Hydrosilylation |Hot Paper|

Trivalent Rare-Earth Metal Amide Complexes as Catalysts for the Hydrosilylation of Benzophenone Derivatives with HN(SiHMe₂)₂ by Amine-Exchange Reaction

Koichi Shinohara,^[a] Hayato Tsurugi,^{*[a]} Reiner Anwander,^{*[b]} and Kazushi Mashima^{*[a]}

Abstract: The rare-earth metal complexes $Ln(L^1)[N(SiHMe_2)_2](thf)$ (Ln = La, Ce, Y; $L^1 = N, N''$ -bis(penta-fluorophenyl)diethylenetriamine dianion) were synthesized by treating $Ln[N(SiHMe_2)_2]_3(thf)_2$ with L^1H_2 . The lanthanum and cerium derivatives are active catalysts for the hydrosilyl-

Introduction

The reduction of carbonyl compounds is one of the most important and straightforward synthetic transformations in organic chemistry for producing the corresponding alcohol.^[1] Metal hydrides of transition metals and some main-group elements such as (iBu)₂AIH (DIBAL) have been used as versatile and stoichiometric reducing reagents;^[2] however, the strong reducing ability of these metal hydrides often causes low substrate selectivity. Catalytic hydrosilylation is an attractive alternative that has been widely studied by using noble metal catalysts (e.g., Rh, Ir, and Pt).^[3] A recent trend has been directed to the use of base metal catalysts, including first-row transition metal complexes (e.g., Fe, Co, and Ni),^[4] but no rare-earth metal complexes have yet been applied as catalysts for the hydrosilylation of carbonyl groups, presumably due to their high oxophilicity to form stable Ln–O bonds.^[5] In fact, although lanthanide hydrides are known to be applicable for catalytic hydrosilylation of alkenes^[6] and alkynes,^[7] there are limited examples of the transformation of lanthanide alkoxides to lanthanide hydrides in the presence of hydrosilanes with elimination of silyl ethers.^[6f,g]

 [a] K. Shinohara, Prof. Dr. H. Tsurugi, Prof. Dr. K. Mashima Department of Chemistry, Graduate School of Engineering Science Osaka University, Toyonaka, Osaka 560-8531 (Japan) E-mail: tsurugi@chem.es.osaka-u.ac.jp mashima@chem.es.osaka-u.ac.jp
 [b] Prof. Dr. R. Anwander Institut für Anorganische Chemie, Universität Tübingen

Institut für Anorganische Chemie, Universität Tubingen Auf der Morgenstelle 18, 72076 Tübingen (Germany) E-mail: reiner.anwander@uni-tuebingen.de

 Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/chem.202002011.

© 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. ation of benzophenone derivatives with HN(SiHMe₂)₂. An amine-exchange reaction was revealed as a key step of the catalytic cycle, in which Ln–Si–H β -agostic interactions are proposed to promote insertion of the carbonyl moiety into the Si–H bond.

Chemistry Europe

European Chemical Societies Publishing

Aiming at the hydrosilylation of carbonyl compounds by using any lanthanide catalyst, we were especially interested in amine-exchange reactions of lanthanide amide complexes with primary or secondary amines by a σ -bond metathesis pathway. In fact, σ -bond metathesis reactions of lanthanide amide complexes with amines are well known to proceed catalytically in hydroamination^[8] and other reactions.^[9] Thus, 1,1,3,3tetramethyldisilazane, HN(SiHMe₂)₂, was selected as a silane reagent; the cerium complex $Ce(L^1)[N(SiHMe_2)_2](thf)$ $(L^1 = N, N'')$ bis(pentafluorophenyl)diethylenetriamine dianion) was found to perform best in the hydrosilylation of benzophenone and its derivatives. The catalytic cycle was revealed to feature an amine-exchange reaction as a key step. In addition, the Si-H moiety of the N(SiHMe₂)₂ ligand seems to be activated by the Lewis acidic lanthanide metal center and accelerate carbonyl insertion into the Si-H bonds to form Si-O bonds.

Results and Discussion

The search for an efficient lanthanide catalyst system for the hydrosilylation of benzophenone (2a) with 1 equiv of $HN(SiHMe_2)_2$ was started by using an in situ mixture of N, N''bis(pentafluorophenyl)diethylenetriamine $(L^{1}H_{2})$ (5.0 mol%) with an equimolar amount of the rare-earth metal amido compounds $Ln[N(SiHMe_2)_2]_3(thf)_2$ (1a: Ln = La; 1b: Ln = Ce; 1c: Ln = Nd; 1d: Ln = Gd; 1e: Ln = Lu; 1f: Ln = Y), in benzene at ambient temperature for 3 h, and the results are summarized in Table 1. The lanthanum complex 1 a catalyzed the hydrosilylation of 2a to give HN[Si(OCHPh2)Me2]2 in 90% yield (entry 1), and the cerium complex 1b gave even a slightly higher yield of the product (94% yield, entry 2). The ion size of the metal sensitively affected the catalytic performance: complex 1c with the moderately-sized neodymium center exhibited markedly lower catalytic activity (22% yield, entry 3). Complexes of the even smaller-sized gadolinium complex 1d, lutetium 1e, and yttrium 1 f afforded HN[Si(OCHPh₂)Me₂]₂ in 9, 10, and 10% yields, respectively (entries 4-6). The significant effect of the

