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ABSTRACT: A comprehensive and hierarchical optimization of a joint hydrogen and syngas
combustion mechanism has been carried out. The Kéromnès et al. (Combust Flame, 2013, 160,
995–1011) mechanism for syngas combustion was updated with our recently optimized hydro-
gen combustion mechanism (Varga et al., Proc Combust Inst, 2015, 35, 589–596) and optimized
using a comprehensive set of direct and indirect experimental data relevant to hydrogen and
syngas combustion. The collection of experimental data consisted of ignition measurements
in shock tubes and rapid compression machines, burning velocity measurements, and species
profiles measured using shock tubes, flow reactors, and jet-stirred reactors. The experimental
conditions covered wide ranges of temperatures (800–2500 K), pressures (0.5–50 bar), equiv-
alence ratios (φ = 0.3–5.0), and C/H ratios (0–3). In total, 48 Arrhenius parameters and 5
third-body collision efficiency parameters of 18 elementary reactions were optimized using
these experimental data. A large number of directly measured rate coefficient values belonging
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to 15 of the reaction steps were also utilized. The optimization has resulted in a H2/CO com-
bustion mechanism, which is applicable to a wide range of conditions. Moreover, new recom-
mended rate parameters with their covariance matrix and temperature-dependent uncertainty
ranges of the optimized rate coefficients are provided. The optimized mechanism was com-
pared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the
best reproduction of the experimental data. C© 2016 The Authors. International Journal of Chemical
Kinetics published by Wiley Periodicals, Inc. Int J Chem Kinet 48: 407–422, 2016

INTRODUCTION

In recent years, there has been an increased interest in
studying the combustion of hydrogen, and fuel mix-
tures consisting of carbon monoxide and hydrogen,
referred to as syngas or “wet CO,” potentially includ-
ing additional species such as CO2 and/or H2O. The
development of clean and efficient combustion tech-
nologies for these fuels requires an in-depth knowledge
of the chemical processes that occur during combus-
tion. The high-temperature combustion of hydrocar-
bons and oxygenates is also governed by the chemistry
of hydrogen and syngas combustion. Therefore, ac-
curate knowledge of these processes is essential in the
development of combustion mechanisms for any larger
fuel molecules.

Several combustion mechanisms have been pub-
lished for hydrogen and syngas in the past years, as dis-
cussed in the reviews of Davis et al. [1], Sun et al. [2],
Li et al. [3], Ó Conaire et al. [4], Konnov et al. [5],
Alekseev et al. [6], Hong et al. [7], Burke et al. [8],
and Kéromnès et al. [9]. Most of these recent mech-
anisms were assembled based on directly measured
or theoretically calculated rate coefficients, but some
rate parameters were commonly modified to improve
agreement with measured ignition delay times, burn-
ing velocities or concentration profile measurements.
These types of experimental data are usually referred
to as indirect measurements, since such experimental
results are interpretable only by simulations based on
a detailed chemical kinetic model.

Owing to advances in computational performance
and simulation techniques in the field of combustion,
the optimization of mechanisms also became a vi-
able method for developing better combustion mod-
els. Mechanism optimization is a process which in-
volves a systematic search of parameter values of the
combustion model within their physically realistic do-
main to achieve the best possible reproduction of a
selected set of experimental results. In most studies,
rate parameters are modified in this way. In principle,
thermodynamic and transport parameters can also be
included in an optimization task, but changing the val-
ues of these parameters within their uncertainty ranges
usually has a much smaller effect on simulation re-

sults than the rate parameters. This is especially true
for the H2/CO combustion system [10,11] and in gen-
eral for systems that involve only small molecules,
whose physical parameters are known with little
uncertainty.

The use of parameter optimization techniques to
improve detailed combustion models was first pro-
posed by Frenklach and Miller [12–14], and an al-
gorithm was described in the article of Frenklach
et al. [15]. GRI-Mech 3.0 [16] was developed for nat-
ural gas combustion using this methodology, and it is
still one of the most widely used mechanisms today.
Frenklach et al. further developed the mechanism opti-
mization approach toward data collaboration [17–21],
providing an implementation of the method on the
PrIMe website [22], and recommended the usage of
the PrIMe data format [23]. Another series of mech-
anism optimization papers was published by Wang
et al. [1], [24], [25] and Sheen and Wang [26,27]. The
method of uncertainty quantification and minimization
using polynomial chaos expansions proposed by Sheen
and Wang [27] also provides a way to calculate the co-
variance matrix of the fitted parameters. These methods
were summarized in a recent review article [28].

Frenklach et al. and Wang et al. selected a small
number of optimization targets based on representative
indirect measurement data and identified the most in-
fluential rate parameters (called “active parameters”)
at these conditions using local sensitivity analysis.
The selected active parameters included frequency (A)-
factors of the rate expressions, third-body collision ef-
ficiency parameters, and enthalpies of formation of cer-
tain species. The authors created polynomial surrogate
models (“response surfaces”) for each optimization tar-
get, each of which expressed the simulation result at
the conditions of an optimization target as a function
of the values of the active parameters.

It was found by both Frenklach et al. and Wang et
al. that after optimization many of the A-factors ob-
tained were at the edges of their assigned uncertainty
intervals. To address this issue, the objective function
was modified in their more recent studies so that the
deviation of the A-factors from their initial values is
penalized [21,23,26,27]. As the initial values of the
A-factors were based on direct measurements or other
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recommendations, adherence to these values could be
improved with this penalization and the optimized val-
ues did not approach the edges of the uncertainty in-
tervals.

Using the methods of Frenklach et al. and Wang
et al., several hydrogen and syngas combustion mech-
anisms were optimized. Davis et al. [1] produced an op-
timized syngas combustion mechanism, based on both
hydrogen and syngas combustion optimization tar-
gets. They considered 36 optimization targets, includ-
ing measured laminar burning velocities, concentration
maxima in flat flames, flow reactor measurements, and
ignition delay measurements in shock tubes. The orig-
inal mechanism contained 14 species and 30 reaction
steps. The authors optimized 22 of the A-factors and
also 6 of the third-body efficiencies.

You et al. [23] used the data collaboration method
for the optimization of a hydrogen combustion mech-
anism. They used 8 ignition delay times measured in
shock tubes and 4 flow reactor measurements as op-
timization targets and optimized the A-factors of all
of the 21 reaction steps of their initial mechanism. Li
et al. [29] created an optimized H2/CO combustion
model, based on the optimized hydrogen combustion
model of You et al. [23], also using the data collab-
oration methodology. They used 39 optimization tar-
gets, including 23 laminar burning velocity measure-
ments, 7 flow reactor measurements, and 9 ignition
delay measurements. Eighteen A-factors were opti-
mized within their assigned uncertainty ranges, and
the resulting model could describe 35 of the optimiza-
tion targets within their respective assigned uncertainty
ranges. Note that results pertaining to the performance
of these mechanisms are reported in Table III of this
article.

Cai and Pitsch [30] suggested the optimization of
rate rules for the development of combustion mod-
els for larger hydrocarbons. By optimizing rate rules
instead of rate parameters of selected reactions, the
dimensionality of the task can be reduced and the con-
sistency of rate coefficients of kinetically similar re-
actions can be guaranteed. However, this technique
cannot be applied to a syngas combustion mechanism,
as the chemistry of syngas combustion does not con-
tain analogous reactions. Mechanism optimization was
also used as a correction step after mechanism reduc-
tion [31,32].

