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Abstract

Development of an effective HIV management is enticed by the fact that long-term non-progressors (LTNP) restrict viral
replication spontaneously, but is hindered by HIV-1 latency. Given that the most overlapping characteristics found between
HIV-1 LTNP and latency, detailed analysis of the difference would disclose the essentials of latency. In this study, microarray
data from our previous study was combined with HIV-1 latency and LTNP data obtained from NCBI GEO database. Principal
variance component analysis and hierarchical clustering verified the removal of batch effect across platform. The analysis
revealed a total of 456 differential expressed genes with .2-fold change and B-statistic .0. Bayesian inference was used to
reconstitute the transcriptional network of HIV-1 latency or LTNP, respectively. Gene regulation was reprogrammed under
different disease condition. By network interference, KPNA2 and ATP5G3 were identified as the hubs in latency network
which mediate nuclear export and RNA processing. These data offer comparative insights into HIV-1 latency, which will
facilitate the understanding of the genetic basis of HIV-1 latency in vivo and serve as a clue for future treatment dealing with
key targets in HIV-1 latency.
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Introduction

An definition of viral latency reflects a state of reversibly

nonproductive infection of individual cells [1]. For human

immunodeficiency virus-1 (HIV-1), the term latency was initially

used in the clinical sense to describe the long asymptomatic period

between initial infection and the development of acquired

immunodeficiency disease (AIDS). Studies revealed that after

initial infection, HIV-1 establishes a persistent latent reservoir in

resting CD4 T cells and other cell types in all infected subjects [2].

With time, additional epigenetic mechanisms may enforce latency

[3]. Residing in the latent state, the virus persists simply as genetic

information, and is thus unaffected by antiretroviral therapy

(ART) or immune responses [1]. Latency cells become a major

barrier to HIV-1 eradication [4].

Hope for the development of an effective HIV management is

enticed by the ability of a small proportion of HIV-infected

individuals to spontaneously control HIV replication [5]. These

patients, called long-term non-progressor (LTNP) or more

specifically elite controller, maintain undetectable levels of viral

replication in the absence of ART [5]. Criteria for LTNP could be

reviewed elsewhere [6,7]. These patients have moved into the

center of current efforts to identify effective host defense

mechanisms against HIV.

Indeed, residual viremia, which reflects the persistent viremia at

levels below the sensitivity threshold of the standard clinical assay

(50 copies/ml), could be observed in LTNP patients [8]. Direct

analysis of residual viremia has provided little evidence for the

notion that these viruses are derived from ongoing productive

rounds of viral replication, and a line of evidences also showed that

intensification studies did not reduce residual viremia or even the

size of the latent reservoir [9,10].

Though the terms latency and reservoir have been used rather

loosely [1], a practical definition for HIV latency is used at the

cellular level, whereas LTNP is described at the individual level in

a clinical sense. From the view of infection dynamic, a connection

between latent infection and LTNP seemed quite likely.

However, studying latently infected cells from HIV-infected

subjects is challenging, since these cells are very rare in the blood,

and there are no biomarkers and methods to enrich them. To

date, the best-characterized models of HIV latency involve

immortalized T-cell lines [2,11], which presented the relationship

between T-cell stimulation and proviral reactivation [12], but they

could not recapitulate the non-dividing state of resting CD4+ T

cells in vivo. A series of latency model using primary T cells have

been developed [13,14].Unfortunately, most primary cell models

used one or more rounds of cellular stimulation in the presence of

specific cytokines. The process often needed several weeks or

months of continuous culture, and too few cells have transitioned

to a quiescent state that can be used for further study [11]. Recent

reports also suggest latent reservoir in vivo might be more complex
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than thought [1], thus making the phenotype of HIV-1 infection in

clinical setting even more complicated.

Given that the most overlapping characteristics, i.e. undetect-

able or residual viremia, and HIV-1 replication restriction found

between HIV-1 LTNPs with HIV-1 latency, detailed analysis of

the difference between two groups would gain novel insights into

the molecular mechanisms governing HIV-1 latency. In this study,

we combine the relevant microarray data sets to increase statistical

power to detect biological difference between latency and LTNP.

