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1 | INTRODUCTION

Animals share their bodies with a diverse suite of microorganisms
known as the microbiome (Engel & Moran, 2013; The NIH HMP

Abstract

The vertical transmission of microbes from mother to offspring is critical to the
survival, development, and health of animals. Invertebrate systems offer unique
opportunities to conduct studies on microbiome-development-reproduction dynam-
ics since reproductive modes ranging from oviparity to multiple types of viviparity
are found in these animals. One such invertebrate is the live-bearing cockroach,
Diploptera punctata. Females carry embryos in their brood sac, which acts as the
functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing
was used to characterize maternal and embryonic microbiomes as well as the de-
velopment of the whole-body microbiome across nymphal development. We identi-
fied 50 phyla and 121 classes overall and found that mothers and their developing
embryos had significantly different microbial communities. Of particular interest is
the notable lack of diversity in the embryonic microbiome, which is comprised exclu-
sively of Blattabacteria, indicating microbial transmission of only this symbiont dur-
ing gestation. Our analysis of postnatal development reveals that significant amounts
of non-Blattabacteria species are not able to colonize newborn D. punctata until mel-
anization, after which the microbial community rapidly and dynamically diversifies.
While the role of these microbes during development has not been characterized,
Blattabacteria must serve a critical role providing specific micronutrients lacking in
milk secretions to the embryos during gestation. This research provides insight into
the microbiome development, specifically with relation to viviparity, provisioning of

milk-like secretions, and mother-offspring interactions during pregnancy.
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Working Group, 2009). These microbes have important roles in
a variety of processes benefiting their host, ranging from nutri-
ent metabolism to immunity (Albenberg & Wu, 2014; Chung et
al., 2012; Dimmitt et al., 2010; Douglas, 2017; Jasarevi¢, Rodgers,
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& Bale, 2015; Michalkova, Benoit, Weiss, Attardo, & Aksoy, 2014;
Pais, Lohs, Wu, Wang, & Aksoy, 2008; Snyder & Rio, 2015; Wang,
Weiss, & Aksoy, 2013; Weiss, Wang, & Aksoy, 2011). For most an-
imals, their microbial community is established over development
through interactions with the environment, through diet, as well
as interactions with other organisms (Abdul Rahman et al., 2015;
Blaser & Dominguez-Bello, 2016; Carrasco et al., 2014; da Costa &
Poulsen, 2018; Estes et al., 2013; Funkhouser & Bordenstein, 2013;
Gilbert, 2014; Korpela et al., 2018; Kostic et al., 2015; Morse et al.,
2013; Mueller, Bakacs, Combellick, Grigoryan, & Dominguez-Bello,
2015; Perez-Mufoz, Arrieta, Ramer-Tait, & Walter, 2017; Schwab,
Riggs, Newton, & Moczek, 2016; Shukla, Vogel, Heckel, Vilcinskas,
& Kaltenpoth, 2018; Torrazza & Neu, 2011; Wang & Rozen, 2017).
Of interest is the role that parent-offspring interactions play in the
microbial acquisition during early development, specifically from
mother to her offspring (Adair & Douglas, 2017; Dimmitt et al.,
2010; Duranti et al., 2017; Fox & Eichelberger, 2015; Funkhouser
& Bordenstein, 2013; Gilbert, 2014; Jasarevi¢, Rodgers, et al., 2015;
Korpela et al., 2018; Kostic et al., 2015; Perez-Munoz et al., 2017;
Schwab et al., 2016; Torrazza & Neu, 2011; Wade, 2014; Walker,
Clemente, Peter, & Loos, 2017).

The animal's reproductive mode, in part, mediates the types of
interactions mothers have with their offspring. Egg-laying (ovipa-
rous) organisms have limited opportunity to pass microbes to off-
spring before they are born through hatching (Abdul Rahman et al.,
2015; Bright & Bulgheresi, 2010; da Costa & Poulsen, 2018; Estes et
al., 2013; Funkhouser & Bordenstein, 2013; Salem, Florez, Gerardo,
& Kaltenpoth, 2015; Schwab et al., 2016; Shukla et al., 2018). This
forces vertical symbiont transmission to occur through incorpora-
tion during oogenesis or by inoculating the external egg surface for
consumption immediately upon juvenile emergence (Abdul Rahman
et al., 2015; Estes et al., 2013; Funkhouser & Bordenstein, 2013;
Schwab et al., 2016; Shukla et al., 2018). Viviparous (live-bearing) an-
imals can have extensive and complex interactions between mother
and offspring during gestation and birth, the impacts of which can
last for a few days to years (Cao-Lei et al., 2017, 2014; Duranti et
al., 2017; Funkhouser & Bordenstein, 2013; Jasarevi¢, Rodgers, et
al., 2015; Jiménez-Chillardn et al., 2015; Ma et al., 2014; Ogawa &
Miura, 2014; Poulin & Thomas, 2008; Stein & Lumey, 2000; Torrazza
& Neu, 2011; Weiss et al., 2011). These prolonged interactions pro-
vide means for multiple routes of vertical transmission of microbes
from mother to her progeny (Funkhouser & Bordenstein, 2013;
Ma et al., 2014; Mueller et al., 2015). In humans, while placental
transmission of microbes is debated (Aagaard et al., 2014; Blaser &
Dominguez-Bello, 2016; Fardini, Chung, Dumm, Joshi, & Han, 2010;
Perez-Mufoz et al., 2017; Walker et al., 2017), mother to newborn
transfer can occur during passage through the birth canal, breast
feeding, and throughout early postnatal development (Ballard &
Morrow, 2013; Dahlen, Downe, Kennedy, & Foureur, 2014; Duranti
et al., 2017; Funkhouser & Bordenstein, 2013; Jasarevi¢, Howerton,
Howard, & Bale, 2015; Jasarevi¢, Rodgers, et al., 2015; Korpela et
al., 2018; Ma et al., 2014; Mueller et al., 2015). Other live-bearing
animals and their symbionts have evolved to utilize the extended