Nagy et al. [33] recently published a review on
the most important elementary reaction steps in the
hydrogen and syngas combustion system. Rate param-
eters suggested in the literature for 22 elementary reac-
tions were systematically evaluated, and temperature-
dependent uncertainties of the rate coefficients and
joint uncertainty domains of the Arrhenius parame-

ters were determined. These domains were stored effi-
ciently in the form of the covariance matrix of Arrhe-
nius parameters. The evaluated uncertainty domains
are used in the present work as constraints in the pa-
rameter space in the global optimization of the rate
parameters.

The authors of the present article also suggested an
optimization methodology [34,35], which is applied
here. This method is different in many respects from
the previously reported optimization methods. Identifi-
cation of the active parameters is also carried out using
local sensitivity analysis, which is a widespread tool
for the analysis of combustion models [36]. The exper-
imental data are stored using the ReSpecTh kinetics
data format [37], which is an extension of the PrIMe
data format [22]. Response surfaces are also used to
improve the computational efficiency of the method.
The main differences are that (i) a large number of in-
direct experimental data are used as optimization tar-
gets instead of a small selected set, (ii) all Arrhenius
parameters (A, n, E) of the important reactions are op-
timized (not only the A-factors), (iii) the response sur-
faces are employed to replace flame calculations only,
(iv) new algorithms are used for generating response
surfaces and for the global parameter estimation, and
(v) temperature-dependent uncertainties are estimated
for the optimized rate coefficients. Also, instead of pe-
nalizing the deviation of the optimized rate coefficients
from the recommended values, direct rate coefficient
measurements are included as optimization targets. In
this way, a comprehensive optimization can be carried
out, and since almost all available related experimental
data are utilized, the rate parameters obtained can be
considered to be the best representation of the kinetic
information that can be extracted from the utilized ex-
perimental results.

The methodology described above has been used for
interpretation of experimental data [34,38,39]. More-
over, Varga et al. [35] used this method for the opti-
mization of a hydrogen combustion mechanism and it
was also employed by Olm et al. in creating an opti-
mized ethanol combustion mechanism [40].

The optimization of a complete combustion mech-
anism using a large amount of experimental data from
different sources required a further extension of the
methodology defined in [34], which could not be de-
scribed in detail in the paper [35] due to space limi-
tations. Therefore, this is the first article in which the
technical details of this extension to our mechanism
optimization method are described.

This work describes the development of an opti-
mized, joint hydrogen and syngas combustion mech-
anism, which was carried out in the following steps:
the collection of indirect experimental data (second
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section), assembling the initial mechanism (third sec-
tion), selection of rate parameters to be optimized
(fourth section), selection of methods for parameter
optimization and calculation of parameter uncertainties
(fifth section), calculation of response surfaces (sixth
section), and the definition of the hierarchical opti-
mization strategy (seventh section). Using this range
of methods, an optimized mechanism was obtained
that was tested against a large range of experimental
data and compared to other recent hydrogen and syngas
reaction mechanisms (eighth section).

COLLECTION OF INDIRECT
EXPERIMENTAL DATA

A large set of indirect experimental data relevant to
both hydrogen and syngas combustion was collected
and used. For hydrogen combustion, all data that were
used in the modeling study of Olm et al. [41] and dur-
ing the development of our optimized hydrogen com-
bustion mechanism [35] were also considered here.
New experimental data were added from Hashemi
et al. [42]. Altogether 770 ignition delay measurements
from shock tubes (53 data sets), 229 ignition delay mea-
surements from rapid compression machines (RCMs)
(20 data sets), 443 concentration measurements from
flow reactors (17 data sets), 152 concentration mea-
surements from jet-stirred reactors (JSRs) (9 data sets),
and 631 laminar burning velocity measurements (73
data sets) relevant to hydrogen combustion were used
in this study. A data set contains those data points that
were consecutively measured using the same appara-
tus at similar conditions except for one experimental
condition that was systematically varied.

For syngas combustion, a large set of indirect ex-
perimental data collected by Olm et al. [43] was used.
While in many practical applications, syngas can con-
tain CH4 and other hydrocarbons, in the present work
only fuel mixtures of H2 and CO are considered, as
well as pure CO and pure H2 diluted with CO2. In
total, 732 ignition delay measurements in shock tubes
(62 data sets), 492 ignition delay measurements from
rapid compression machines (47 data sets), 1104 con-
centration measurements from flow reactors (58 data
sets), 90 concentration measurements from jet-stirred
reactors (3 data sets), 436 concentration measurements
from shock tubes (4 data sets), and 2116 laminar burn-
ing velocity measurements (217 data sets) were used.

A detailed list of the collected data can be found
in Tables S1–S13 of the Supporting Information. All
of the data collected were stored in XML files accord-
ing to the ReSpecTh kinetics data format specifica-
tion [37], which is an extension of the PrIMe exper-

imental XML format [22]. A formal definition of the
ReSpecTh kinetics data format specification and all
XML file used in this work can be downloaded from
the ReSpecTh website [44].

Recently, several authors reviewed the various
methods for carrying out indirect combustion exper-
iments. They assessed the typical sources of system-
atic errors and the level of accuracy of these measure-
ments. Excellent reviews were written by Egolfopou-
los et al. [45] and Varea et al. [46] about uncertainties
in burning velocity measurements methods; by Dryer
et al. [47] concerning flow reactors; by Kéromnès [48]
and Sung and Curran [49] relating to rapid compression
machines; and by Pang et al. [50] for facility effects
in shock tubes. In this work, we took into account the
suggestions of these authors at the selection and inter-
pretation of the data.

Based on the principles described in the reviews
above, a part of the collected data was excluded from
the optimization targets, or other restrictions were
made. Shock tube data measured below temperatures
of 1000 K (behind the reflected shock wave) were ex-
cluded due to the possible influence of facility effects
which cannot be accounted for using homogeneous,
adiabatic simulations. At these conditions, the pres-
sure behind the reflected shock wave cannot be consid-
ered to be constant in time [50]. For most of the shock
tube measurements, pressure−time profiles, which can
be used to take into account this effect, were not re-
ported. Thi et al. [51] published their experimental
data together with a characterization of the pressure in-
crease observed during their experiments, which could
be used to adequately model the experiments below
1000 K, and these data were used in the present work.

It has been noted by Burke et al. [8] and in our pre-
vious paper on the optimization of a hydrogen com-
bustion mechanism [35] that speciated flame measure-
ments cannot be used well for optimization, since all
simulation results are far more sensitive to the temper-
ature profile than to the kinetic parameters used for the
simulations. Therefore, such measurements were also
not used in our present work.

Similarly, as in our optimization study on hydrogen
combustion [35], we found that at the conditions of
the JSR experiments the measured values showed rel-
atively low sensitivity to the rate parameters of most
reactions and were not used as optimization targets,
but were used to test the final optimized mechanism.
Turbulent flow reactor experiments were interpreted by
shifting the simulated species profiles for small species
such as H2 and CO to match the simulated half-fuel de-
pletion time with the experiments, as recommended by
Dryer et al. [47]. In cases where the half-fuel deple-
tion point was not observable in the reported results, a
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smaller degree of conversion was used as the matching
point. Dryer et al. highlighted that this method has to
be used with care, as it is possible to obtain physically
unrealistic results if the shapes of the simulated and
measured concentration profiles are very different.
During our optimization procedure, many rate param-
eter sets were investigated that can result in physically
unrealistic simulation results at some experimental
conditions, but these parameter sets were disregarded
in favor of those that produce acceptable results at all
conditions.