Chem. Eur. J. 2020, 26, 14130-14136

Wiley Online Library

Table 1. Screening of the catalyst system. ^[a]								
$\begin{array}{c} \begin{array}{c} \begin{array}{c} Ln[N(SiHMe_2)_2]_3(thf)_2 \ (5.0 \ mol\%) \\ L^1H_2 \ (5.0 \ mol\%) \\ \hline \\ silane \ (1 \ equiv.) \\ \hline \\ C_6H_6, \ rt, \ 3 \ h \end{array} \begin{array}{c} \begin{array}{c} Me_2 \\ D_6 \\ H_6 \\ Ph \end{array} \begin{array}{c} Me_2 \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} Me_2 \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} Me_2 \\ Ph \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} Me_2 \\ Ph \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} Me_2 \\ Ph \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} Me_2 \\ Ph \\ Ph \\ Ph \\ Ph \\ Ph \end{array} \begin{array}{c} Me_2 \\ Ne_2 \\ $								
	Ln	Silane	Yield ^[b] [%]					
1	La (1 a)	HN(SiHMe ₂) ₂	90					
2	Ce (1 b)	HN(SiHMe ₂) ₂	94					
3	Nd (1 c)	HN(SiHMe ₂) ₂	22					
4	Gd (1 d)	HN(SiHMe ₂) ₂	9					
5	Lu (1 e)	HN(SiHMe ₂) ₂	10					
6	Y (1 f)	HN(SiHMe ₂) ₂	10					
7 ^[c]	Ce (1 b)	PhSiH₃	15					
8 ^[c]	Ce (1 b)	Ph_2SiH_2	25					
9 ^[c]	Ce (1 b)	(EtO)₃SiH	12					
10	Ce (1 b)	O(SiHMe ₂) ₂	11					
11 ^[c]	Ce (1 b)	PMHS	14					
[a] Reaction conditions: benzophenone (0.100 mmol), Ln[N(SiH- Me_2) ₂] ₃ (thf) ₂ (0.005 mmol), L ¹ H ₂ (0.005 mmol), C ₆ H ₆ (0.5 mL), HN(SiHMe ₂) ₂ (0.100 mmol). [b] ¹ H NMR yield using 1,3,5-trimethoxybenzene as an internal standard. [c] Product was a mixture of HN[Si(OCHPh ₂)Me ₂] ₂ and corre-								

metal size in the catalytic activity was due to the suppression of the amine exchange step during the catalytic cycle (vide infra). Using the best catalytic system of L^1H_2 and the cerium triamide complex **1b**, we examined other silanes, such as PhSiH₃, Ph₂SiH₂, (EtO)₃SiH, O(SiHMe₂)₂, and polymethylhydrosiloxane (PMHS), as hydrosilylation reagents instead of HN(SiHMe₂)₂, but all exhibited low catalytic activities (entries 7– 11), which was ascribed to the importance of Ln–Si–H agostic interaction for the carbonyl insertion into the Si–H bond (vide infra). Therefore, we selected the cerium triamide **1b** as the best catalyst precursor and HN(SiHMe₂)₂ as the best silane reagent.

sponding silylated alcohols derived from the used silanes.

Next, we checked some amine proligands, including tridentate, bidentate, and monodentate nitrogen proligands, under the same catalytic conditions by using **1b** and HN(SiHMe₂)₂ (Table 2). We started by using diethylenetriamine derivatives $L^{1}H_{2}-L^{4}H_{2}$. In sharp contrast to the high yield (94%) for $L^{1}H_{2}$, the use of proligand L^2H_{2} , an N'-methylated derivative of L^1H_{2} , afforded HN[Si(OCHPh₂)Me₂]₂ in 14% yield (entry 2). When $N_{1}N_{1}^{\prime\prime}$ -bis(2,6-dimethylphenyl)diethylenetriamine (L³H₂) and its N'-methylated derivative (L^4H_2) were used as supporting ligands, HN[Si(OCHPh₂)Me₂]₂ was obtained in moderate yields (49 and 48%, respectively; entries 3 and 4). Bidentate N,N'-substituted ethylenediamine derivatives, such as L⁵H₂ with pentafluorophenyl groups, L⁶H₂ with 2,6-dimethylphenyl groups, L^7H_2 with 2,6-diisopropylphenyl groups, L^8H_2 with 2-methylphenyl groups, and L⁹H₂ with cyclohexyl groups, exhibited low to moderate catalytic activities (entries 5-9). Monodentate nitrogen proligands (5.0 mol%), pentafluoro-N-ethylaniline (L¹⁰H), dibenzylamine (L¹¹H), and dicyclohexylamine (L¹²H), afforded HN[Si(OCHPh2)Me2]2 in 21, 54, and 51% yields, respectively (entries 10-12). When the loadings of monodentate li-

Chemistry

European Chemical Societies Publishing

gands, $L^{11}H_2$ and $L^{12}H_2$, were increased up to 10 mol%, the yield of HN[Si(OCHPh₂)Me₂]₂ was slightly increased (entries 10–12, parentheses). Without any nitrogen proligand, Ce[N(SiH-Me₂)₂]₃(thf)₂ (1 **b**) solely produced HN[Si(OCHPh₂)Me₂]₂ in 58% yield (entry 13).^[10] Accordingly, we selected a mixture of L^1H_2 and 1 **b** as the best catalyst combination.