gestation as a time to inoculate progeny with bacteria (Denlinger &
Ma, 1975; Funkhouser & Bordenstein, 2013; Ma et al., 2014; Morse
et al., 2013; Mueller et al., 2015; Wang et al., 2013). This is exem-
plified in tsetse flies and other members of Hippoboscoidea, where
mothers utilize nutritive secretions as a mechanism to transfer re-
quired symbiotic bacteria to their intrauterine developing larvae
(Douglas, 2017; Morse et al., 2013; Snyder & Rio, 2015; Wang et al.,
2013; Weiss et al., 2011). For tsetse flies, symbiotic bacteria, spe-
cifically Wigglesworthia, provide key B vitamins that are low in their
food source (blood) or within milk transferred to the developing in-
trauterine larva and are critical to immune function (Akman et al.,
2002; Attardo et al., 2019; Benoit et al., 2017; Rio et al., 2012). Here,
we examine shifts in the microbiome of the live-bearing cockroach,
Diploptera punctata, during pregnancy and development.

Diploptera punctata reproduces by matrotrophic viviparity
(Figure 1), in which embryos develop inside the brood sac, a unique
organ which functions as both a uterus and pseudo-placenta, and
are provided with nutrients by a secretion of milk-like compo-
nents (Hagan, 1939, 1941; Roth & Willis, 1955, 1957; Stay & Coop,
1973). This secretion appears in embryo gut contents at 20% of
the 60-70-day pregnancy, when the dorsal edge of the body wall
is closed (Ingram, Stay, & Cain, 1977; Roth & Willis, 1955; Stay &
Coop, 1973, 1974). Diploptera milk is a combination of proteins and
free amino acids, carbohydrates, and lipids in a water base (Ingram et
al., 1977; Stay & Coop, 1974; Williford, Stay, & Bhattacharya, 2004;
Youngsteadt, Fan, Stay, & Schal, 2005). The proteins present include
a unique family of lipocalin-like milk proteins (Ingram et al., 1977;
Stay & Coop, 1974; Williford et al., 2004). While this milky secre-
tion provides vital nutrients to developing embryo, it is deficient
in two essential amino acids, methionine and tryptophan (Ingram
et al., 1977; Williford et al., 2004). It has been proposed that bac-
terial endosymbionts provide these two nutrients (Williford et al.,
2004); however, in oviparous cockroaches the only bacterium trans-
mitted from mother to embryo belongs to the Flavobacteria family
Blattabacteriaceae (Bandi et al., 1994, 1995; Giorgi & Nordin, 1994).

FIGURE 1 Diploptera punctata reproduce by matrotrophic
viviparity, this female D. punctata is giving birth, surrounded by her
newly born nymphs
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Most, but not all, strains of Blattabacteria have an incomplete bio-
synthetic pathway for methionine (Huang, Sabree, & Moran, 2012;
Kambhampati, Alleman, & Park, 2013; Loépez-Sanchez et al., 2008,
2009; Patino-Navarrete, Moya, Latorre, & Peretd, 2013; Sabree,
Kambhampati, & Moran, 2009; Tokuda et al., 2013). This leads us
to the question, do D. punctata embryos inherit only Blattabacteria,
capable of methionine biosynthesis, from their mothers, or does the
extended association between mother and offspring allow coloniza-
tion of the embryonic microbiome by additional bacteria?

To address this question, this study determined the microbiome
of D. punctata throughout development, characterizing the micro-
bial communities inhabiting female D. punctata and their offspring
across development using 16S rRNA gene sequencing. The infor-
mation generated by this study will provide the first step in devel-
oping D. punctata as a model system to elucidate how intrauterine
development and the prenatal microbiome affect later acquisition of
microbial endosymbionts. Developing a new model system under-
standing microbial shifts during invertebrate matrotrophic viviparity
will widen the evolutionary lens through which we view reproduc-

tion and the microbiome in viviparous animals.

2 | METHODS

2.1 | Animals

Colonies reared at the University of Cincinnati (UC) Department of
Biological Sciences (Cincinnati, OH) were housed in a climate-con-
trolled facility. Ambient temperature was held between 24-28°C, and
relative humidity (RH) was held between 70%-80%. A 12:12-hr light-
dark photoperiod was maintained for the duration of the experiment.
Animals were provided water and fed Old Roy Complete Nutrition
brand dog food (Mars, Inc.) ad libitum. A second group of D. punc-
tata were obtained from The Ohio State University (OSU) Biological
Sciences Greenhouse (Columbus, OH) insect collection where they
were reared in similar conditions with the exception of being fed a diet
of Tetramin fish food (Spectrum Brands Pet). This second group was
collected randomly from the OSU colony and brought to the UC labo-
ratory, where they were housed separately from the UC colony under
identical conditions and provided the same food and water sources

as the UC colony for 1 week, when sacrificed for sample collection.