Moreover, the disease specific gene regulatory network is inferred

and analyzed to define the corresponding biological process.

Results

Microarray data merging validation
With the aim to identify HIV-1 latency related markers at the

genome level, all the available microarray data sets relevant to

HIV-1 latency or LTNP in NCBI GEO database were merged

into a composite dataset, which consisted of 25 latency and 22

LTNP samples. To assess the quantity of batch effect derived from

different assays, a hybrid approach known as principal variance

component analysis (PVCA) was performed, which reveals

intermixing of samples from different sources before and after

adjustment [15]. The PVCA revealed that batch effects explained

11.6% of the overall variation in the original data (Fig. 1A). After

applying ComBat to remove batch effect across the different

platform [16], the variation was completely eliminated (Fig. 1B).

The results of hierarchical clustering analysis before and after

batch adjustment were also presented (Fig. 1C and D). Sample

clustering showed a separation of the two groups of samples where

adjustment for batch effects was not performed. After batch

adjustment, the clusters were no longer confused with the batch

effects.

Identification of HIV latency related differential expressed
(DE) genes

Differences in gene expression were measured with LIMMA

analysis [17,18]. The analysis revealed a total of 456 DEs with .2-

fold change and B-statistic .0 between two groups (Supplemen-

tary Table S1). 212 genes were up-regulated and 244 down-

regulated in latency state, indicating a relatively higher cellular

activity in LTNP state.

To facilitate the understanding of the biological implications of

the DE genes, function enrichments were performed by using

ClueGO, which incorporates gene-ontology and KEGG/Reac-

tome/BioCarta pathway annotation (Fig. 2). The distribution of

any combination of terms between up- and down-regulated genes

can be simultaneously tested in ClueGO [19].

Some differences emerged in gene expression between latency

and LTNP group that may be relevant to the pathogenesis of the

infection. Antigen processing and presentation, NOD-like receptor

signaling pathway, and phosphatidylinositol-mediated signaling

were present in both groups. Most of the up-regulated genes in

latently infected cells were related to mRNA metabolic process,

especially to the nuclear export (BAMBI, KPNA2, KPNB1, and

RAN, etc), RNA splicing (DDX39A, SF3A3, SF3B4, SNRPB, and

TGS1, etc) and spliceosome (ACIN1, AKT1, HNRNPH1, and

HNRNPU, etc). Many up-regulated genes were also involved in

Figure 1. Microarray data merging. All the effects, including batch effects, profile effects, interaction between batch and profile effects, and
residual effects, were estimated for their contribution to the overall variation by PVCA. (A) Data before batch adjustment. (B) Data processed by
ComBat as batch adjustment tool/model. (C) Hierarchical clustering of the data before batch adjustment. (D) Hierarchical clustering of the data after
batch adjustment.
doi:10.1371/journal.pone.0055791.g001
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cell differentiation and cell cycle regulation, such as regulation of

interphase of mitotic cell cycle(ATP5H,BCL6,BRCA1,

CCND1,CDC20,CDC6,and VCP, etc), and role of Ran in mitotic

spindle regulation(APEX1,FEN1,HMGB1,KPNA2,KPN-

B1,RAN, and SFRP1). Furthermore, the remaining up-regulated

genes were related to AKT signaling pathway (AKT1, BUB1B,

CCND1, CCNE1, ERBB3, FOXO1, FOXO4, PIK3CA, and

TGFA, etc), and Wnt receptor signaling pathway (BAMBI,

CAPRIN2, CAV1, and TAX1BP3, etc). On the other hand, up-

regulated genes in LTNPs were mostly associated with functions

like regulation of T cell differentiation (ANXA3, CALR, DOCK1,

IL23A, TGFBR2, and TNFSF4), peroxisome (ACOX3,

ALDH3A2, CYP1B1, and UGDH, etc), as well as caspase cascade

in apoptosis (ARHGDIB, BIRC2, BIRC3, HSP90AB1, IL1B,

LAMA3, and TGFBR2, etc).