Treatment of L^1H_2 with **1b** in toluene at ambient temperature for 1 h gave cerium complex 4b in 87% yield [Eq. (1)]. The complex **4b** was characterized by spectral data and X-ray analysis. Due to the paramagnetic nature of the cerium(III) center, the ¹H NMR spectrum of **4b** in C_6D_6 displayed two broad singlets centered at $\delta = 11.95$ and -8.63, assignable to ethylene protons of the ligand and a broad singlet at $\delta =$ -19.03 for the amine proton of the ligand; in addition, the SiH and SiMe₂ signals of the N(SiHMe₂)₂ moiety were observed as two broad singlets at $\delta\!=\!-54.20$ and 2.60, respectively. The large high-field shift of the SiH hydrogen atom is particularly prominent and indicative of a pronounced Ce–Si–H β -agostic interaction. For comparison, the chemical shifts of and Si-H moieties in $Ce[N(SiHMe_2)_2]_3(thf)_2$ (1 b), $Ce[N(SiHMe_2)_2]_4Li(thf)^{[11]}$ and $Cp_2^*Ce[N(SiHMe_2)_2]^{[12]}$ were observed at -5.62, -17.70, and -28.63 ppm, respectively. One set of signals for two C₆F₅ groups for **4b** was observed at $\delta = -165.6$, -178.5, and -182.7 for meta, ortho, and para-fluorine atoms in the ¹⁹F NMR spectrum, respectively. The signal for ortho-fluorine atoms was broadened, which was ascribed to the interaction of the orthofluorine atom to the paramagnetic cerium(III) center. The C-F-Ce^{III} interaction in solution was further investigated by the variable temperature ¹⁹F NMR measurement in [D₈]toluene: de-coalescence of a signal assignable to the meta-fluorine atoms

was observed upon cooling the measurement temperature to -70 °C. Based on the ¹⁹F NMR spectra of **4 b**, the energy barrier for the rotation of the C₆F₅ around the *N*–C_{ipso} bonds was estimated to be 4.6 kcal mol⁻¹.

We applied isolated complex **4b** as a catalyst for the hydrosilylation of 2a using HN(SiHMe₂)₂ at ambient temperature in C_6H_6 for 5 h to give diphenylmethanol (3a) after acidic workup in 97% yield. Accordingly, we applied 4b as the catalyst for further hydrosilylation reactions of para-substituted benzophenones (2b-k) using HN(SiHMe₂)₂ as a silane reagent (Table 3). Benzophenone derivatives such as 2b with para-fluoro, 2c with para-chloro, 2d with para-bromo, and 2e with paraiodide were applicable for the reaction, giving the corresponding alcohols 3b (98%), 3c (98%), 3d (93%), and 3e (91%) in high yields without any loss of the C-X bonds (entries 2-5). Para-trifluoromethyl-substituted benzophenone derivative 2 f afforded the corresponding alcohol 3 f in 60% yield (entry 6). Benzophenone derivatives having an electron-donating substituent at the para-position needed longer reaction time for giving the high yield of corresponding hydrosilylated products because of their low reactivity for the Si-H insertion step: 2g with a methyl group, 2h with a tert-butyl group, and 2i with a methoxy group, afforded the corresponding products 3g, 3h,

Table 3. Catalytic hydrosilylation of para-substituted benzophenones. ^[a]								
		4b (5.0 mol%) HN(SiHMe ₂) ₂ (1.0 equiv.)	H ⁺	OH				
	بر المراجع 2a-k	C ₆ H ₆ , rt, time	- [NH ₄] ⁺ - [OSiMe ₂ O] _n	R B 3a-k				
	R		<i>t</i> [h]	Yield ^[b] [%]				
1	H (2a)	5	97				
2	F (2 b)	5	98				
3	CI (2 c	:)	5	98				
4	Br (2 0	Br (2 d)		93				
5	l (2 e)	l (2 e)		91				
6	CF ₃ (2	2 f)	5	60				
7	Me (2	g)	20	94				
8	^t Bu (2	h)	20	97				
9	OMe	(2i)	20	79				
10 ^[c]	NH ₂ (2	2 j)	20	n.d.				
11 ^[c]	NMe ₂	(2 k)	20	n.d.				
[a] Reaction conditions: substrate (0.100 mmol), 4b (0.005 mmol), C ₆ H ₆ (0.5 mL), HN(SiHMe ₂) ₂ (0.100 mmol). [b] ¹ H NMR yield of corresponding al- cohol after acidic work-up (by HCl aq.) using 1,3,5-trimethoxybenzene or hexamethylbenzene as an internal standard. [c] 60 °C; n.d.: not deter-								

and **3i** in 94, 97, and 79% yields, respectively, after 20 h (entries 7–9). *para*-Amino functionalities for **2j** and **2k** suppressed the catalytic hydrosilylation even heated at 60 °C due to the electron-rich character of the carbonyl moiety (entries 10 and 11). In sharp contrast to benzophenone derivatives, reaction of HN(SiHMe₂)₂ with benzaldehyde selectively afforded a Tishchenko reaction product, benzyl benzoate, in a catalytic manner (53% yield after 24 h), having similar reactivity to the previously reported homoleptic lanthanide silylamide complexes.^[13] When acetophenone was used as a substrate, **4b** was rapidly decomposed, presumably due to enolate formation by deprotonation at the α -position of the carbonyl group, whereas the reaction with cyclopropyl phenyl ketone afforded cyclopropyl-(phenyl)methanol in 67% yield after the acidic work-up.