2.2 | Sample collection

Visibly pregnant females were selected from the colony for use in
mother-embryo comparisons. Females were surface sterilized by
rinsing for 1 min in each of the following solutions: 70% ethanol
and 2% sodium hypochlorite. This was followed by four rinses in
sterile phosphate-buffered saline (PBS; 81 mM Na,HPO,, 19 mM
NaH,PO,, 150 mM NaCl, pH 7.4). Embryo broods were then dis-
sected from the brood sac in sterile PBS by making two small
incisions at the opening of the brood sac, one on each side, and
removed using ethanol sterilized forceps. To determine the devel-
opmental stage of the embryos, a single embryo from the center
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of each brood was measured on a bleach sterilized ruler and des-
ignated as prelactation, early lactation, or late lactation based on
its length (Table 1; Stay & Coop, 1973). Entire broods of embryos
and individual mothers were then placed into separate 1.5-mL
centrifuge tubes with silica beads and stored at -80°C until pro-
cessing. While mother-embryo pairs were collected for all three
trimesters, only late lactation pairs were utilized in this study. Nine
mother-embryo pairs were collected from the UC colony for anal-
ysis and 12 from the OSU colony.

To characterize the postnatal development of the microbiome, vis-
ibly pregnant females were again selected from the colony and housed
in individual containers with food and water ad libitum and monitored
for active birthing. Nymphs were collected as neonates (identified by
lack of cuticular melanization) or first instars (identified by melaniza-
tion within 12 hr of birth). Second-, third-, and fourth-instar nymphs
were sampled and identified by size and the presence of molts in the
living quarters. Postnatal samples were collected only from the UC
colonies. Upon collection, nymphs were surface sterilized using the
methods described above and then stored in 1.5-ml centrifuge tubes
with silica beads at -80°C until processing. Five neonates, seven first
instars, nine second instars, nine third instars, and six fourth instars

were utilized in this analysis.

2.3 | Genomic DNA preparation

Samples were homogenized in 1 ul of sterile 1x PBS, and DNA was
extracted using a QIAGEN DNeasy Blood and Tissue Kit (Qiagen).
The homogenate (200 ul) was incubated with proteinase K (Qiagen)
over night before continuing the provided protocol. DNA concentra-
tion and quality were measured using a NanoDrop 2000. All samples

were diluted to 20 ng/pl for sequencing.

2.4 | 16SrRNA sequencing and
bioinformatic analyses

The V4 hypervariable region of the bacterial 16S rRNA gene was
PCR amplified using the 515f (GTGYCAGCMGCCGCGGTAA) and
806r (GGACTACNVGGGTWTCTAAT) universal primers (Apprill,

TABLE 1 Pregnancy stage determination

Reproductive Embryo Estimated

stage length embryo age

Not Pregnant Not n/a
(NPF) present

PrelLactation <1.6 mm 0-11 days
(PreL)

Early Lactation  1.6- 12-27 days
(EarL) 2.5mm

Late Lactation >2.5mm 28-55+days

(LateL)

Note: This table describes the measurements utilized to determine preg-
nancy stage based on a previous study by Stay and Coop (1973).
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McNally, Parsons, & Weber, 2015; Caporaso et al., 2011). Amplicon
sequencing using the MiSeq lllumina 2 x 300 bp chemistry was
conducted at the Miami University Center for Bioinformatics &
Functional Genomics (Oxford, OH, USA) as well as the University of
Minnesota Genomics Center (Minneapolis, MN, USA).

Using the Ohio Supercomputer Center resources (Ohio
Supercomputer Center, 1987), sequence reads were processed in
mothur (v.1.39.5; Schloss et al., 2009) based on the published MiSeq
SOP (Kozich, Westcott, Baxter, Highlander, & Schloss, 2013). Briefly,
the make.contigs command was used to extract quality data from the
reads and only reads possessing a quality score greater than 25 were
joined to make the contigs for further analysis. Screen.seqs was utilized
to remove contigs containing ambiguous bases, contigs longer than
275 bp, and those containing homopolymers longer than 8 bp. Unique.
seqs and count.seqs were utilized to remove duplicate sequences and
generate count tables. Taxonomic assignment of sequences was con-
ducted using align.seqgs to compare the contigs to the SILVA database
(v.123; Quast et al., 2013) containing only the V4 region aligning with
the primers used. Filter.segs was used to remove sequences that have
large gaps in the alignments. Chimeric sequences were removed using
the UCHIME (Edgar, Haas, Clemente, Quince, & Knight, 2011) algo-
rithm using the chimers.uchime and remove.seqs commands. Non-16S
rRNA gene sequences were removed using the classify.seqs and re-
move.lineage commands. Sequences were clustered using the cluster.
split command at the taxonomic level 4, representing order. All further
analyses were conducted using operational taxonomic unit (OTU) as-
signments generated in the above steps. Rarefaction curves were gen-
erated using the rarefaction.single and the number of observed OTUs
(sobs), demonstrating adequate sequencing depth (Table S1). Alpha
diversity was assessed using the inverse Simpson, and Shannon diver-
sity metrics. NMDS and PCOA analyses were conducted using mothur.
Community composition was manually assessed for visualization at
taxonomic level 5, representing bacterial families. Linear discriminant
analysis effect size (LEfSe) as implemented in mothur was utilized to
identify stage-specific OTUs across development (Segata et al., 2011);
a p-value cutoff of 0.01 was utilized. In addition to mothur, we per-
formed a second analysis of our data for validation purposes utilizing
QIIME (v. 1.9.1; Caporaso et al., 2010) as implemented by the Nephele
pipeline (v. 2.2.2; Weber et al., 2018) using the default settings, ref-
erencing the SILVA database (v.128 SSU REF 99; Quast et al., 2013).
When relative abundances calculated at the class level by both meth-
ods were compared, they were found to be significantly correlated
(Figure S1); consequently, results from mothur were reported.
Additional results from the QIIME analysis can be found in Data S1
and Data S2.