Gene regulatory network inference
Complexity of genetic regulatory mechanisms in viral-host

interaction is thought to be achieved through controlled and

coordinated network. We applied Banjo to infer the Bayesian

structure, since this method was better at recovering the gene

networks as compared to the other approaches in recent studies

[20]. 212 over-expressed latency DEs were used to generate the

latency network from all latency samples (Fig. 3), and the network

for LTNP and normal control state (named latency genes-LTNP

state and latency genes-control state, respectively, see Supplemen-

tary Figs. S1 and S2). On the contrary, 244 over-expressed LTNP

DEs were used to generate the LTNP network (Fig. 4) and the

network for latency and normal control state, respectively

(Supplementary Figs. S3 and S4). The latency network has 212

Figure 2. Function analysis of DEs. Terms with latency or LTNP up-regulated genes is shown in red/green, respectively. The size of the nodes
reflects the statistical significance of the terms. The degree of connectivity between terms is calculated using kappa statistics. The calculated kappa
score is also used for defining functional groups. The group leading term is the most significant term of the group. The color gradient shows the gene
proportion of each group associated with the term. Equal proportions of the two groups are represented in white. Double-sided hypergeometric test
yielded the enrichment for GO terms. Benjamini-Hochberg correction for multiple testing controlled the P-values. GO term fusion was applied for
redundancy reduction.
doi:10.1371/journal.pone.0055791.g002
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nodes and 677edges (interactions), and the LTNP network has 244

nodes and 841 edges.

Even though the network was solely based on transcription

profiles, the inferred gene regulatory networks recapitulated many

previously known molecular associations. For latency over-

expressed genes, 50/677, 33/693, and 37/738 interactions in

the latency network, latency genes-LTNP state network and

latency genes-control state network respectively, were found in

ConsensusPathDB, which integrates several protein-protein inter-

action database such as BioGrid, MINT, DIP, et al [21,22]. For

example, latency network predicted targeting interactions that are

in agreement with previously reported biochemical interactions,

e.g., of KPNB1 with HSPA9; VCP with NCL; HNRNPA1 with

HNRPF; KPNA2 with TXNIP; HNRPF with HNRPM; ACIN1

with SF3B4; and HNRPH1 with SFRS3, etc. In addition, 10

interactions were overlapped among the latency, LTNP and

control condition, indicating that gene regulation was repro-

grammed in different infection state.

A statistic analysis of latency and LTNP network topology was

performed (Fig. 3 B and C). In latency network, the degree

Figure 3. Gene regulatory network. (A) The HIV latency network was inferred for 212 HIV latency over-expressed genes from all latency samples.
Standard Banjo parameters were adopted with a q6 discretization policy. The consensus graph depicted here was obtained from the concensus of
the best 100 nets. The node size was proportional to the betweeness centrality and visually reinforced. (B) Topological coefficient measures the
extent to which a gene in the network shares interaction partners with other genes. Average clustering coefficient measures the degree to which
genes in the network tend to cluster together. The node distribution degree gives information of the protein interactions with the other genes, which
shows a scale free property in this network. The shortest path length distribution indicates that the network possesses small-world property. (C)
Topological parameters of LTNP network. (D) LTNP network was generated by 244 HIV LTNP over-expressed genes from all HIV LTNP samples.
doi:10.1371/journal.pone.0055791.g003
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tended to decrease slowly complying with the power law y = axb

where ‘‘a’’ is 36.310 and ‘‘b’’ is 20.786. The correlation

coefficient was 0.285. In LTNP network, ‘‘a’’ is 876.97 and ‘‘b’’

is 22.139 with a correlation coefficient of 0.432. These values

indicated a potential scale free future [23], and also suggested that

the latency or LTNP network is assortative.

To validate if the network has small-world future, the

duplication model in ‘RandomNetworks’ plugin of Cytoscape

was used to construct random graphs [24], as it is a well-known

model having power-law degree distributions and providing small-

world networks [25]. We generated 10000 instances and

computed the average clustering coefficient and degree distribu-

tion. The latency network exhibits dense local neighborhoods with

an average clustering coefficient of 0.0495, which is higher than

duplication model (0.011960.0637, p = 0.4438). The degree

distribution in latency network is 6.3867, which is similar to that

of random graphs generated by the duplication model

(0.620363.3118, p = 0.9183), as expected for a small-world

network [26]. The dense neighborhood feature of latency network

suggested that it has modular organizations [27].