To gain insight into the reaction mechanism by means of NMR spectroscopy, due to the paramagnetic nature of 4b, we prepared the diamagnetic complexes of lanthanum and yttrium bearing L¹ according to the reaction as shown in eq 1: treatment of La[N(SiHMe₂)₂]₃(thf)₂ (1 a) and Y[N(SiHMe₂)₂]₃(thf)₂ (1 f) with L^1H_2 in toluene at ambient temperature for 1 h afforded 4a (98%) and 4f (87%) [Eq. (1)]. Both of the complexes were fully characterized by NMR and IR spectroscopies, and Xray diffraction analyses. The ¹H NMR spectrum of 4a in C₆D₆ at ambient temperature exhibited only one signal for two Si-H bonds at $\delta_{s_{i-H}} = 4.75$, which is comparable to that detected at $\delta_{\text{Si-H}} = 4.70$ for two Si-H bonds in **4 f**. The SiH signals in **4 a** and 4f did not de-coalesce, even at 193 K. Furthermore, the smaller Si-H coupling constant in **4a** (${}^{1}J_{SiH} = 153$ Hz) than that in **4 f** (${}^{1}J_{SiH} = 164$ Hz) indicated that the Si–H bonds of **4 a** are weaker than those of 4f in solution. The IR spectrum of 4a showed a broad absorption for the agostic Si-H stretching vibration at 2002 cm⁻¹, while **4 f** showed two well-separated Si-H stretching vibrations at 2051 and 2107 cm⁻¹, assignable to an agostic Si-H bond and a non-agostic Si-H bond.^[14] Figure 1 shows the crystal structures of 4a and 4f, and selected interatomic distances and angles between the metal center and bis-(dimethylsilyl)amido moiety are summarized in Table 4. Both the lanthanum atom in 4a and the yttrium atom in 4f adopt a 7-coordinated distorted pentagonal bipyramidal geometry with a nitrogen atom of a N(SiHMe₂)₂ ligand and an oxygen atom of THF at the apical positions, while three nitrogen atoms of the ligand L¹ and two fluorine atoms at the ortho-position of two N-C₆F₅ groups coordinate at the equatorial sites. Noteworthy is the structural difference between 4a and 4f: lanthanum complex **4a** has a double β -Si-H agostic interaction featured by a large Si1-N4-Si2 angle of 137.7(4)°, whereas yttri-

Table 4. Selected structural parameters for lanthanide silylamide complexes $4a$ and $4f$ bearing ligand L^1 .									
	Distances [/ 4a	Å] 4 f		Angles [°] 4 a	4 f				
M-Si1 M-Si2 M-N4	3.250(2) 3.519(3) 2.360(6)	3.078(2) 3.652(av.) 2.266(5)	M-N4-Si1 M-N4-Si2 Si1-N4-Si2	105.6(3) 119.7(3) 137.7(4)	101.2(2) 132.3(av.) 123.3(av.)				

Chem. Eur. J. 2020, 26, 14130-14136

mined.

www.chemeurj.org

14132 © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Full Paper doi.org/10.1002/chem.202002011

Figure 1. ORTEP drawings of the crystal structures of 4a (top) and 4f (bottom) with ellipsoids shown at 50% probability. All hydrogen atoms and solvent molecules are omitted for clarity.

um complex **4f** has a single β -Si-H agostic interaction with a narrower Si1-N4-Si2 angle of 123.3°.^[14] The geometric parameters for **4b** are essentially the same as those for **4a** due to the similar ionic radius of lanthanum and cerium. The structural differences in **4a**, **4b**, and **4f** having different ionic radii of the central metal affect the reactivity of their Si–H bonds toward the benzophenone insertion and amine exchange reaction (vide infra).

The lanthanum complex **4a** exhibited almost the same catalytic activity (**3a** produced in 99% yield) as **4b**, while the catalytic activity of **4f** was very low (**3a** produced in 9% yield). Because we obtained both highly (La) and marginally (Y) active diamagnetic complexes, we examined these complexes **4a** and **4f** in terms of their stoichiometric reactions with benzophenone. We first carried out the reactions of **4a** and **4f** with 2 equivalents of **2a** to give the corresponding benzophenone-inserted complexes **5aa** (96%) and **5fa** (77%) [Eq. (2)]. Both diamagnetic complexes **5aa** and **5fa** were characterized by ¹H, ¹⁹F, and ¹³C NMR analysis.

Figure 2 shows the crystal structure of **5aa**, and the structure of the cerium analogue **5ba** is included in the Supporting Information. The lanthanum atom adopts an 8-coordinated geometry with three nitrogen atoms of L^1 , two fluorine atoms at the *ortho*-positions of two $N-C_6F_5$ groups, and one oxygen

Chemistry Europe

European Chemical Societies Publishing

atom of the two siloxy moieties in the equatorial plane of the distorted hexagonal bipyramid, and a nitrogen atom of N[Si(OCHPh₂)Me₂]₂ and an oxygen atom of THF located at the apical sites. The distances of La-N1 (2.545(5) Å), La-N3 (2.520(5) Å), and La-N4 (2.405(4) Å) are slightly longer than the corresponding distances in complex 4a due to the steric hindrance caused by N[Si(OCHPh₂)Me₂]₂. One of two diphenylmethoxy groups coordinates to the lanthanum center, which increases the steric crowding around the lanthanum atom. The distances for O1-C21 (1.441(6) Å) and O2-C34 (1.440(6) Å) are typical C-O single bonds, consistent with the double-hydrosilylation of benzophenone by two Si-H bonds in 4a. With respect to carbonyl-inserted silylamide complexes, formaldehyde- and acetone-inserted zirconium cationic complexes, $[Cp_2ZrN(SiMe_2OR)_2]^+$ (R = Me and *iPr*),^[15] and an acetophenone-inserted yttrium complex, Y[N(SiMe₂OCHMePh)Dipp] [N(SiHMe₂)Dipp]₂,^[16] were reported.