Data processing was conducted in Microsoft Excel (v.16.22) and
R (v.3.3.3; R Core Team, 2017) using RStudio (v1.1.423; RStudio
Team, 2015). Additional statistics and graphical representations
of data were also performed in R using RStudio. Packages utilized
include dplyr (Wickham, Francois, Henry, & Mudiller, 2017), dunn.
test (Dinno, 2017), ggplot2 (Wickham, 2016), reshape2 (Wickham,
2007), RColorBrewer (Neuwirth, 2014), Rmisc (Hope, 2013), and we-
sanderson (Ram & Wickham, 2018).

3 | RESULTS

3.1 | Maternal and embryonic microbiomes

Amplicons from the 16S rRNA generated 2,180,632 paired-end
reads from both OSU and UC colony mothers and embryos of
D. punctata, assembled into 2,170,187 contigs when joined. Of
those, 1,759,259 total sequences passed quality control and were
classified as archaea (8,320 reads; 0.473%), bacteria (1,750,772
reads; 99.518%), or unknown (167 reads; 0.009%; Table S2). Removal
of unwanted classifications (archeae, chloroplast, eukaryote, mito-
chondria, and unknown) yielded 1,749,921 merged reads, ultimately
generating 38,969 bacterial operational taxonomic units (OTUs)
corresponding to 44 phyla, 108 classes, 204 orders, 386 families,
and 710 genera. Overall, Bacteroidetes was the most prominent
phylum (21,099 OTUs; 54.143%), followed by Firmicutes (5,513
OTUs; 14.147%), Proteobacteria (4,783 OTUs; 12.274%), and un-
classified bacteria (4,286 OTUs; 10.998%; Figure 2). At the family
level, Blattabacteriaceae, a family of Flavobacteria, was the most
represented overall in both OTUs (14,426 OTUs; 37.019%) and reads
(1,038,785 reads; 59.047% of all reads including nonbacterial) with
unclassified bacteria being the next most abundant family (4,286
OTUs; 10.998%) followed by unclassified Bacteroidetes (2,260;
5.799%) and Ruminococcaceae (1,890; 4.850%; Figure 2, Table S3).
In mothers, OTUs were distributed among the same top four
phyla (Bacteroidetes, 35.354%; Firmicutes, 27.714%; Proteobacteria,
14.138%; unclassified bacteria, 11.609%), with a similar distribution
among mothers of both the OSU and UC colonies. At the family
level, OTUs derived from D. punctata mothers were most repre-
sented in Blattabacteriaceae (6,734; 13.842%), Ruminococcaceae
(5,781; 11.883%), and unclassified bacteria (5,648; 11.609%;
Figure 2). Mothers from the OSU and UC colonies had similar distri-
butions of OTUs among families. Additionally, there was no signifi-
cant difference between the two colonies in community diversity or
evenness (Figure 3). We identified a core community of 2,314 OTUs
shared between mothers of both colonies, composed of 25 phyla
with Firmicutes and Bacteroidetes representing more than 60% of
OTUs (Figure 4, Table S4). No individual family represented more
than 16% of the core OTUs, with Ruminococcaceae (16%) being the
most abundant of the top eight families (52%; Table S4).
Approximately 89% of OTUs and 99% of sequencing reads from
embryos of both colonies belonged to the family Blattabacteriaceae,
while all other families individually represented 1% or less of OTUs
and 0.08% of embryo-derived sequencing reads (Figure 2, Figure
S2). Additionally, it should be noted that these low abundance taxa
show no consistency in representation across embryo samples with
varying numbers of reads and OTUs (Tables S2 and S3). These find-
ings were corroborated by secondary analyses completed using the
Nephele implementation of QIIME, despite inherent differences in
computational methods (Data S1). Embryos of both UC and OSU
colonies did not differ significantly in diversity, evenness, and spe-
cies richness (Figure 3). However, microbial communities of embryos

were less diverse and less so than mothers across both colonies
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FIGURE 2 Embryo microbiomes from both the University of Cincinnati (UC) and Ohio State University (OSU) colonies are dominated by
the family Blattabacteraceae while mothers are more diverse. Relative abundances of the 19 most abundant bacterial families in Diploptera
punctata mothers and embryos. The remaining families are cumulatively represented as “other”. The y-axis represents the percent of total
OTUs present in each sample for each family. Each bar represents an individual mother or brood of embryos

(Figure 3). Analysis of molecular variance in mothur revealed that
despite our four sampling groups consisting of mothers and embryos
from two distinct colonies, there exist three distinct subcommuni-
ties corresponding to UC mothers, OSU mothers, and all embryos
(Figure 4, Table S5).