Disease genes and hub identification
Recent studies using a large-scale siRNA screen identified over

600 host factors for HIV life cycle with 387 genes validated in at

least two of three screens [28–32]. An overlap analysis of the DE

genes found in our study with this dataset showed 23 coincident

genes (Supplementary Table S2). These genes constitute the high

confidence disease genes.

We calculated the significance of the degree difference between

all the genes and disease genes in the network, and found that

disease genes in latency setting have significantly higher degrees

than all genes or those in control setting (Fig. 4B). We also found

that the clustering coefficient of disease genes is significantly larger

than that of all genes in the network (Fig. 4C). These results

revealed that confident disease genes show increased local

centrality in the network, and have more functional synergism to

cause disease.

Since increased centrality is the key attribute of disease genes in

the network, we calculated the putative hub genes present in our

networks. In Table 1 were reported the top 10 hub genes obtained

by hub analysis but only two of them (KPNA2 and ATP5G3) were

selected as hubs by all the different algorithms in latency network.

Centrality analysis also determined UGDH and CYFIP1 as hub

nodes in LTNP network.

Characterization of hub genes
It has been shown that high degree of connectivity correlates

well with pleiotropic effects [33]. This indicated also that the most

part of hub proteins in latency or LTNP network are involved in

many different biological processes with different cellular locali-

zations, more precisely KPNA2, and ATP5G3 are present in

nucleus as well as cytoplasm whereas UGDH and CYFIP1 are in

plasma membrane as well as cytoplasm.

To evaluate the effect of hub gene as well as its associated

regulatory elements, we reverse engineered the hub interactome

by performing virtual knock-out experiments using interference

method [34]. Topologically speaking, the hub genes take

advantage (are positively influenced) by the presence in the

network of the other related genes. As indicated in the Figure 5B,

when KPNA2 and ATP5G3 were both knocked out, the most

affected positive interferences genes constituted 3 clusters. First

order of these genes in the latency network contained 123 genes.

Gene ontology studies suggested that they are involved in

important biological processes related to nuclear mRNA splicing,

nuclear export and AKT signalling pathway.

For the initial step to observe the dynamics of several these

genes, CEM-SS cells were challenged with HIV-1 infection. At

early infection stage (at 24 h post infection), genes contributing to

the nuclear transport like KPNA2 and KPNB1, RNA splicing

gene SF3B4 were down-regulated compared with the normal

control. At later stage of HIV-1 life cycle, these genes as well as

Figure 4. Distinct topological features of disease genes. (A) Overlapping analysis revealed 23 coincident HIV disease genes that have been
found in global siRNA screen assays. These genes are high confident disease genes. (B) The difference in degrees between disease genes and all
genes under latency, LTNP or normal control condition. (C) Clustering coefficient of disease genes in three groups. P-values are calculated using the
Wilcoxon rank-sum test.
doi:10.1371/journal.pone.0055791.g004
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ATP5G3, showed a tendency of decreasing with the development

of infection (Fig. 6A). An addition RNA splicing gene, SRSF3,

which is not differential expressed between latency and LTNP

groups, showed relatively steady across the infection. In contrast,

in latently infected CEM-Bru cell line, KPNA2, KPNB1,

ATP5G3, and SF3B4 were up-regulated 3.1860.28, 3.8460.94,

1.9560.72, and 2.3861.24 fold respectively when compared with

the normal control (Fig. 6B). These results confirmed the DE

genes from the microarray dataset analysis, and verified that these

hub genes were up-regulated in the latently infected cells.

In LTNP network, when UGDH and CYFIP1 were both

knocked out, first order of the positive interference genes in the

LTNP network contained 156 genes (Fig. 7). Gene ontology

studies suggested that they are involved in biological processes

related to regulation of T cell differentiation, caspase cascade in

apoptosis and ascorbate metabolism.