However, such a time shift raises concerns during
the uncertainty estimation of the fitted parameters. To
estimate the uncertainty of the flow reactor measure-
ments caused by the uncertainty of the time shift, we
would have to know the uncertainty of the related phys-
ical/chemical processes (e.g., mixing, heat transfer, po-
tential impurities). If measured time shift values and
associated uncertainties were available, it would be
possible to meaningfully propagate such uncertainties
to those of the calculated rate parameters. However,
in most cases the physical/chemical processes behind
the time shift are not well characterized and are com-
pounded into a single time shift effect. If the time
shift was carried out without taking into account the
associated uncertainties, then, from a parameter esti-
mation point of view, such a time shift would be a free
parameter. By introducing such a free parameter, our
error estimation procedure would strongly underesti-
mate the uncertainties of rate parameters, as most of
the systematic discrepancies between the experimental
data and the simulation results would be eliminated by
shifting the concentration profiles in time.

As these types of experiments provide very valu-
able information on the combustion of both hydrogen
and syngas, the data were used as optimization targets,
but were omitted from our error estimation procedure.
Also, only experimental results between fuel deple-
tion of 90% and 10% were taken into account, since
the data points relating to a little or almost complete
conversion contain very little kinetic information. This
also meant the complete exclusion of a small number
of data sets, where no points were measured in this
range of conversion.

Varga et al. [35] identified some data sets relevant to
hydrogen combustion that could not be simultaneously
well reproduced with the majority of the optimization
targets. For syngas combustion, Olm et al. [43] also
identified some measurements that could not be re-
produced within 3σ of the experimental uncertainty
by any of the mechanisms investigated, and this was
indicated in the Supplementary Material of the cor-
responding article. In these articles [35,43], we also
demonstrated that the badly reproducible experiments

are not all related to some well-defined sets of condi-
tions, such as high-pressure or high equivalence ratio,
and reproducible experimental measurements carried
out at similar conditions are available. These few ir-
reproducible hydrogen and syngas experiments were
not used. Altogether, 12 ignition delay (11 measured
in shock tubes and 1 in RCM) and 11 laminar burning
velocity data sets relevant to hydrogen combustion, as
well as 8 ignition delay (3 measured in shock tubes and
5 in RCMs), 8 laminar burning velocity and 17 con-
centration profile (15 measured using flow reactors, 1
using JSR, and 1 using shock tube) data sets relevant
to syngas combustion were excluded in this way.

The indirect experiments for hydrogen and syngas
combustion that were used as optimization targets con-
sisted of 1723 ignition delays measured in shock tubes
and RCMs from 156 data sets, 2311 laminar burning
velocity measurements from 256 data sets, and 968
concentration values measured using shock tubes and
flow reactors from 53 data sets. Furthermore, 103 con-
centration measurements in JSRs from 11 data sets
were also included in our final comparison between
mechanisms.

THE INITIAL MECHANISM

According to our previous studies on hydrogen and
syngas combustion mechanisms [41,43], the mecha-
nism of Kéromnès et al. [9] provides one of the best
overall descriptions of the indirect experimental data
related to both, hydrogen and syngas combustion. This
model was also developed based on the most recent
direct measurements and high-level theoretical calcu-
lations of reaction rate coefficients. Therefore, it was
used as the starting point for further mechanism devel-
opment.

The hydrogen combustion submechanism was re-
placed with the optimized mechanism of Varga
et al. [35], which was previously shown to produce
the best results for the description of direct and indi-
rect experimental data relevant to the combustion of
hydrogen.

The reaction HĊO + M = Ḣ + CO + M was de-
scribed in the model of Kéromnès et al. as being second
order at all pressures. This elementary reaction was
also handled in this way in all other published syngas
combustion mechanisms. However, a deviation from
the second-order behavior at pressures of 10 bar and
above has been observed experimentally by Hippler
et al. [52] and Krasnoperov et al. [53]. The theoretical
study of Yang et al. [54] provided a high-pressure limit-
ing rate coefficient, a Troe fit for the falloff region, and
third-body collision efficiencies for argon and helium,
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relative to nitrogen. In our initial model we considered
the pressure dependence for the HĊO decomposition
reaction, by retaining the second-order rate coefficient
of Kéromnès et al. [9] as the low-pressure limit for
the reaction which is based on the value suggested by
Li et al. [3], and using the high-pressure limiting rate
coefficient, Troe parameters and third-body collision
efficiencies of Yang et al. [54] for He and Ar, and the
third-body collision efficiencies of Kéromnès et al. for
other colliders.

The third-body collision efficiencies were han-
dled differently in our initial mechanism compared
to the Kéromnès et al. mechanism. Temperature-
dependent third-body collision efficiencies were used
by Kéromnès et al. by defining reactions that involve
specific third bodies (e.g., Ḣ + O2 + Ar = HȮ2 +
Ar, Ḣ + O2 + N2 = HȮ2 + N2), and providing dif-
ferent parameterizations for temperature dependence
of these low-pressure limiting rate coefficients. How-
ever, this formalism produces incorrect results at high
pressures, since the calculated rate coefficients are ef-
fectively multiplied at high pressures by the number of
collider specific reactions. In our initial model, we con-
verted such multiple reactions into a single one, with
the closest equivalent temperature-independent third-
body collision efficiency.

For each reaction involving third bodies, the rate
coefficient was expressed with nitrogen as the refer-
ence collider having unit efficiency. Efficiencies were
explicitly defined for several stable species, such as H2,
CO, O2, H2O, CO2, Ar, and He. Unit relative collider
efficiencies were used for most other species.

SELECTION OF RATE PARAMETERS TO BE
OPTIMIZED

A local sensitivity analysis using the initial mecha-
nism was carried out at the conditions of the indirect
experimental data. Normalized sensitivity coefficients
were calculated for each of the experimental data points
with respect to the A-factors of each reaction, including
the A-factors describing the low-pressure limiting rate
coefficients. The sensitivity coefficients of the third-
body collision efficiencies were also calculated. The
sensitivity coefficients were calculated using the finite
difference method, and the threshold for importance
was defined as 10% of the largest absolute value of the
normalized sensitivity coefficients.

The rate parameters of those reactions were selected
for optimization that produced high sensitivity coeffi-
cient values at several experimental conditions. Usu-
ally all three Arrhenius parameters (A, n, E) were op-
timized, unless it was reported by Nagy et al. [33] that

the temperature dependence of both the rate coefficient
and its uncertainty can be adequately described using
fewer Arrhenius parameters (see Table I for details).

The list of the rate parameters chosen for optimiza-
tion is given in Table I. Altogether, 48 Arrhenius pa-
rameters and 5 third-body collision efficiencies of 18
reactions were optimized. The selected elementary re-
actions included all of those that were previously opti-
mized in our recently published hydrogen combustion
model [35], as well as the reactions that are relevant
only to the combustion of syngas mixtures due to in-
volving carbon containing species. Two further reac-
tions ȮH + ȮH = Ö + H2O (R4) and Ḣ + Ḣ + M =
H2 + M (R5) were also included, since the rate coeffi-
cients of these hydrogen reactions are important at the
conditions of several syngas experiments, but only at a
few hydrogen experiments.

