)[38]. Respecting the privacy of individual level data, the data is only available under
the permission of MalariGen Data Access Committee. This dataset contains 1,500 samples. All
samples were genotyped by the Affymetrix_500k SNP Chip and 495,473 markers were used in
our simulation study (URL: https://www.ebi.ac.uk/ega/datasets/EGAD00000000002). The kin-
ship matrix and principal components were calculated by GAPIT using 10% of SNPs sampled
randomly.

The other human dataset, “East Asian lung cancer dataset”, ID # phs000716.v1.p1, was
obtained from dbGaP[27]. Respecting the privacy and intentions of research participants, the
data is only available under the permission of NIH (National Institute of Health) and Intramu-
ral NCI (National Cancer Institute). The authors applied and got the data through dbGaP
Authorized Access. A total of 8,807 samples were used that contain 4,962 lung cancer cases and
3,845 controls. All samples were genotyped by the Illumina Human610_Quadv1_B and
Human660W-Quad_v1_A platforms and each sample has 629,968 SNPs (URL: http://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000716.v1.p1). The kinship
matrix and principal components were calculated using 10% randomly sampled or total SNPs
by GAPIT and PLINK, respectively.

The maize genotype dataset includes 2,279 inbred lines, each with 681,258 SNPs. The phe-
notype is flowering time measured as days to silk[29] (URL: http://www.panzea.org/!
#genotypes/cctl). The kinship matrix and principal components were calculated by GAPIT
using 10% of SNPs sampled randomly.

The mouse genotype dataset has 1,940 samples (1000 males and 940 females from a hetero-
geneous stock mice population owned by the Welcome Trust Centre for Human Genetics)
with 12,226 SNPs. The phenotype is weight growth intercept[30]. The kinship matrix and prin-
cipal components were calculated by GAPIT using all SNPs.

The pig genotype dataset has 820 samples (412 Large White and 408 crosses from Large
White and Landrace) with 64,212 SNPs. The phenotype is last rib back-fat thickness[31]. All
SNPs were used to build the kinship matrix and principal components.

Simulated phenotypes
We used real genotype datasets from human and Arabidopsis thaliana to simulate genetic
effects and generate phenotypes by adding residual effects. The QTNs underlying these pheno-
types were randomly sampled from the real genotypes. The QTN effects followed a geometric
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distribution with an additive effect of parameter a. The effect of the ith QTN was ai. The param-
eter a was set to 0.9, 0.95, and 1 as described in previous studies[9,17]. Phenotype was simu-
lated as: y = additive effect + residual effect. Additive effect was calculated as: additive
effect = QTNmatrix � QTN effects. The residual effect, following a Gaussian distribution with
mean of 0 and variance of s2

e , was calculated as: s
2
e ¼ ð1� h2Þs2

a=h
2, where s2

a is the variance
of additive effect and h2 is heritability. Simulations were performed using a variety of QTN
numbers and heritability values, and with QTNs included and excluded from the genotypic
data for association tests. For each combination of factors, simulations were repeated either
100 or 1,000 times, specified for each experiment.

Power examination under different levels of Type I error and FDR
Statistical power, Type I error, and FDR were examined simultaneously in association tests on
simulated phenotypes with known QTNs, using the method described by Segura et.al[25] and
two methods from our previous studies—SUPER[24] and Enriched CMLM[22]. A QTN was
considered identified if a positive marker was within a prescribed interval distance (e.g. 50 kb).
Power was defined as the proportion of QTNs identified at a threshold of Type I error or FDR.
Markers were used to derive the null distribution of negative control if no QTN was within the
interval. The null distribution of Type I error was derived from the non-QTN markers. FDR
was defined as the proportion of the non-QTN markers among the positive markers.

Enrichment analysis
The flowering time candidate genes from the database reported by Atwell et. al, (2010, Nature)
were used to evaluate the associated SNPs on 23 flowering time traits in Arabidopsis thaliana.
The whole Arabidopsis thaliana genome was divided into gene regions and non-gene regions.
The genes and their extensions, 10,000 base pairs on either side, were considered gene regions
with a total length of 4,552,815 base pairs (3.9% of whole genome). The remaining areas were
considered non-gene regions with total length of 114,616,742 base pairs (96.1% of whole
genome). The average hit per base pair was defined by number of associated SNPs divided by
total length. The ratio of average hit on gene regions to the average hit on non-gene regions
was used as the enrichment coefficient. The random hits were expected to have an enrichment
coefficient of 1.
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