To investigate the details of a carbonyl insertion reaction for **4a** and **4f**, we used di-*tert*-butyl benzophenone **2h** instead of

Figure 2. ORTEP drawing of the crystal structure of **5** aa with ellipsoids shown at 50% probability. All hydrogen atoms and solvent molecules are omitted for clarity. Selected interatomic distances [Å]: La1–N1, 2.545(5); La1–N2, 2.600(5); La1–N3, 2.520(5); La1–N4, 2.405(4); La1–F1, 2.698(3); La1–F6, 2.792(4); La1–O1, 3.549(3); La1–O2, 2.850(4); C21–O1, 1.441(6); C34–O2, 1.440(6). Selected interatomic angles [°]: La1-N4-Si1, 108.9(2); La1-N4-Si2, 123.9(2).

2a because the insertion rate of 2a was too fast to trace the reaction profiles. The reaction of 4a with two equivalents of 2h proceeded at 265 K to give 5ah in 78% yield together with a monohydrosilylated complex 6ah in 20% yield after 70 min, while the reaction of **4 f** was much slower, giving **5 fh** in 43% yield and 6 fh in 27% yield with remaining 4 f (30%). Such distinct reactivity of 4a and 4f might be due to a metal size effect as reflected by a double agostic interaction in 4a and a single agostic interaction in **4 f** (vide supra). We further conducted an amine exchange reaction of 5 aa with HN(SiHMe₂)₂ in the presence of 2a, which released the double-hydrosilylated product, HN[Si(OCHPh₂)Me₂]₂, in quantitative yield (Scheme 1, above). Crucially, the absence of 2a did not lead to an amine exchange reaction between 5 aa and HN(SiHMe₂)₂ (Scheme 1, middle), indicating that coordination of the benzo-

Scheme 1. Ligand-exchange reaction of 5aa with HN(SiHMe₂)₂ in the presence (top) and in the absence (middle) of 2a. The formation of benzophenone adduct 7aa (bottom).

phenone substrate is indispensable for the replacement of the amido ligand N[Si(OCHPh₂)Me₂]₂ in **5 aa** with HN(SiHMe₂)₂ in this catalytic hydrosilylation reaction. In fact, addition of 1 equivalent of **2 a** to **5 aa** in C₆D₆ quantitatively afforded benzophenone adduct **7 aa** (Scheme 1, below).^[17] Coordination of benzophenone derivatives to a lanthanide center was reported for Ln[N(SiMe₃)₂]₃ (Ln = Ce, Pr).^[17a] In contrast, yttrium complex **5 fa** did not engage in an amine exchange reaction despite the presence or absence of benzophenone because of the lack of enough coordination sites for the smaller yttrium center than lanthanum, in accordance with the different catalytic activity observed for lanthanum complex **4 a** and yttrium complex **4 f**. Complexes **5 aa** and **7 aa** were stable in solution, suggesting no involvement of amine elimination by the central N–H moiety of the tridentate ligand.

We conducted a kinetic study for the hydrosilylation of **2a** by HN(SiHMe₂)₂ under optimized reaction conditions, in which the isolated lanthanum complex **4a** was used as a catalyst, by means of variable time normalization analysis.^[18] The obtained rate law is provided in Equation (3). The reaction obeyed a first-order with respect to both of the concentration of **4a** and the concentration of HN(SiHMe₂)₂, suggesting that the amine exchange reaction of **5aa** with HN(SiHMe₂)₂ is the rate-determining step in this catalytic reaction. On the other hand, the reaction was inverse second-order by the concentration of **2a**, indicating that coordination of **2a** to the metal center significantly impaired the insertion of the carbonyl moiety into the Si–H bond (vide infra).

$$\label{eq:Reaction rate} \text{Reaction rate} \propto \frac{[4a][\text{HN}(\text{SiHMe}_2)_2]}{[2a]^2} \tag{3}$$

As shown in Scheme 2, on the basis of the above spectroscopic analysis as well as stoichiometric reactions together with a kinetic study, we propose a plausible catalytic cycle for the hydrosilylation of 2a with HN(SiHMe₂)₂ using 4a. First, 4a

Scheme 2. A plausible mechanism for the lanthanum-catalyzed hydrosilylation of 2 a with HN(SiHMe₂)₂.

Chem. Eur. J. 2020, 26, 14130-14136

www.chemeurj.org

14134 © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

reacts with 1 equivalent of 2a, giving monohydrosilylated complex 6aa via interaction of the carbonyl moiety with the cationic silicon center of A:[4p, 19] interaction of Lewis bases with the silicon atom of the M–Si–H β -agostic species due to the increased Lewis acidity of the silicon atom was reported for a cationic zirconium bis(dimethylsilyl)amide complex with 4-(dimethylamino)pyridine by Sadow et al. (Figure 3, left)^[15a] and a cerium complex bearing a dimethylpyrazolyl-substituted silylamido ligand (Figure 3, right).^[20a] Further, another equivalent of 2a spontaneously reacts with an Si-H bond in 6aa through intermediate B to form double-hydrosilylated complex 5 aa. Coordination of 2a to the metal center causes a dissociation of the diphenylmethoxy moiety in 5 aa, thereby forming 7 aa, which undergoes an amine exchange reaction with HN(SiHMe₂)₂ to afford the double-hydrosilylated product HN[Si(OCHPh₂)Me₂]₂ along with 8aa. Liberation of 2a from 8aa regenerates the catalytically active complex 4a, though this pathway is unfavorable when the concentration of 2a is high, based on the kinetic study.^[19] In fact, a 2k-coordinated adduct 8ak, analogue of 8aa, was detected via the ¹H and ¹⁹F NMR spectra for the reaction mixture of **4a** and paradimethylamino benzophenone (2k), though no insertion of 2k into the Si–H bond was observed. Disappearance of the β -Si-H agostic interaction in 8ak, confirmed by the significant downfield shift of the Si-H proton signal (δ = 5.25) and the increased ¹J_{siH} coupling (160 Hz), indicates that the carbonyl moiety of benzophenone derivatives inserts into the Si-H bond activated by the metal center.^[14]