The temperature dependence of the rate coefficient
of reaction HȮ2 + HȮ2 = H2O2 + O2 (R15) can be
described with the sum of two Arrhenius expressions.
In the present work, the parameters of the Arrhenius ex-
pression that are relevant at higher temperatures were
optimized only, while those relevant at lower tempera-
tures were not modified.

It was found that the reactions optimized in our
previous study on hydrogen combustion [35] also
have a large influence on the simulation results of
the syngas combustion experiments. This indicated
that information on the values of the rate parame-
ters of these elementary hydrogen combustion reac-
tions can be inferred from syngas combustion experi-
ments and could therefore be further optimized based
on the whole (hydrogen and syngas) experimental data
set.

Direct rate coefficient measurements were found for
most of the selected reactions. Altogether, 2217 data
points in 81 data sets that were used as optimization tar-
gets. Most of these direct measurements were indicated
in review articles [1–9] as highly reliable ones. These
include almost all direct measurements utilized for the
optimization of our hydrogen mechanism [35]. Primar-
ily, measurements that were performed at temperatures
above 700 K and below 3000 K were collected, which is
the most relevant temperature range for the combustion
of hydrogen and syngas. In the cases of reactions where
few data were available, measurements closer to room
temperature were also used. The number of direct mea-
surements used as optimization targets for each reac-
tion step is given in Table I, and the detailed list can be
seen in Table S14 of the Supporting Information. All
direct rate coefficient measurement results, together
with the conditions of determinations were also en-
coded into XML files according to the ReSpecTh for-
mat specification [37].
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Table I The Reactions Selected and the Number of Direct Measurements Used for Optimization, and the Optimized
Values of the Parameters

Direct Experiments Optimized Parameters

Optimized Subset of Reactions Data Points Data Sets lnA n E/R

R24 CO + OH = CO2 + H 205 15 9.717 2.221 –694.7
R1 H + O2 = O + OH 745 9 36.16 –0.4859 8116
R9a H + O2 + M = HO2 + M 149 10 45.41 –1.373 –
R2 O + H2 = H + OH 288 10 14.04 2.270 3501
R11 HO2 + H = OH + OH – – 31.69 – 86.07
R13 HO2 + OH = H2O + O2 67 4 27.59 0.4201 –477.4
R8b H + OH + M = H2O + M 2 1 55.66 –2.538 60.79
R10 H + HO2 = H2 + O2 10 1 14.57 2.113 –817.7
R3 OH + H2 = H + H2O 181 7 16.40 1.878 1586
R18 H2O2 + H = H2 + HO2 – – 46.03 –1.925 4743
R16 OH + OH + M = H2O2 + M 113 6 42.14 –1.178 –2150
R23 CO + O2 = CO2 + O 39 1 28.69 – 24005
R25 CO + HO2 = CO2 + OH – – 16.53 1.680 9139
R15 HO2 + HO2 = H2O2 + O2 73 4 35.01 – 7826
R26c HCO + M = H + CO + M 170 8 24.62 0.9596 7368
R28 HCO + H = CO + H2 – – 31.79 – –
R4 OH + OH = O + H2O 173 4 11.35 2.2642 –898.2
R5 H + H + M = H2 + M 2 1 43.05 –1.213 308.0

aOptimized values of third-body collision efficiency parameters (±1σ ) of reaction Ḣ + O2 (+M) = HȮ2 (+M): m(H2) = 1.51 ± 0.25,
m(Ar) = 0.474 ± 0.020, m(H2O) = 11.37 ± 0.95.

bOptimized value of the third-body collision efficiency for helium (±1σ ) of reaction Ḣ + ȮH + M = H2O + M: m(He) = 0.44 ± 0.21.
cOptimized value of the third-body collision efficiency for helium (±1σ ) of reaction HĊO + M = Ḣ + CO + M: m(He) = 0.79 ± 0.12.
For reactions with a third-body “+M”, the optimized parameters refer to the low-pressure limit. The order of the reactions corresponds

to the order of inclusion according to the optimization strategy discussed in the seventh section. Units of the Arrhenius parameters are
cm3 mol s K.

PARAMETER OPTIMIZATION

We applied our previously described global parame-
ter optimization method [34] to the indirect and direct
experimental data collected to determine the optimal
values of the Arrhenius parameters and third-body col-
lision efficiencies. The optimal set of parameters was
achieved by the minimization of the following objec-
tive function:

E(p) = 1
N

N∑
i=1

1
Ni

Ni∑
j=1

(
Y mod

ij (p)−Y
exp
ij

σ (Y exp
ij )

)2

where Y
mod / exp

ij =
{

y
mod / exp

ij ifσ (yexp
ij ) ≈ constant for all j

ln y
mod / exp

ij ifσ (ln y
exp
ij ) ≈ constant for all j

i = 1, ..., N

(1)

Here p is the vector of the parameters selected for
optimizations, N is the number of data sets, and Ni

is the number of data points in the ith data set. The
values y

exp
ij and σ (yexp

ij ) are the jth measured (experi-
mental) data point and its standard deviation, respec-
tively, in the ith data set. For the indirect measurement
data, the simulated (modeled) value is y mod

ij and is ob-
tained from a simulation using the detailed mechanism

investigated. For the direct measurements, the corre-
sponding modeled value y mod

ij is calculated at a given
temperature, pressure, and bath gas composition. In
the formula of E(p), values, Y mod

ij and Y
exp
ij were com-

pared, which were derived from y mod
ij and y

exp
ij values

depending on the nature of error distribution character-
istic for the type of experiment in which data set i was
determined.

Constant absolute error, corresponding to identi-
cal σ (yexp

ij )values for all data j within data set i was
assumed for the measured burning velocities and con-
centrations; in this case Yij = yij applies. Constant rel-
ative error, implying identical σ (ln y

exp
ij ) values for all

data j within data set i was assumed for the ignition de-
lay measurements and the rate coefficients determined
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in direct experiments; in this case Yij = ln yij . The
standard deviations were estimated for each data set
separately, based on their scatter. Within each data
set, the data points were plotted as a function of the
systematically varied experimental parameter. A trend
line was fitted using a high-order polynomial or spline
function, and the lowest order function that already de-
scribed the trend of the experimental data was used,
to avoid overfitting. The standard deviation of the data
points in a data set was determined by calculating the
root mean square of the deviations between the data
points and the fitted trend line. In order to avoid over-
weighting very smooth data series in the error func-
tion, a minimum standard deviation of σ min(ln τ ) =
0.1, σ min(ln k) = 0.1, σ min(SL) = 2 cm/s was assigned
to ignition delay, rate coefficient, and laminar burning
velocity measurements, respectively. For concentration
profile measurements, 1% of the maximum measured
concentration was used as the minimally assigned stan-
dard deviation (i.e., σ min(c) = cmax/100). The esti-
mated standard deviations for each data set are listed in
Tables S1−S14 of the Supporting Information. Figures
S21 and S22 in the Supporting Information show exam-
ples of residuals of the fits for laminar burning velocity
measurements. These figures provide justification for
choosing absolute standard deviations for these types
of measurements.