Discussion

By whole genome transcriptional profiling, molecular charac-

terization of the LTNPs indicated that an up-regulation of

components of MAPK, WNT, AKT and cytotoxic pathways

contributing to cell survival and anti-viral responses [35,36], and

also up-regulation of genes related to cytokine–cytokine receptor

interaction, actin cytoskeleton, and focal adhesion [37]. In

contrast, up-regulated genes in progressors were mainly implicated

in the regulation of DNA replication, cell cycle and DNA damage

stimulus [37], or the pathways ranged from metabolism and

energy production to mitochondria meditated cell apoptosis [36].

However, it is important to recognize that most previous works

place emphasis on the comparison between HIV-1 LTNP and

progressors.

A closer inspection of the differential expressed genes between

HIV-1 latency and LTNP group in this study indicated that, a

variety of well-established cofactors were identified in this study.

23 (5.044%) genes were supported by meta-analysis of HIV-1

replication associated genes [32], and 50 (5.622%) genes by HIV

interaction database (Supplementary Table S2). The recovery of

already implicated host factors was generally good in the overlap

analysis, providing confidence about the authenticity of the newly

called genes. Comparative function analysis of latency and LTNP

group in this study clearly showed evidence for concerted up-

regulation of nuclear transport, RNA metabolism, and AKT

pathway in latency, and peroxisome proliferators or mitochondria

in apoptosis signalling during LTNP state. Both group mediated

focal adhesion, regulation of cell cycle transition, and antigen

processing and presentation as well as immune response. It is well

recognized that immunological or clinical properties of LTNP may

be quite heterogeneous, and residual viral replication could be

observed in the majority of LTNP patients using ultra-sensitive

assays [38]. This study is consistent with the notion that residual

viremia reflects release of virus from stable reservoirs rather than

ongoing viral replication [1].

The analysis of gene regulatory network in specific disease

context is an important step to define the biological process at the

system biology level [23]. Due to the overlapping functions

between latency and LTNP, to identify the molecular regulation of

HIV latency in more detail, we assembled a gene regulation

network based on the DE genes. Not only does the differential

network predict many novel interactions, it also provides insights

into the overall architecture of the regulation network in different

infection states. For latency-enriched genes, we generated the

network under latency, LTNP and control condition respectively.

No significant difference of ever-known interactions were found

among three states (P,0.05), and only 10 interactions were

overlapped. These results indicated a reprogrammed regulatory

tendency for specific disease condition.

Genes associated with a particular phenotype or function are

not randomly positioned in the network, but tend to exhibit high

connectivity that may cluster together and occur in central

network locations [39]. Centrality tests demonstrated a significant

difference between high-confidence disease genes and all genes

under the certain condition (Fig. 4). These results validated the

applicability of network based centrality test to rank disease genes.

Thus, in an attempt to understand and characterize the factors

specifically associated with HIV-1 latency, we performed the hub

analysis in the latency network, and found KPNA2 and ATP5G3

were the top two genes relevant to the latency regulation. KPNA2

is known as an adapter protein to mediate nuclear import and

export in an energy requiring manner. Several studies found it

stimulates pro-survival signal during stress response [40], and is

natural resistance to infection [41]. ATP5G3 encodes a subunit of

mitochondrial ATP synthase to catalyze ATP synthesis. Recent

study suggested that genetic variants in nuclear-encoded mito-

chondrial genes influence AIDS progression [42]. knocking out

KPNA2 and ATP5G3 in the network gained insight into the

associated genes co-regulated in the network that constitute the

synergized functional module.

At every step of the replication cycle, HIV-1 co-opts host

proteins and cellular machineries to its advantage. The movement

Table 1. Top 10 hub genes present in latency or LTNP
network obtained by different algorithms and centrality
measures.