While the transmission of the cockroach-specific endosym-
biont Blattabacteria is known to occur during oogenesis (Sacchi
et al., 1996), surface sterilization of oothecae, and hatching into a
sterile environment results in a microbiome exclusively composed
of Blattabacteria, indicating any other bacteria must be acquired
from food or feces (Pietri, Tiffany, & Liang, 2018). Such is the case
in the intergenerational transfer of microbiota via proctodeal tro-
phallaxis in Cryptocercus punctulatus and Mastotermes darwiniensis
(McMahan, 1969). Because D. punctata harbor their developing em-
bryos for their gestational period, it is possible other bacteria may
be transmitted via the brood sac. The low diversity and overall OTUs
present in embryonic samples, however, suggest that if other bac-
teria are transmitted during gestation, the number is very low and
is not likely of significance to D. punctata embryos. This indicates
that Blattabacteria are the main endosymbiont during intrauterine
development in D. punctata and that any additional constituents of
the microbiome colonize after birth.

3.2 | Postnatal microbiome development

We next sought to determine the progression of the microbiome
over postnatal development. Because we found no significant differ-
ences between the OSU and UC colonies of D. punctata, the samples
were recategorized for subsequent analyses and denoted simply as
mothers and embryos. To determine the succession of the microbial
communities inhabiting D. punctata from embryo to adulthood, we

surveyed the microbiome of neonate nymphs and each of the follow-
ing nymphal instars (one through four).

A total of 6,453,793 paired reads from mothers, embryos, and
juvenile instars were used to generate 6,443,348 contigs in mo-
thur. Of these, 4,752,552 passed quality control and were able to
be taxonomically classified as either archeae (14,141; 0.298%),
bacteria (4,737,007; 99.673%), or unknown (1,402; 0.029%; Table
S6). Removing unwanted reads as before, 4,734,605 remained
and were utilized to generate 209,554 bacterial operational taxo-
nomic units (OTUs) including 50 phyla, 122 classes, 252 orders, 485
families, and 1,008 genera (Table S7). As expected, Bacteroidetes
was again the most abundant phylum (122,945 OTUs; 58.670%)
when all samples were combined, followed by Firmicutes (29,705
OTUs; 14.175%), unclassified bacteria (24,777 OTUs; 11.824%),
and Proteobacteria (20,068 OTUs; 9.577%). Flavobacteria and un-
classified bacterial classes comprised 54.979% of class-level OTUs,
a trend that holds true at the order level as well (Table S7). At the
family level, Blattabacteriaceae (42.877%) was again the most prom-
inent taxon followed by unclassified bacteria (11.824%), unclassi-
fied Bacteroidetes (5.515%), and Porphyromonadaceae (4.506%;
Figure 5, Table S7).

Blattabacteriaceae (93.387%), again, were the primary constitu-
entand defining feature of the embryonic microbial community, while
other families each represented 0.716% or less of the OTUs present
(Figure 5, Tables S7 and S8). The dominance of the microbial commu-
nity by Blattabacteriaceae persisted after birth during the neonate
stage (93.741%) with each other family representing less than 1%
of the community (Figure 5, Table S7). Of the eight OTUs identified
as enriched in neonates, seven corresponded to Blattabacteriaceae
and only one was representative of Streptococcaceae (Table S8).
Postmelanization firstinstars, however, have amore diverse microbial
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FIGURE 3 Microbiomes of Diploptera punctata mothers and
embryos differ significantly in measures of diversity and evenness;
embryo samples are significantly less diverse and even than
mothers regardless of colony origin. Measure of diversity and
evenness calculated using mothur for mothers and embryos of
both UC and OSU colonies. (a) Inverse Simpson measure of alpha
diversity (b) Shannon's diversity index (c) Shannon's evenness index.
Median value is represented as the center line of each box while
the lower and upper limits of the box represent the 25th and 75th
quantiles, respectively. Error bars extend to the last data point
within the hinge value + 1.5* the interquartile range. Significance
determined by Kruskal-Wallis and Dunn's test, alpha = 0.025