As a part of our method, a global minimum search
of the above error function is carried out. Global pa-
rameter optimization methods require the definition of
a domain of the parameters in which the optimum is
sought. Nagy et al. [33] have published temperature-
dependent uncertainty limits for the rate coefficients of
the elementary reactions selected for optimization in
the present work. These limits were based on an exten-
sive review of the experimental and theoretical deter-
minations of the rate coefficients. The objective of this
was to provide an upper estimation of the uncertain-
ties of the rate coefficients at each temperature within
the combustion temperature interval. The correspond-
ing joint uncertainty domain of the rate parameters for
the selected reaction was then determined. All physi-
cally realistic Arrhenius parameters lie within these do-
mains, and their respective limits can be used as bound-
aries in a global optimization. Nagy et al. [33] have also
provided nonrestrictive uncertainty ranges for third-
body collision efficiencies for pressure-dependent rate
coefficients, which were also used in this work. The
global minimum search of influential kinetic parame-
ters (Arrhenius and third-body efficiency parameters)
is performed by a stochastic algorithm detailed in [34].

The evaluation of the error function requires sim-
ulations of the experiments. The simulation programs
SENKIN [55], PREMIX [56], and PSR [57] of the
CHEMKIN-II package [58] were used, and the control

parameters of all simulation codes were chosen so that
the numerical errors were minimized, i.e. the integrator
tolerances were set to strict values for all simulations.
For the PREMIX calculations, the flame grid was set to
contain at least 600 points and the GRAD and CURV
settings were required to be less than 0.1. Typically
GRAD and CURV values near 0.01–0.03 were needed
to achieve a grid of 600 points. Both thermal diffusion
and multicomponent diffusion models were used for
the flame simulations.

The covariance matrix of the optimized parameters
can be estimated [34] using the following equation:

�p =
[(

JT
o W�−1

Y Jo

)−1
JT

o W�−1
Y

]
(�Y + ��)

×
[(

JT
o W�−1

Y Jo

)−1
JT

o W�−1
Y

]T
(2)

Here �p is the covariance matrix of the optimized
parameters, and matrices �Y and �� represent the
estimated statistical and the systematic errors of the
experimental results, respectively. W is the matrix of
weights of the individual data points. In accordance
with Eq. (1), the off-diagonal elements of W are zero,
whereas the diagonal elements are 1/Ni for each data
point, where Ni is the number of data points in the re-
spective data set. J0 is the Jacobian (the first derivative
matrix) of the model results according to the optimized
parameters at the optimal parameter set.

In our previous studies [34,35,38,39], the system-
atic errors of the experiments were estimated based
on the remaining discrepancy between the model re-
sults of the optimal model and the experimental results,
using the equation �� = �Y�YT. In this equation,
�Y = Ȳ mod − Yexp, and Ȳ mod and Yexp are the vec-
tors of the optimal simulated and experimental results,
respectively. In this way, the estimation of systematic
errors is based on the assumption that the systematic
errors average to zero over the complete set of exper-
imental data and the “real” values of the parameters
can be obtained from the full data set. However, us-
ing the expression �� = �Y�YT also implies that all
systematic errors are either fully correlated or anticor-
related. This can be simply demonstrated by examining
an element of the �� matrix:

(��)ij = �Yi · �Yj (3)

where �Yi and �Yj are the differences between the
modeled and experimental results for the ith and jth
data points, respectively. If we consider that �� is the
covariance matrix representing the systematic devia-
tions, then its elements can be written in the following
form:

(��)ij = σsyst,i · σsyst,j · rsyst,ij = �Yi · �Yj (4)
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In our previous studies, σsyst,i is approximated by �Yi ,
therefore according to this approximation

∣∣rsyst,ij

∣∣ = 1
and the actual value of the correlation coefficient is
rsyst,ij = 1, if the signs of �Yi and �Yj are identical,
and rsyst,ij = −1, if they are different. Therefore, the
estimation of the systematic errors previously used in-
volved the assumption that all systematic errors are
nearly fully correlated or anticorrelated. While it is
true that the systematic errors for experimental results
within one data set or several data sets measured on
the same apparatus are expected to be correlated with
each other, the same cannot be said for experiments
carried out by different groups in different facilities.
Furthermore, since the equation �Y = Ȳ mod − Yexp

describes the full difference between the modeled and
experimental results, it also includes the differences
arising from the statistical errors, which cannot be
assumed to be correlated. Therefore, in our present
work we used a modified estimation of the system-
atic errors by considering them to be uncorrelated. We
still take into account the discrepancies between the
simulated and experimental results by using equations
(��)ii = �Y 2

i and (��)ij = 0.

CALCULATION OF RESPONSE SURFACES

As discussed in the preceding section, in Eq. (1) the
modeled value is Y mod

ij for the indirect measurement
data and it is obtained from a simulation using the de-
tailed mechanism with the investigated parameter set.
Such a simulation is always fast for spatially homo-
geneous problems (i.e., for SENKIN and PSR calcu-
lations), but it can be very slow for flame simulations.
Therefore, a polynomial response surface was calcu-
lated for each laminar burning velocity measurement to
decrease the computational costs of the optimization.
Without using response surfaces for flames, the com-
putational cost of the optimization task would have
been approximately two orders of magnitude larger,
therefore would have been unfeasible. Utilization of
response surfaces was not necessary for other experi-
ment types, as ignition delay and homogeneous con-
centration profile measurements could be simulated
sufficiently fast using the CHEMKIN-II programs.

For each burning velocity data point, 20,000 ran-
dom, uniformly distributed samples of the active pa-
rameters, previously identified using sensitivity anal-
yses, were generated within their joint domain of
uncertainty and all other parameters were fixed at their
original values. The uniform sampling algorithm for
the Arrhenius parameters described in [33] was used.
Simulations were performed at all experimental con-
ditions using each generated parameter set, with the

strict integrator options and diffusion models described
earlier. The simulation results were fitted by orthonor-
mal polynomials using the method described in [59].
Monomials were restricted to be at most fourth order
and to have at most two variables of which one is at
most first order. Our trial calculations indicated that the
response surface polynomials generated this way are
similarly accurate compared to using a full fourth-order
orthonormal polynomial expansion approximation, but
they can be evaluated using less computer time.

The polynomials obtained were tested against sim-
ulation results generated from 1000 new, random sets
of parameters. The maximum allowed difference be-
tween the test set of simulation results and the poly-
nomial was 2 cm/s, which is equal to the minimum
1σ experimental uncertainty assigned to our data sets.
For most data points, a satisfactory response surface
was obtained based on this criterion. The typical root-
mean-square error of the response surfaces was around
0.1 cm/s. Those laminar burning velocity measure-
ments for which an accurate response surface could
not be calculated were omitted from the optimization,
but were included in the evaluation of the optimized
models performance and comparison with other mod-
els. This meant the exclusion of 75 hydrogen and 344
syngas laminar burning velocity data points from the
optimization.

There is a twofold reason why we could not obtain
accurate response surfaces. In some cases, some rate
parameter combinations are nonphysical and simula-
tion results could not be obtained in these regions of
the parameter space. This typically occurs when the
measurements were carried out near flame extinction
conditions. In other cases, we have good simulation
results in the entire parameter space investigated but
the surrogate model describes these points with high
error. This is an issue of fitting the data, which could
be avoided using a more complex fitting function.