MCC MNC EPC Degree
Between-
ness

Close-
ness Stress

Latency
network

DDX11 DDX11 H2AFZ H2AFZ PSME3 DDX11 ATP5G3

F3 KPNA2 DDX11 DDX11 CFB ATP5G3 H2AFZ

KPNA2 F3 ATP5G3 ATP5G3 ATP5G3 H2AFZ PSME3

LILRB4 LILRB4 F3 KPNA2 CDC6 KPNA2 CFB

ATP5G3 SPOCK1 LILRB4 METTL1 KPNA2 PSME3 METTL1

IL8 IL8 KPNA2 CFB METTL1 CDC6 KPNA2

SPOCK1 BMX IL8 PSME3 H2AFZ METTL1 CDC20

BMX RBMX METTL1 LILRB4 CDC20 F3 CDC6

H2AFZ ATP5G3 PSME3 CDC6 RPS27 CFB DDX11

METTL1 DAB2 RYR2 CDC20 ASPA LILRB4 RPS27

LTNP
network

UGDH UGDH UGDH UGDH UGDH UGDH UGDH

CYFIP1 RBM28 CYFIP1 CYFIP1 CYFIP1 CYFIP1 CYFIP1

RBM28 PPFIBP1 CXCL6 MLSTD1 PIGQ MLSTD1 CXCL6

PPFIBP1 STAT6 MLSTD1 MATN3 MLSTD1 CXCL6 YARS

CXCL6 STAMBPL1 MATN3 CXCL6 YARS SLC1A6 PIGQ

STAT6 CYFIP1 SLC1A6 PIGQ MATN3 YARS MLSTD1

MLSTD1 PCAF RBM28 YARS CXCL6 MATN3 MATN3

MATN3 CLGN STAT6 SLC1A6 SLC1A6 RBM28 SLC1A6

PIGQ NEFH PPFIBP1 RBM28 SERPINI1 ARL4C ARL4C

YARS TCN2 YARS STAT6 ARL4C PIGQ RBM28

doi:10.1371/journal.pone.0055791.t001
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of proteins between the cytoplasm and nucleus mediated by the

importins like KPNA2 is essential to many cellular processes such

as differentiation and development, and also critical to HIV

infection [43]. The KPNA2 -ATP5G3 module was closely

associated with mitotic cell cycle, nuclear export, and nuclear

mRNA splicing via spliceosome. These functions are in agreement

with the previous study that the genes encoding proteasomes,

nuclear transport factors, and splicing factors were up-regulated in

latently infected cells [44]. KPNA2 -ATP5G3 module illustrated

here raises the possibility that category nuclear export with

contributing genes APAF1, DDX39A,HHEX,HNRNPA1,

KPNA2,PXDN,RAN, and RNPS1,etc, category mRNA splicing

with contributing genes

HNRNPF,HNRNPH1,HNRNPM,HNRNPU, and TGS1,etc,

category AKT signaling pathway with contributing genes

APAF1,CAV1,FOXO1,FOXO4,IL1B,IL8,PIK3CA,PXDN,and

RYR2, are the combined restriction factors for HIV replication.

Supporting this speculation, several observations suggested that

HIV infection enhances heterogeneous HNRNPA1 expression

and promotes the relocalization of HNRNPA1 to the cytoplasm

[45], which was dependent on the nuclear export of the unspliced

viral RNA (vRNA). Depletion of HNRNPA increased expression

of viral structural protein [46]. HNRNPH1 activates splicing of an

HIV splicing substrate by promoting formation of ATP-dependent

spliceosomal complexes [47]. Alteration in dosage of splicing

factors was thought to diminish HIV replication by altering the

ratios of the different HIV mRNA forms and the integration step

[32]. At the nuclear transport step, recent study suggested that

broad-spectrum inhibitor of importin a/b-mediated nuclear

import like ivermectin has potent antiviral activity towards HIV

[43]. Selective adjustment with the nuclear trafficking of proteins

as a therapeutic strategy offers an attractive possibility to anti- HIV

[48].

For LTNP network,UGDH and CYFIP1 were identified as the

hubs. In details, UGDH is responsible for converting UDP-glucose

to UDP-glucuronate and thereby participates in the biosynthesis of

glycosaminoglycans such as hyaluronan, chondroitin sulfate, and

heparan sulfate, which constitute the common components of the

Figure 5. KPNA2 and ATP5G3 regulatory module. (A) KPNA2 and ATP5G3 first-order genes in the network. (B) When KPNA2 and ATP5G3 were
both knocked out in the network, the positive interference genes were inferred by clustering analysis (pearson correlation). (C) KPNA2- ATP5G3
module, which include all the positive interference genes. (D) Gene ontology and pathway analysis of KPNA2- ATP5G3 module.
doi:10.1371/journal.pone.0055791.g005
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extracellular matrix (ECM) to mediate signal transduction and cell