Figure 3. Interaction between a Lewis base and electrophilic silicon atoms of disilylamide ligands in hydride complexes.

Conclusions

Rare-earth metal silylamide complexes $Ln(L^1)[N(SiHMe_2)_2](thf)$ (Ln = La, Ce) bearing an *N*,*N*"-bis(pentafluorophenyl)diethylenetriamine dianionic ligand L^1 promote the hydrosilylation of benzophenone derivatives with HN(SiHMe_2)_2. Control experiments and kinetic studies revealed a plausible reaction mechanism, in which amine exchange of the benzophenone-inserted amido moiety with bis(dimethylsilyl)amine plays a key role in obtaining the desired doubly hydrosilylated product. We are currently investigating the scope of such rare-earth metal-catalyzed reductions of unsaturated compounds involving these amine-exchange pathways.

Acknowledgements

This work was supported by JSPS KAKENHI grants no. JP19H05057 (Hydrogenomics) to H.T. and JP15H05808 (Precisely Designed Catalysis with Customized Scaffolding) to K.M. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: amine exchange · hydrosilylation · rare-earth metals · Si-H beta-agostic interactions

- [1] E. J. Corey, C. J. Helal, Angew. Chem. Int. Ed. 1998, 37, 1986–2012; Angew. Chem. 1998, 110, 2092–2118.
- [2] a) G. Solladie, F. Colobert, F. Somny, *Tetrahedron Lett.* 1999, 40, 1227–1228; b) G. J. Quallich, T. W. Makowski, A. F. Sanders, F. J. Urban, E. Vazquez, *J. Org. Chem.* 1998, 63, 4116–4119; c) M. J. McKennon, A. I. Meyers, *J. Org. Chem.* 1993, 58, 3568–3572; d) A. A. Dos Santos, P. Castelani, B. K. Bassora, J. C. Fogo, Jr., C. E. Costa, J. V. Comasseto, *Tetrahedron* 2005, 61, 9173–9179; e) C. A. Busacca, R. Raju, N. Grinberg, N. Haddad, P. James-Jones, H. Lee, J. C. Lorenz, A. Saha, C. H. Senanayake, *J. Org. Chem.* 2008, 73, 1524–1531.
- [3] Selected examples of iridium catalyst systems: a) S. Park, M. Brookhart, Organometallics 2010, 29, 6057-6064; b) R. Lalrempuia, M. Iglesias, V. Polo, P. J. S. Miguel, F. J. Fernández-Alvarez, J. J. Pérez-Torrente, L. A. Oro, Angew. Chem. Int. Ed. 2012, 51, 12824-12827; Angew. Chem. 2012, 124, 12996-12999; c) C. Cheng, M. Brookhart, Angew. Chem. Int. Ed. 2012, 51, 9422-9424; Angew. Chem. 2012, 124, 9556-9558; d) M. Iglesias, P. J. S. Miguel, V. Polo, F. J. Fernández-Alvarez, J. J. Pérez-Torrente, L. A. Oro, Chem. Eur. J. 2013, 19, 17559-17566. Selected examples of rhodium catalyst systems: e) G. Z. Zheng, T. H. Chan, Organometallics 1995, 14, 70-79; f) D. Imao, M. Hayama, K. Ishikawa, T. Ohta, Y. Ito, Chem. Lett. 2007, 36, 366-367; g) N. Schneider, M. Finger, C. Haferkemper, S. Bellemin-Laponnaz, P. Hofmann, L. H. Gade, Angew. Chem. Int. Ed. 2009, 48, 1609-1613; Angew. Chem. 2009, 121, 1637-1641; h) N. Schneider, M. Finger, C. Haferkemper, S. Bellemin-Laponnaz, P. Hofmann, L. H. Gade, Chem. Eur. J. 2009, 15, 11515-11529; i) P. Gigler, B. Bechlars, W. A. Herrmann, F. E. Kühn, J. Am. Chem. Soc. 2011, 133, 1589-1596. Sj) elected examples of platinum catalyst systems: N. Nakatani, J. Hasegawa, Y. Sunada, H. Nagashima, Dalton Trans. 2015, 44, 19344-19356; k) T. Hayashi, K. Yamamoto, M. Kumada, J. Organomet. Chem. 1976, 112, 253-262; I) W. R. Cullen, S. V. Evans, N. F. Han, J. Trotter, Inorg. Chem. **1987**, *26*, 514–519.
- [4] Selected examples of copper catalyst systems: a) S. Díez-González, H. Kaur, F. K. Zinn, E. D. Stevens, S. P. Nolan, J. Org. Chem. 2005, 70, 4784-4796; b) T. Vergote, F. Nahra, D. Peeters, O. Riant, T. Leyssens, J. Organomet. Chem. 2013, 730, 95-103, c) Selected examples of nickel catalyst systems: S. Chakraborty, J. A. Krause, H. Guan, Organometallics 2009, 28, 582-586; d) L. Postigo, B. Royo, Adv. Synth. Catal. 2012, 354, 2613-2618. e) Selected examples of cobalt catalyst systems: W. Zhou, S. L. Marquard, M. W. Bezpalko, B. M. Foxman, C. M. Thomas, Organometallics 2013, 32, 1766-1772. f) Selected examples of iron catalyst systems: K. Zhu, M. P. Shaver, S. P. Thomas, Eur. J. Org. Chem. 2015, 2119-2123; g) H.-J. Lin, S. Lutz, C. O'Kane, M. Zeller, C.-H. Chen, T. A. Assila, W.-T. Lee, Dalton Trans. 2018, 47, 3243-3247; h) P. Bhattacharya, J. A. Krause, H. Guan, Organometallics 2011, 30, 4720-4729; i) N. S. Shaikh, S. Enthaler, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2008, 47, 2497-2501; Angew. Chem. 2008, 120, 2531-2535. j) Selected examples of alkali metal catalyst systems: K. Revunova, G. Nikonov, Chem. Eur. J. 2014, 20, 839-845; k) D. Addis, S. Zhou, S. Das, K. Junge, H. Kosslick, J. Harloff, H. Lund, A. Schulz, M. Beller, Chem. Asian J. 2010, 5, 2341-2345; I) H. Nishikori, R. Yoshihara, A. Hosomi, Synlett 2003, 561-563; m) M. Zhao, W. Xie, C. Cui, Chem. Eur. J. 2014, 20, 9259-9262. n) Selected examples of borane catalyst systems: S. Keess, A. Simonneau, M. Oestreich, Organometallics