THE HIERARCHICAL OPTIMIZATION
STRATEGY

Simultaneous optimization of a large number of param-
eters is a computationally challenging task. To reduce
the computational costs, the same hierarchical opti-
mization strategy was used as the one applied in our
previous work [35].

For each experimental data point, the important re-
actions were identified, based on the normalized sensi-
tivity coefficients and a cutoff value. Data points with
identical sets of important reactions were grouped to-
gether. First, the largest group where only a single
reaction was found to be important was selected, and
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the rate parameters of this reaction were optimized
with the data points of the first group as optimization
targets. Next, a new reaction was selected for opti-
mization and all experimental data where the new and
also the previously selected reaction were important
were also selected as optimization targets, and the rate
parameters of both reactions were optimized to them.
Reactions were added one by one, initiating the usage
of new experimental data groups, and the optimization
steps were performed. Adding new parameters and data
was repeated until all reactions and experimental data
were used. The order of selected reactions was chosen
in such a way that the amount of added experimental
data points was always maximal for each additional
reaction. The optimal order of inclusion of data sets
and important reactions in this hierarchical optimiza-
tion procedure was automated by a homemade code.
In Table I, the order of the reactions corresponds to
the inclusion order of reaction steps according to the
optimization strategy.

Up to this point, the third-body collision efficiencies
were not modified, as these parameters can have identi-
cal effects to the frequency factor Arrhenius parameters
at high dilutions allowing them to completely compen-
sate each other in some cases. In the final stage of
the optimization all Arrhenius parameters were fixed,
and all important third-body collision efficiencies were
optimized at the same time. Little modifications were
made to the third-body collision efficiencies in this sec-
ond stage, and only a small improvement of the model
could be achieved.

RESULTS AND DISCUSSION

As a result of the optimization, the error function value
decreased significantly and a better description of the
collected indirect and direct experimental data was
achieved. Optimized values, shown in Table I, were
obtained for 53 rate parameters (48 Arrhenius param-
eters and 5 third-body collision efficiencies). The co-
variance matrix of the optimized parameters was esti-
mated using the method described in the fifth section,
which meant that the statistical scatter and the remain-
ing discrepancies between the measurements and the
modeled results were propagated to the uncertainty of
the optimized parameters. From the covariance matrix
of the rate parameters, temperature-dependent uncer-
tainty ranges were obtained for the rate coefficients
of each optimized reaction. The optimized mechanism
in CHEMKIN format together with the transport data
file used and the covariance matrix of the Arrhenius
parameters are given in the Supporting Information.

Figure 1 Ignition delay measurements (black squares) of
Krejci et al. [67] and simulation results (lines) from each
of the investigated syngas combustion mechanisms. Experi-
mental conditions are p = 12 atm, φ = 0.5, H2/CO/O2/Ar =
0.005/0.005/0.01/0.98.

The performance of the optimized mechanism was
compared to several hydrogen and syngas combustion
mechanisms, and also larger mechanisms that have
been validated or extensively used for the simulation
of hydrogen and syngas combustion [1–9,16,29,35,60–
66]. All simulations were carried out with CHEMKIN-
II codes, without using response surfaces. All burning
velocity experiments that were excluded from the op-
timization due to lack of accurate response surfaces
were also taken into account here.

The comparisons have been performed by investi-
gating the error function values by experiment type for
each model. Also, plots of the experimental data to-
gether with the simulation results obtained using each
mechanism were created. Figures 1–3 show examples
of experimental data sets and simulation results ob-
tained with the optimized and other investigated mod-
els. Tables II and III contain the calculated error func-
tion values for each of the investigated mechanisms for
the hydrogen and syngas combustion data, respectively.
The error function values were also calculated sepa-
rately for the ignition delay time, laminar burning ve-
locity, and concentration profile measurements. In sev-
eral burning velocity measurements, helium was used
as the bath gas or as a component of the diluent mix-
ture. Only mechanisms that contain helium as a species
and have assigned third-body collision efficiency val-
ues to pressure-dependent reactions were used for
the simulation of these experiments. In Tables II
and III, the calculated error function values are given,
considering the measurements where helium was not
used (“noHe”) and also for the complete data set,
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Figure 2 Laminar burning velocity measurements (black
squares) of Bouvet et al. [68] and simulation results (lines)
from each of the investigated syngas combustion mecha-
nisms. Experimental conditions are p = 1 atm, T = 295 K,
H2/CO = 0.5/0.95 in air.

Figure 3 Concentration−time profile measurements (black
squares) of Yetter et al. [69] and simulation results
(lines) from each of the investigated syngas combus-
tion mechanisms. Experimental conditions are p = 1
atm, T = 1138 K, φ = 0.013, CO/O2/H2O/N2 =
0.00016/0.0191/0.0154/0.96534.

including measurements with helium (“wHe”). Over-
all, there is no large difference in the reproduction of
burning velocities considering the He and non-He data,
and the overall ranking of mechanisms is not affected
by the selection of these groups of test data in most
cases.

The results show that the present optimized model
produces the best overall results on the syngas com-
bustion data. It is the best performing mechanism for
ignition delay and concentration profile measurements,

and the second best for laminar burning velocity mea-
surements after the mechanism of Davis et al. [1].

Considering the hydrogen combustion data, a
slightly worse overall performance was obtained than
for our previously published, optimized hydrogen com-
bustion mechanism [35]. While the present joint opti-
mized mechanism is not the best performing one in
any of the experimental data categories for hydrogen
combustion, its error function values are only slightly
higher than those of the best performing previously
published mechanisms.

The fact that low error function values were ob-
tained for each experimental category considering
both hydrogen and syngas combustion means that the
present optimized mechanism is well balanced and pro-
vides good results in the whole validation range. This
indicates that an optimization approach including mul-
tiple combustion systems over a wide range of condi-
tions is feasible, and models that can accurately de-
scribe the combustion of several fuels simultaneously
can be created by this method.

For the development of mechanisms for the combus-
tion of more complex fuels, a similar approach could
be recommended, i.e. optimization of all highly sen-
sitive rate parameters, including those that have been
optimized during the development of a less complex
fuel. The most “complete” characterization of rate
coefficients can be achieved in this way, as in the
experimental investigation the combustion properties
can carry information on reaction rate parameters that
play a significant role in the combustion of less com-
plex fuels. For example, the laminar burning velocities
of most hydrocarbons are known to be largely gov-
erned by the chemistry of the hydrogen and syngas
system.

However, such an approach would be hindered by
the increasing computational demand, as both the num-
ber of optimization targets and the parameters to be
optimized increase. A viable option is to keep the pre-
viously optimized rate parameters unmodified and to
optimize only the “new” reactions that play an impor-
tant role in the combustion of the more complex fuel.
In this way, the computational requirements can be
decreased and it can be guaranteed that a new mech-
anism also provides good results for the combustion
of smaller fuels, since the relevant chemistry is not
modified. However, in this way the joint uncertainty of
the newly and previously optimized reactions cannot
be investigated, and the uncertainty limits obtained for
the rate coefficients will represent only the informa-
tion that was obtained based on the respective subsets
of experimental data.