community, and we identified 58 enriched OTUs corresponding
to 31 families (Table S8). While Blattabacteriaceae is still the most
abundant family (40.442%), a significant portion of the community
(a combined 23.494% of OTUs) is made up by unclassified bacteria
(6.281%), Enterobacteriaceae (6.125%), unclassified Lactobacillales
(5.737%), and Porphyromonadaceae (5.351%), while all other fami-
lies individually represented less than 4% of the first-instar micro-
bial community (Figure 5, Table S7). Of the 31 enriched families we
identified in first-instar samples, the family Lachnospiraceae is the
most represented (10 OTUs) while Blattabacteriaceae is among the
lowest represented (1 OUT; Table S8). Second instars had more fam-
ilies represented in high levels. Blattabacteriaceae represented only
28.303% of the community, while unclassified bacteria (12.978%),
Porphyromonadaceae (7.728%), Ruminococcaceae (7.705%), and
unclassified Bacteroidetes (5.854%) increased in representation and
together make up 34.265% of the OTUs. This expansion of the mi-
crobiome is reflected in an increased number of enriched OTUs and
associated families, and 137 enriched OTUs belonging to 44 families
were identified. Ruminococcaceae, with 39 representative OTUs, is
a key taxon defining the second-instar microbial community with no
enriched OTUs corresponding to Blattabacteriaceae (Table S8). This
redistribution of abundance from Blattabacteriaceae is maintained
after the second-instar stage, with abundances in third and fourth
instars remaining around 30% and no representation in the enriched
OTUs (Figure 5, Tables S7 and S8). In third instars, Ruminococcaceae
(10 OTUs)isalso the most represented family inthe 67 enriched OTUs,
followed by Synergistaceae (6 OTUs; Table S8). In the 105 fourth-
instar-specific OTUs, Ruminococcaceae and Porphyromonadaceae
were the two most represented families, each with 11 OTUs fol-
lowed by Synergistaceae with 8 OTUs (Table S8). Adult females had
even lower abundances of Blattabacteriaceae, although it was still
the most abundant family (18.826%). All families represented less
than 20% of the OTUs present, with Ruminococcaceae and unclassi-
fied bacteria being the only two with abundances greater than 10%
(Figure 5, Table S7). The 205 mother-enriched OTUs represented
61 families, predominantly Ruminococcaceae (48 OTUs) followed
by unidentified Clostridiales (21 OTUs) and Porphyromonadaceae
(14 OTUs; Table S8). Again, no enriched OTUs corresponded to
Blattabacteriaceae.

Multiple measures of diversity varied across the life stages of
D. punctata. While embryos and neonates did not differ in either
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FIGURE 4 Diploptera punctata mothers
share a 2,314 OTU core microbiome

but form unique clusters based on

colony origin in ordination analyses of
communities, while embryos form a single
cluster regardless of origin. Community
comparisons between D. punctata
mothers and embryos of both colonies (a)
Number of OTUs recovered for mothers
of the UC and OSU colonies. A 2,314

OTU core component of the maternal
microbiome was identified using mothur.
(b) Principle coordinate analysis [PCOA] of
mothers and embryos from both colonies.
(c) Nonmetric multidimensional scaling
[NMDS] of mothers and embryos from
both colonies. In (b) and (c), embryos
cluster so closely that the samples are
indistinguishable
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FIGURE 5 Embryos and newborn Diploptera punctata microbiomes are dominated by Blattabacteriaceae while first instars and beyond
have microbial communities contain a greater number of highly represented bacterial families. Relative abundances of the 19 most abundant
bacterial families in D. punctata embryos, nymphs, and adult females. The y-axis represents the percent of total OTUs present in each sample
for each family. Each bar represents an individual sequencing replicate; nymphs and mothers were individual animals while embryos were
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the Shannon index or Inverse Simpson, all other instars and moth-
ers were significantly different from embryos in both measures
(Figure 6). Neonates also did not differ from first instars but showed
significant differences in both diversity metrics compared to second,
third, and fourth instars as well as adult females. Second, third, and
fourth instars, however, did not differ from each other or mothers
in any diversity measure (Figure 6). While AMOVA and HOMOVA
analyses revealed slightly different relationships between the sam-
ples (Table S9), the analyses consistently showed that embryos and
neonates differed from the other juvenile stages and adult females.
These results further support our hypothesis that D. punctata ac-
quire microbial endosymbionts (outside of Blattabacteria), not
through direct maternal transfer during gestation but in the days
and weeks after birth, primarily during and after initial melanization

during the first nymphal instar.

4 | DISCUSSION

We identified 50 phyla, 122 classes, 252 orders, 485 families, and
1,008 genera as part of the overall D. punctata microbial commu-
nity. Our analyses revealed that Bacteroidetes, Firmicutes, and

Proteobacteria were the dominant phyla in addition to unclassified

4th instar

Mother

bacteria. Previous studies have characterized microbial communities
of cockroaches, primarily the gut microbiome. Consistent with our
findings, Bacteroidetes, Firmicutes, Proteobacteria, and unclassified
bacteria are repeatedly found to be prominent members of adult cock-
roach endosymbiont communities (Bauer et al., 2015; Bertino-Grimaldi
et al., 2013; Carrasco et al., 2014; Gontang et al., 2017; Kakumanu,
Maritz, Carlton, & Schal, 2018; Pérez-Cobas et al., 2015; Schauer,
Thompson, & Brune, 2014; Tinker & Ottesen, 2016). Similar to our
adult female samples, other studies have shown Porphyromonadaceae,
Rikenellaceae, and Bacteroidaceae to be the most abundant fami-
lies of Bacteroidetes; while Lachnospiraceae, Ruminococcaceae,
Clostridiaceae, and Lactobacillaceae are commonly represented
Firmicutes (Bauer et al., 2015; Bertino-Grimaldi et al., 2013; Carrasco
et al,, 2014; Gontang et al., 2017; Kakumanu et al., 2018; Pérez-Cobas
et al., 2015; Sabree & Moran, 2014; Schauer et al., 2014; Tinker &
Ottesen, 2016). Proteobacteria present in cockroach microbiomes
often belong to the families Desulfobacteraceae, Enterobacteriaceae,
and Desulfovibrionaceae (Bauer et al., 2015; Bertino-Grimaldi et al.,
2013; Carrasco et al., 2014; Gontang et al., 2017; Kakumanu et al.,
2018; Pérez-Cobas et al., 2015; Sabree & Moran, 2014; Schauer et
al., 2014; Tinker & Ottesen, 2016). Most previous cockroach micro-
biome studies found extremely low representation of Blattabacteria