migration. CYFIP1 is a member of the actin-assembly-promoting

Scar/WAVE complex, playing the roles in formation of

membrane ruffles, lamellipodia, actin filament reorganization

and axon outgrowth. Alterations in WAVE-regulated actin

dynamics is correlated with impaired cell-cell adhesion and cell-

ECM interactions [49]. Network analysis indicated that UGDH-

CYFIP1 module in LTNP network mediates T cell differentiation,

caspase cascade in apoptosis, and ascorbate and aldarate

metabolism. It is implied that the main HIV limiting steps in

LTNP is T cell differentiation and apoptosis control with the

associated genes including HLA-DPB1, HLA-G,IFNB1,NCK-

AP1L,NPPB,TGFBR2, CASP1,CASP7,and SETX, etc. Recent

studies identified that host cell microfilament cytoskeleton plays a

wide range of roles in HIV infection, including viral entry, reverse

transcription, transport to the nucleus, integration and finally a

correct budding and release from the cell [50]. One explanation

for non-progression could be there is a higher and better

immunological synapsis between antigen specific CD8+ T cells

and infected CD4+ T cells due to an adhesion processes and

remodelling cytoskeleton taking place in the synapsis [51].

One limitation of this study is that all the available latency data

sets used in this study are from transformed cell lines, which

represent the traditional model for HIV latency [11]. Of note, in

these models, there is no significant differences of expression ratios

between zidovudine-treated latency cells and untreated cells, thus

excluding the possibility that changes in gene expression were due

to low levels of actively replicating viral population [44]. Due to

the rare cells harboring latent virus in vivo, and the instability of

using primary cells as models, there is still a need to establish the

HIV latency model that best characterize the real features in vivo.

However, large heterogeneous LTNP clinical samples used as

background for comparison in this study could partially reflect the

key points that describe the characteristics of HIV latency.

Though both HIV latency and LTNP showed virus replication

restriction phenomenon, we used the gene regulatory network to

differentiate these two pathogeneses. At this point, the dissimilar

behavior of latency and LTNP might be due to the diverging

mechanisms through differing network configuration. Besides the

ever-known interactions of the networks, several novel function

links in the network will be worthy of further experimental

analysis.

In summary, by merging all the data available, our studies

observed that a number of cellular genes and pathways are altered

in viral latency that have not been previously associated with HIV

infection, which may expand our knowledge of the factors

involved in latency maintenance. Targeting KPNA2 associated

co-factors may be particularly helpful in interfering with HIV

latency, thus may provide new approaches to decrease or

eliminate latent viral reservoirs.

Materials and Methods

Microarray data collection and merging
Previously, we have performed global transcription profile on a

HIV latently infected CEM-SS cell (named CEM-Bru,

GSE38634). We also selected datasets from the NCBI GEO

database for available HIV latency or LTNP-related experiments

(Latency: GSE1441, GSE1443; LTNP: GSE6740, GSE23879)

and the corresponding normal control. Sample inclusion criteria

were followed the original study [5,44,52]. The latency cells used

in GSE1441 or GSE1443 were ACH-2 and U1, respectively. Ten

LTNP samples were form GSE6740, and 12 elite controller

samples from GSE23879. The data were generated with the

different platforms that share a large number (5,917) of common

genes.

Pre-processing were applied to microarray data to compute

expression values in different experiments, according to the

method suggested as previously described [5,44,52], which

includes Robust Multi-array Average (RMA) and Quantile

normalization. Systemic non-biological inter-laboratory experi-

mental variation (‘batch effect’) between the datasets was adjusted

using non-parametric empirical Bayes frameworks implemented in

ComBat [16].

The quality of the merging dataset was assessed by principal

variation component analysis (PVCA) and hierarchical clustering.