The optimized rate coefficients were also compared
to the values obtained from direct experimental and
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Table II Comparison of Error Function Values between Our Optimized and 19 Other Mechanisms by Experiment
Type, for Hydrogen Combustion

Hydrogen Combustion

Average Error Function

Mechanism Ref. IDT Conc Flame noHe Flame wHe Total noHe Total wHe

ELTE Syngas 2015 This work 6.66 4.97 7.24 5.80 6.48 6.00
ELTE Hydrogen 2015 [35] 6.17 5.66 6.11 4.86 6.05 5.54
Kéromnès 2013 [9] 8.11 8.03 5.88 8.11 7.41 8.10
NUIG NGM 2010 [60] 10.72 4.87 9.94 7.24 9.25 8.25
Ó Conaire 2004 [4] 13.00 5.33 8.90 − 10.13 −
Konnov 2008 [5] 15.17 6.73 6.37 − 10.71 −
Li 2015 [29] 13.77 6.88 15.54 10.80 12.85 11.32
Li 2007 [3] 18.73 5.23 7.07 7.61 12.33 11.75
Alekseev 2015 [6] 11.88 7.01 10.34 14.76 10.38 12.19
Hong 2011 [7] 10.74 5.43 18.72 − 12.05 −
Burke 2012 [8] 24.09 3.18 5.91 4.57 14.14 12.34
Saxena Williams 2006 [61] 22.16 15.79 8.13 7.60 16.54 15.04
POLIMI 2014 [62] 25.60 10.06 10.81 7.97 17.82 15.58
Davis 2005 [1] 36.73 3.98 7.58 5.83 20.94 18.19
Starik 2009 [63] 30.84 3.95 16.40 12.77 20.77 18.61
San Diego 2014 [64] 17.09 12.22 17.62 25.21 16.23 19.56
USC II 2007 [65] 36.36 3.97 13.81 − 22.65 −
GRI 3.0 1999 [16] 69.51 6.90 23.97 − 42.43 −
Sun 2007 [2] 103.10 14.48 18.60 15.31 58.66 51.21
Rasmussen 2008 [66] 202.58 10.60 21.23 − 106.83 −
No. of data sets 62 27 39 62 128 151
No. of data points 785 294 319 432 1398 1511

The error function values are normalized by the number of data sets within each column. The columns contain results for ignition delay
time measurements (IDT), concentration profiles (Conc), laminar burning velocity measurements, (Flame) and over the whole data set (Total).
In the case of laminar burning velocities and overall results error function values calculated both with the exclusion of experimental data where
He was used as a bath gas (noHe) and including these (wHe) are given.

theoretical determinations and recommendations of re-
view articles taking into consideration the calculated
temperature-dependent uncertainty ranges of the op-
timized rate coefficients. Figures S1–S18 of the Sup-
porting Information show the rate coefficients of the
18 optimized reactions and their 3σ uncertainty limits,
together with selected direct measurements and theo-
retical results. In the cases where a small number of
recent data were available, rate coefficient expressions
recommended by recent reviews were also used to pro-
vide a basis for comparison. A more comprehensive
list of the corresponding rate coefficient determina-
tions and recommendations is available in [33].

In most cases, the optimized rate coefficients are in
good agreement with the most recent determinations
and recommendations. This had been expected, since
many of the most recent direct experimental results
were used as optimization targets for the development
of the present optimized mechanism. However, a key
value of this work is to demonstrate that it is possible to

create an optimized mechanism that can well describe
both indirect experiments and direct rate coefficient
determinations.

The reactions Ḣ + O2 = Ö + ȮH (R1), Ö + H2 =
Ḣ+ ȮH (R2), Ḣ + O2 (+M) = HȮ2(+M)(R9), and
CO + ȮH = CO2+Ḣ(R24) are known to be among the
most important reactions in the combustion of hydro-
gen and syngas and have been extensively investigated
in both experimental and theoretical studies. For these
reactions, very precise rate coefficient values could be
determined by the optimization, since indirect mea-
surements such as ignition delays and laminar burning
velocities are usually very sensitive to these reactions.
The optimized results are also consistent with the lit-
erature data for these rate coefficients.

For reactions ȮH + H2 = Ḣ + H2O (R3) and
ȮH + ȮH (+M) = H2O2 (+M) (R16), a smaller
number of rate coefficient determinations were avail-
able in the literature. Very narrow posterior uncer-
tainty ranges were obtained for the rate coefficients
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Table III Comparison of Error Function Values between Our Optimized and 13 Other Mechanisms by Experiment
Type Considering Only Syngas Combustion Data

Syngas Combustion

Average Error Function

Mechanism Ref. IDT Conc Flame noHe Flame wHe Total noHe Total wHe

ELTE Syngas 2015 This work 14.83 7.95 4.95 4.84 8.43 8.08
NUIG NGM 2010 [60] 26.52 11.72 7.59 7.84 14.05 13.69
Kéromnès 2013 [9] 38.09 21.34 6.60 6.29 18.33 17.20
Davis 2005 [1] 52.04 13.49 4.26 4.36 20.43 19.19
POLIMI 2014 [62] 45.28 29.17 5.49 5.89 20.93 19.93
Li 2015 [29] 19.80 105.73 5.27 5.92 22.27 21.30
Li 2007 [3] 50.77 30.11 5.58 5.79 22.82 21.57
USC II 2007 [65] 64.17 10.78 5.17 − 24.41 −
San Diego 2014 [64] 30.38 50.92 15.81 16.20 24.73 24.25
Starik 2009 [63] 36.04 75.02 15.58 14.66 29.37 27.71
GRI 3.0 1999 [16] 77.23 55.56 5.49 − 34.24 −
Rasmussen 2008 [66] 87.12 74.65 16.15 − 45.70 −
Saxena Williams 2006 [61] 77.51 162.54 5.31 5.39 47.47 44.14
Sun 2007 [2] 133.69 84.05 5.74 6.85 55.65 52.32
No. of data sets 94 37 168 194 299 325
No. of data points 938 777 1649 1879 3364 3594

The error function values are normalized by the number of data sets within each column. The columns contain results for ignition delay
time measurements (IDT), concentration profiles (Conc), laminar burning velocity measurements, (Flame) and over the whole data set (Total).
In the case of laminar burning velocities and overall results error function values calculated both with the exclusion of experimental data where
He was used as a bath gas (noHe) and including these (wHe) are given.

of these reactions as a result of optimization, due to
their high sensitivities at the conditions of some of the
indirect experimental data. The obtained uncertainty
ranges are smaller than the scatter of several inde-
pendent direct determinations, and the optimized rate
coefficient values fall very close to most of the recent
determinations.

The rate coefficients of the reactions ȮH + ȮH =
Ö + H2O (R4), Ḣ + Ḣ + M = H2 + M (R5), Ḣ +
ȮH + M = H2O + M (R8), Ḣ + HȮ2 = H2 + O2

(R10), HȮ2 + Ḣ = ȮH + ȮH (R11), HȮ2 + ȮH =
H2O + O2 (R13), CO + O2 = CO2 + Ö (R23), CO
+ HȮ2 = CO2 + ȮH (R25), HĊO + M = Ḣ + CO
+ M (R26), and HĊO + Ḣ = CO + H2 (R28) could
be determined with somewhat lower uncertainties than
the prior values, and an overall good agreement was
obtained with the available direct determinations.