or do not report on its abundance due to the specific sampling of
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gut tissue; Blattabacteria reside in the fat body and ovaries and thus
will be lacking in studies focus on the gut microbiome (Bauer et al.,
2015; Bertino-Grimaldi et al., 2013; Carrasco et al., 2014; Gontang et
al., 2017; Kakumanu et al., 2018; Pérez-Cobas et al., 2015; Sabree &
Moran, 2014; Schauer et al., 2014; Tinker & Ottesen, 2016). The few
studies that performed microbiome analyses on whole bodies or car-
casses without guts, however, report Blattabacteriaceae abundances
ranging from 8% to 90% depending on the habitat sampled, although
carcasses without guts were generally found to contain predominantly
Blattabacteria (Carrasco et al., 2014; Kakumanu et al., 2018).

Investigations of developmental acquisition of the cockroach
microbiome are rare; however, one study characterized the succes-
sion of the microbiota in the oviparous German cockroach, Blattella
germanica (Carrasco et al., 2014). Contents of surface-sterilized
oothecae contain exclusively Blattabacteria and whole bodies of
first-instar nymphs that hatched from unsterilized oothecae contain
predominantly Blattabacteria, but have begun to acquire other gut
symbionts (Carrasco et al., 2014). Despite the difference in repro-
ductive mode, we found similar results in the intrauterine developing
embryos and neonatal D. punctata.

One previous study has attempted to characterize the micro-
biome of D. punctata mothers and embryos, concluding that there
are significant amounts of non-Blattabacteria microbes in embryos
(Ayayee, Keeney, Sabree, & Mufoz-Garcia, 2017). In direct con-
trast, our embryo samples from two independent colonies, includ-
ing the colony used in the previous study, produced sequencing
reads that were 99.5% assigned to Blattabacteriaceae. Two taxa
identified to be significantly enriched in the embryonic microbiome
by this previous study were Halomonadaceae and Shewanellaceae
(Ayayee et al., 2017), neither of which were present in our mater-
nal, embryo, or postnatal development samples. While our analysis
using mothur did identify non-Blattabacteria sequences in embry-
onic samples, the extremely low abundances (<0.5% of total raw
reads combined) suggest they are sequencing artifacts or misiden-
tified and are not likely critical for embryos during gestation. This
is further supported by our secondary analysis using the Nephele
implementation of QIIME (Table S8, Data S1 and Data S2), which
identified no taxa representing more than 0.2% of the embry-
onic community other than Blattabacteria. The fact that there is
no consistency among low abundant taxa among embryo sample
supports that bacteria, other than Blattabacteria, are not likely
critical for the intrauterine stages. Because of our robust sampling
method, including two separately housed colonies of D. punctata
from separate institutional origins and use of two independent
pipelines for analysis, we conclude that no bacterial transmission
occurs after oogenesis during intrauterine development in D. punc-
tata. Thus, Blattabacteria is the only bacterial component of the
microbiome during intrauterine development. This is further sup-
ported by the lack of additional bacterial components in first-instar
nymphs collected immediately after birth (=neonate). While we
cannot eliminate rearing differences, our study indicates that other
bacteria, beyond Blattabacteria, are not required for D. punctata
development.
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After determining that there was no significant gestational
transmission of endosymbionts, we sought to characterize the
microbial community across nymphal development. D. punctata
juveniles have a minimum of three nymphal instars with females
molting an additional time to a fourth-instar stage. Newborn,
unmelanized first-instar nymphs did not differ in bacterial com-
munity from intrauterine developing embryos suggesting that sig-
nificant bacterial transmission does not occur during the birthing
process, unlike humans. However, by the time first instars fully
develop a hardened cuticle they have developed a more diverse
microbial community where Blattabacteria represents only 35%
of the OTUs. This substantial increase is likely the results of food
and water consumption that occurs following melanization. Across
the remaining instars, the community continues to become more
diverse; however, the changes become much less dramatic after
the second-instar stage. These findings are again consistent with a
previous study investigating the juvenile microbiome of B. german-
ica as well as in other egg-laying organisms such as burying bee-
tle Nicrophorus vespilloides (Carrasco et al., 2014; Wang & Rozen,
2017). Consequently, we conclude that the microbial community
is largely acquired during the first- and second-instar stages, likely
from their environment where they cohabitate with both adult and
other juvenile cockroaches, after they have started to feed and
drink. There are continuously changes to the microbiome through-
out the life of the animal, but these are minor compared to the
initial acquisition in early developmental stages.