Chem. Eur. J. 2020, 26, 14130 – 14136

www.chemeurj.org

Chemistry European Chemical Societies Publishing

, *34*, 790–799; o) B. C. Kang, S. H. Shin, J. Yun, D. H. Ryu, *Org. Lett.* , *19*, 6316–6319; p) D. J. Parks, W. E. Piers, *J. Am. Chem. Soc.* **1996**, , 9440–9441; q) S. Rendler, M. Oestreich, *Angew. Chem. Int. Ed.* **2008**, , 5997–6000; *Angew. Chem.* **2008**, *120*, 6086–6089.

- [5] a) S. Patnaik, A. D. Sadow, Angew. Chem. Int. Ed. 2019, 58, 2505–2509;
 Angew. Chem. 2019, 131, 2527–2531; b) D. Mukherjee, A. Ellern, A. D. Sadow, Chem. Sci. 2014, 5, 959–964; c) S. P. Nolan, D. Stern, T. J. Marks, J. Am. Chem. Soc. 1989, 111, 7844–7853.
- [6] a) T. Sakakura, H.-J. Lautenschlager, M. Tanaka, J. Chem. Soc. Chem. Commun. 1991, 40–41; b) G. A. Molander, M. J. Julius, J. Org. Chem. 1992, 57, 6347–6351; c) S. Onozawa, T. Sakakura, M. Tanaka, Tetrahedron Lett. 1994, 35, 8177–8180; d) G. A. Molander, P. J. Nichols, J. Am. Chem. Soc. 1995, 117, 4415–4416; e) P.-F. Fu, L. Brard, Y. Li, T. J. Marks, J. Am. Chem. Soc. 1995, 117, 7157–7168; f) J. Liu, W. Chen, J. Li, C. Cui, ACS Catal. 2018, 8, 2230–2235; g) J. Li, C. Zhao, J. Liu, H. Huang, F. Wang, X. Xu, C. Cui, Inorg. Chem. 2016, 55, 9105–9111.
- [7] a) G. A. Molander, J. A. C. Romero, C. P. Corrette, J. Organomet. Chem.
 2002, 647, 225-235; b) W. Chen, H. Song, J. Li, C. Cui, Angew. Chem. Int. Ed. 2020, 59, 2365-2369; Angew. Chem. 2020, 132, 2385-2389.
- [8] a) K. C. Hultzsch, F. Hampel, T. Wagner, Organometallics 2004, 23, 2601–2612; b) S. Datta, M. T. Gamer, P. W. Roesky, Organometallics 2008, 27, 1207–1213; c) H. N. Nguyen, H. Lee, S. Audörsch, A. L. Reznichenko, A. J. Nawara-Hultzsch, B. Schmidt, K. C. Hultzsch, Organometallics 2018, 37, 4358–4379; d) A. L. Reznichenko, K. C. Hultzsch, Organometallics 2013, 32, 1394–1408; e) A. Otero, A. Lara-Sánchez, C. Nájera, J. Fernández-Baeza, I. Márquez-Segovia, J. Castro-Osma, J. Martínez, L. F. Sánchez-Barba, A. M. Rodríguez, Organometallics 2012, 31, 2244–2255; f) E. Le Roux, Y. Liang, M. P. Storz, R. Anwander, J. Am. Chem. Soc. 2010, 132, 16368–16371; g) A. V. Pawlikowski, A. Ellern, A. D. Sadow, Inorg. Chem. 2009, 48, 8020–8029.
- [9] a) Q. Wang, C. Lu, B. Zhao, Y. Yao, *Eur. J. Org. Chem.* 2016, 2555–2559;
 b) H. Cheng, Y. Xiao, C. R. Lu, B. Zhao, Y. R. Wang, Y. M. Yao, *New J. Chem.* 2015, *39*, 7667–7671; c) L. C. Hong, Y. L. Shao, L. X. Zhang, X. G. Zhou, *Chem. Eur. J.* 2014, *20*, 8551–8555; d) Q. M. Wu, J. Zhou, Z. G. Yao, F. Xu, Q. Shen, *J. Org. Chem.* 2010, *75*, 7498–7501.
- [10] See the Supporting Information for hydrosilylation by Ln[N(SiH-Me_2)_2]_3(thf)_2.
- [11] U. Bayer, L. Bock, C. Maichle-Mössmer, R. Anwander, *Eur. J. Inorg. Chem.* **2020**, 101–106.
- [12] D. Schneider, R. Anwander, Eur. J. Inorg. Chem. 2017, 1180-1188.
- [13] a) H. Berberich, P. W. Roesky, Angew. Chem. Int. Ed. 1998, 37, 1569– 1571; Angew. Chem. 1998, 110, 1618–1620; b) M. R. Bürgstein, H. Berberich, P. W. Roesky, Chem. Eur. J. 2001, 7, 3078–3085.
- [14] a) W. S. Rees, Jr., O. Just, H. Schumann, R. Weimann, Angew. Chem. Int. Ed. Engl. 1996, 35, 419–422; Angew. Chem. 1996, 108, 481–483; b) K. C.