PVCA method first reduces data dimension while maintaining the

majority of the variability in the data, and then, variance

Figure 6. Dynamics of key genes during different infection mode. (A)After HIV-1 infection, real time PCR analysis of KPNA2, KPNB1, ATP5G3,
SF3B4, and SRSF3 mRNA levels at the indicated time points post infection (pi). (B) mRNA levels of KPNA2, KPNB1, ATP5G3, SF3B4, and SRSF3 in HIV-1
latently infected cells. Data are representative of three experiments (average of three values 6 standard deviation).
doi:10.1371/journal.pone.0055791.g006
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component analysis (VCA) fits a mixed linear model using factors

of interest as random (or batch) effects and other variables (or

covariates) to estimate and partition the total variability [15].

Average linkage hierarchical cluster analysis was carried out using

Mev software (http://www.tm4.org/mev/) with a pearson corre-

lation as a similarity metric. The clustering was performed using

all the genes in the platform.

Figure 7. UGDH and CYFIP1 regulatory module. (A) UGDH and CYFIP1 first-order genes in the network. (B) The co-regulatory genes were
inferred by knocking out UGDH and CYFIP1 in the network. (C) UGDH - CYFIP1 module, which include all the positive interference genes. (D) Gene
ontology and pathway analysis of UGDH - CYFIP1 module.
doi:10.1371/journal.pone.0055791.g007
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Differential expressed gene determination and function
analysis

A linear model fit in conjunction with an empirical Bayes

statistics were used to identify DE genes [53]. Adjustment for

multiple testing was performed using the Benjamini-Hochberg

adjustment. Candidate DE genes with fold change .2 and B-

statistic .0 were used for the comparisons [36]. To identify the

enriched functional categories from the DE genes, ClueGO was

used to indentify significantly enriched gene-GO term or

functional pathways [19]. ClueGO visualizes the selected terms

in a functionally grouped annotation network that reflects the

relationships between the terms based on the similarity of their

associated genes using kappa statistics [19]. A double-sided

hypergeometric test yielded the enrichment for GO-terms.

Benjamini-Hochberg correction for multiple testing controlled

the p-values.

Network generation and clustering
Banjo (www.cs.duke.edu/,amink/software/banjo/) was used

to infer the Bayesian network. The static Bayesian network

inference algorithm was run based on the expression data by using

standard parameters, with a discretization policy of q6. Consensus

graphs, based on the top 100 networks, were obtained from at least

36108 searched networks. A file listing the parameter settings is

provided as Supplementary data S1.

Network topology analysis
Centrality parameters, such as betweenness centrality, closeness

centrality and clustering efficient, etc, were analyzed by Networ-

kanalyzer and Centiscape plugin of Cytoscape [24,34]. Random-

network plugin in Cytoscape was used to generate random

networks. Maximal Clique Centrality (MCC), maximum neigh-

borhood component (MNC), Edge Percolated component (EPC),

and other centrality based measure were taken into account for

exploring the gene essentiality (hub) in network.

Cells, viral infection and quantitative real-time PCR
CEM-Bru is a latently infected cell line harboring the HIV-1

Bru strain by limit dilution cloning process, while CEM-SS is the

corresponding parental uninfected cell line. All cells were cultured

with Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 2 mM L-glutamine, 5% penicillin-streptomycin and 10%

fetal calf serum at 37uC in a humidified atmosphere (5% CO2).

HIV-1 Lai stock was produced on H9/IIIB cells, and the virus-

containing supernatant was filter, frozen in aliquots at 280uC.

CEM-SS cells were seeded at 16106 cells/ml and treated with

HIV-1 Lai at a multiplicity of infection (MOI) of 2 for 2 h. Total

RNA was isolated using the Trizol method (Invitrogen) as

suggested by the manufacturer. 1 mg of total RNA was reverse-

transcribed using the PrimeScriptTM Reverse Transcriptase

(Takara) in 20 ml total volume using random hexamers. Real time

PCR was performed using the SYBRH Premix Ex Taq kit (Takara)

and 0.2 mM of gene specific primers (Supplementary Table S3).

All reactions were run in the Opticon II Real-Time PCR System

(BioRad). Melting curve analysis allowed testing for specificity of

the amplicon. The relative quantification expression was calculat-

ed using the delta-delta Ct method with each gene normalized to

GAPDH.
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