This initial acquisition period of the microbiome is extremely
important to animal development (Albenberg & Wu, 2014; Ballou
et al,, 2016; Breznak & Kane, 1990; Brownlie & Johnson, 2009;
Chung et al., 2012; Colston, 2017; Coon, Brown, & Strand, 2016;
Coon, Vogel, Brown, & Strand, 2014; Diaz Heijtz, 2016; Dimmitt et
al., 2010; Hamdi et al., 2011; Kostic et al., 2015; Lee & Brey, 2013;
Ma et al., 2014; Malmuthuge, Griebel, & Guan, 2015; McFall-Ngai,
2014; Michalkova et al., 2014; Pais et al., 2008; Pietri et al., 2018;
Schwab et al., 2016; Snyder & Rio, 2015; Thompson, Rivera, Closek,
& Medina, 2015; Torrazza & Neu, 2011; Wade, 2014; Yang et al.,
2016). Studies in insect systems have demonstrated this by ablating
the microbiome of juvenile animals and observing the phenotypes.
Consistently, these experiments find that animals unable to acquire
microbes from their environment or mothers face severe disadvan-
tages, often failing to progress from one instar to the next, unable
to molt to adulthood or undergo pupation, or dying. One example
of this is the inability of axenic mosquito larvae to reach adulthood
(Coon et al., 2016, 2014). In the dung beetle Onthophagus gazella,
removal of a maternally provided fecal secretion, known as the ped-
estal, significantly reduces bacterial load in larvae hatched from
surface-sterilized eggs (Schwab et al., 2016). While preventing mi-
crobiome acquisition in O. gazelle larvae does not result in mortality
as in mosquitoes, it is associated with reduced larval mass, increased
time to adulthood, smaller adult body size, and impaired dehydra-
tion tolerance (Schwab et al., 2016). In tsetse flies, Wigglesworthia
glossinidia transmission via milk gland secretions is not only essential

for B vitamin provisioning, but also immune function by influencing
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the expression of a specific odorant binding-protein (obp) in the
larvae (Benoit et al., 2017; Weiss et al., 2011). Targeted elimination
of this symbiont or the associated obp decreased the population of
phagocytic hemocytes and reduced melanization ability (Benoit et
al., 2017; Weiss et al., 2011). Symbiont community composition has
also been implicated in insecticide resistance in the German cock-
roach (Pietri et al., 2018). Elimination of all bacteria from the cock-
roach except for Blattabacteria throughout development suggests
that insecticide resistance are due to changes in non-Blattabacteria
bacteria which are acquired after hatching (Pietri et al., 2018). These
studies underscore the importance of developing a diverse and ro-
bust microbial community during early nymphal development, which
we have found primarily occurs during the first instar of D. punctata.

The embryonic microbiome comprised exclusively of
Blattabacteria is of interest relative to the intrauterine development
of D. punctata embryos, as the milk-like secretion provided by moth-
ers as the sole form of nutrition during development is largely de-
void of two essential amino acids, methionine and tryptophan (Stay
& Coop, 1974; Williford et al., 2004). Consequently, it has been sug-
gested that these amino acids are acquired from bacterial endosym-
bionts (Williford et al., 2004). Bacterial symbionts commonly serve to
supplement nutrients that may be lacking in the diet (Bermingham &
Wilkinson, 2009; Douglas, 2017; Engel & Moran, 2013; Funkhouser &
Bordenstein, 2013; Michalik, Szklarzewicz, Jankowska, & Wieczorek,
2014; Michalkova et al., 2014). Viviparous insects, such as tsetse
flies, take advantage of endosymbionts to fill such nutritional gaps
during development, mostly through the provisioning of B vitamins
(Douglas, 2017; Snyder, Mclain, & Rio, 2012; Snyder & Rio, 2015;
Wang et al., 2013). However, while Wolbachia is transmitted through
the germ line before nutrient provisioning (Wang et al., 2013), other
symbionts in these flies, such as Wigglesworthia and Sodalis, have
been shown to be transmitted from mother to offspring during their
extended gestation period (Denlinger & Ma, 1975; Douglas, 2017;
Snyder et al., 2012; Snyder & Rio, 2015; Wang et al., 2013). The ex-
clusively Blattabacterial composition of the microbiome in embryos
suggests that this symbiont must be the source of these essential
nutrients. However, previous studies characterizing the genome of
Blattabacteria inhabiting other species of cockroaches have shown
that only the strain belonging to the German cockroach (Blattella
germanica) possesses the capability to synthesize methionine, one
of the amino acids lacking in D. punctata milk, in any capacity (Huang
et al..,, 2012; Kambhampati et al., 2013; Lopez-Sanchez et al., 2008,
2009; Neef et al., 2011; Patifio-Navarrete et al., 2013; Sabree et al.,
2012, 2009; Tokuda et al., 2013). Consequently, further investiga-
tion of this symbiotic relationship is required to understand the role
of Blattabacteria during intrauterine development. Sequencing the
genome of the D. punctata strain of Blattabacteria may reveal the
presence of biosynthetic pathways that can provide amino acids re-
quired for prenatal development.

In conclusion, we provide a comprehensive survey of the micro-
bial communities of mothers and their developing embryos along with
succession of the microbiome community across postnatal develop-
ment in D. punctata. This study provides evidence that, unlike other

viviparous insects, there is no transmission of bacteria from mothers
to offspring during their 63+ day pregnancy. Surprisingly, we also
found no evidence that there is significant bacterial colonization of
D. punctata during birth or within the few hours immediately follow-
ing birth. Rather, a majority of the microbiome components are ac-
quired, likely from their environment, throughout the full duration of
the first-instar and melanization period. Further investigation will be
required to further elucidate the specific mechanisms underlying nu-
trient provisioning by Blattabacteria during embryonic development
in D. punctata, as well as the role of the microbiome during nymphal
development.
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