Boteju, A. Ellern, A. D. Sadow, Chem. Commun. 2017, 53, 716-719; c) N. Eedugurala, Z. Wang, K. Yan, K. C. Boteju, U. Chaudhary, T. Kobayashi, A. Ellern, I. I. Slowing, M. Pruski, A. D. Sadow, Organometallics 2017, 36, 1142-1153; d) J. J. Duchimaza Heredia, A. D. Sadow, M. S. Gordon, J. Phys. Chem. A 2018, 122, 9653-9669; e) L. J. Procopio, P. J. Caroll, D. H. Berry, J. Am. Chem. Soc. 1994, 116, 177-185; f) W. A. Herrmann, J. Eppinger, M. Spiegler, O. Runte, R. Anwander, Organometallics 1997, 16, 1813-1815; g) R. Anwander, O. Runte, J. Eppinger, G. Gerstberger, E. Herdtweck, M. Spiegler, J. Chem. Soc. Dalton Trans. 1998, 847-858; h) I. Nagl, W. Scherer, M. Tafipolsky, R. Anwander, Eur. J. Inorg. Chem. 1999, 1405 - 1407; i) J. Eppinger, M. Spiegler, W. Hieringer, W. A. Herrmann, R. Anwander, J. Am. Chem. Soc. 2000, 122, 3080-3096; j) W. Hieringer, J. Eppinger, R. Anwander, W. A. Herrmann, J. Am. Chem. Soc. 2000, 122, 11983 – 11994; k) M. G. Klimpel, H. W. Görlitzer, M. Tafipolsky, M. Spiegler, W. Scherer, R. Anwander, J. Organomet. Chem. 2002, 647, 236-244; I) H. F. Yuen, T. J. Marks, Organometallics 2008, 27, 155-158; m) H. F. Yuen, T. J. Marks, Organometallics 2009, 28, 2423-2440; n) A. Pindwal, A. Ellern, A. D. Sadow, Organometallics 2016, 35, 1674-1683.

- [15] a) K. Yan, J. J. D. Heredia, A. Ellern, M. S. Gordon, A. D. Sadow, J. Am. Chem. Soc. 2013, 135, 15225–15237; b) K. Yan, A. Pindwal, A. Ellern, A. D. Sadow, Dalton Trans. 2014, 43, 8644–8653.
- [16] K. C. Boteju, S. Wan, A. Venkatesh, A. Ellern, A. J. Rossini, A. D. Sadow, *Chem. Commun.* 2018, 54, 7318–7321.
- [17] a) A. R. Crozier, K. W. Törnroos, C. Maichle-Mössmer, R. Anwander, *Eur. J. Inorg. Chem.* 2013, 409–414; b) H. J. Heeres, M. Maters, J. H. Teuben, G. Helgesson, S. Jagner, *Organometallics* 1992, *11*, 350–356.
- [18] a) J. Burés, Angew. Chem. Int. Ed. 2016, 55, 2028–2031; Angew. Chem.
 2016, 128, 2068–2071; b) J. Burés, Angew. Chem. Int. Ed. 2016, 55, 16084–16087; Angew. Chem. 2016, 128, 16318–16321.
- [19] a) M. C. Lipke, T. D. Tilley, J. Am. Chem. Soc. 2014, 136, 16387–16398;
 b) D. J. Parks, J. M. Blackwell, W. E. Piers, J. Org. Chem. 2000, 65, 3090–3098;
 c) J. M. Blackwell, E. R. Sonmor, T. Scoccitti, W. E. Piers, Org. Lett. 2000, 2, 3921–3923;
 d) T. T. Metsänen, D. Gallego, T. Szilvási, M. Driess, M. Oestreich, Chem. Sci. 2015, 6, 7143–7149.
- [20] a) D. Werner, U. Bayer, D. Schädle, R. Anwander, *Chem. Eur. J.* 2020, *26*, 12194–12205; b) D. Bubrin, M. Niemeyer, *Inorg. Chem.* 2014, *53*, 1269–1271.

Manuscript received: April 24, 2020 Revised manuscript received: June 22, 2020 Accepted manuscript online: July 7, 2020 Version of record online: October 1, 2020