For the rate coefficients of the reactions Ḣ + HȮ2

= H2 + O2 (R10) and HȮ2 + Ḣ = ȮH + ȮH (R11),
only few direct measurements are available. The rate
coefficient values obtained here are similar to those ob-
tained in our previous optimization study on hydrogen
combustion [35], but the obtained posterior uncertain-
ties were smaller than the prior ones. For the reactions
Ḣ + ȮH + M = H2O + M (R8) and HȮ2 + ȮH
= H2O + O2 (R13), somewhat different values were

obtained for the rate coefficient than in our previous
optimization study, although the uncertainty ranges
overlap at almost all temperatures. Burke et al. [70]
have recently published a detailed study of reaction
(R13). They have considered both ab initio calcula-
tion results and indirect experimental data using the
multiscale modeling methodology to address the in-
consistencies between experimental measurements of
the rate coefficient. Burke et al. found that there is a
minimum of the rate coefficient near 1200 K, but it
is not as sharp as it was indicated by several previous
experimental results. In our previous study on hydro-
gen combustion [35], we obtained very similar results
to those of Burke et al., although the minimum in the
rate coefficient occurred at a lower temperature, around
750 K. Interestingly, in our present study a much shal-
lower minimum was obtained compared to both our
previous study and the results of Burke et al., but the
position of the minimum is now near 1100 K. The
Burke et al. recommendation and the previous and cur-
rent optimized rate parameter functions together with
their 3σ uncertainty limits are plotted in Fig. 4. The
differences between the present optimization results
and those of Varga et al. [35] are indicative of a degree
of inconsistency between the sets of optimization tar-
gets. The results of direct measurements and theoretical
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Figure 4 Arrhenius plot of the rate coefficient of reaction
HȮ2 + ȮH = H2O + O2. The blue solid line shows the
recommended mean value of Nagy et al. [33], the red solid
line shows the result of the present optimization, and the
green solid line shows the result of the optimization of Varga
et al. [35]. The correspondingly colored dashed lines show
the respective 3σ uncertainty limits. The black solid line with
square symbols shows the rate coefficient obtained by Burke
et al. [70], and the corresponding dashed lines show the 3σ

uncertainty bounds of Burke et al.

calculations for this reaction are given in Fig. S10 of
the Supporting Information.

The reaction CO + HȮ2 = CO2 + ȮH (R25) has
been investigated recently in review articles and with
theoretical methods [2,71,72], and different rate pa-
rameters have been suggested by different authors. Our
obtained rate coefficient–temperature functions are in
between the most recent recommendations, and all
of the previously recommended rate coefficients are
within our posterior uncertainty limits.

A larger number of studies were available for the
reaction HĊO + M = Ḣ + CO + M (R26), and
the optimized rate coefficient is near the most recent
recommendations and measurements. The uncertainty
of the optimized rate coefficient could be decreased
compared to the prior uncertainty. The rate coefficient
of reaction HĊO + Ḣ = CO + H2 (R28) was observed
to be independent of temperature by all experimental
observations, and therefore only the A-factor was fitted
for this reaction.

Owing to the obtained low uncertainties and overall
good agreement with previous studies, we consider
the optimized rate parameters of reactions (R1)−(R5),
(R8)−(R11), (R13), (R16), (R23)−(R26), and (R28)
as new recommended values, and not just fitted values
within the context of the present optimized model.

Rather different values were obtained for the rate
coefficient of reaction HȮ2 + HȮ2 = H2O2 + O2

(R15) compared to our previous optimization study on
hydrogen. Nevertheless, in the temperature range of
800–900 K where this reaction was shown to be impor-
tant in our sensitivity analysis, the two recommended
rate expressions are within each other’s uncertainty do-
mains. The discrepancy at high temperatures suggests a
degree of inconsistency between the H2 and the H2/CO
data sets, or that the effect of changing of the rate co-
efficient of this reaction can be easily compensated
through changes in other reactions. Also, it is entirely
possible that for this reaction, indirect measurements
carried out on different fuel systems will have better
constraints for the rate coefficient at higher tempera-
tures. In this case, a reevaluation of the rate coefficients
could be beneficial when developing mechanisms, e.g.,
for more complex fuels.

The optimized rate coefficient for the reaction H2O2

+ Ḣ = H2 + HȮ2 (R18) exhibits an unusual curva-
ture at high temperatures, which does not agree with
the recent theoretical determinations and recommen-
dations. Unfortunately, no direct measurements in this
temperature range are available in the literature. How-
ever, the optimized rate coefficient is very similar to
that obtained in our previous optimization study [35].

For the reasons above, we conclude that the op-
timized rate coefficients of reactions HȮ2 + HȮ2 =
H2O2 + O2 (R15) and H2O2 + Ḣ = H2 + HȮ2 (R18)
can be used in our model to provide a very good overall
reproduction of the available indirect and direct mea-
surements of hydrogen and syngas combustion, but are
not necessarily good recommended values for general
use. The case of the reaction H2O2 + Ḣ = H2 + HȮ2

(R18) also demonstrates that using theoretical rate co-
efficient determinations in a similar way to direct mea-
surements would most likely be beneficial. However, a
comprehensive collection of such publications and an
accurate assessment of the uncertainties of the theoret-
ical methods is beyond the scope of the present paper.
For more complex combustion systems, in which key
elementary reactions have been studied less frequently
in experiments, such an approach would be highly
useful.

Figures S19–S20 of the Supporting Information
show the posterior uncertainty parameter f as a func-
tion of temperature for each optimized reaction. The
posterior uncertainties represent how precisely the rate
coefficients can be determined from the available data.
It is important to note that this is not only a measure
of the information content of the experimental data
utilized, but also refers to the degree of inconsistency
between the experimental results. Further narrowing
of the uncertainty ranges would primarily require re-
solving these inconsistencies. Note that in the present
work some experimental data were not utilized based
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on known issues in the experimental techniques. Also,
some clearly outlying data has been identified and re-
moved from the set of optimization targets, as dis-
cussed in the second section.

CONCLUSIONS

A joint hydrogen and syngas combustion mechanism
was developed using an optimization approach, start-
ing from the models of Kéromnès et al. [9] and Varga
et al. [35]. A comprehensive set of experimental data,
both indirect and direct, were used as optimization tar-
gets. A significant overall improvement was achieved
in the description of the syngas combustion data com-
pared to the previously published syngas mechanisms,
and a similarly good overall performance was achieved
for hydrogen combustion compared to our previous op-
timization study [35]. It was shown that the optimized
mechanism provides the best performance based on
the experiments used. As it provides good results in
wide ranges of experimental conditions, it is a good
starting point for the development of larger combus-
tion mechanisms as well as for automatic mechanism
generation.

The covariance matrix of the optimized parame-
ters was calculated, and temperature-dependent uncer-
tainty ranges were obtained for the rate coefficients of
each of the optimized reactions. The rate parameters
of reactions (R1)−(R5), (R8)−(R11), (R13), (R16),
(R23)−(R26), and (R28) could be determined with
high precision, and we consider the optimized values
as recommendations for the physical values (see Table
I). The rate parameters of reactions (R15) and (R18)
are not necessarily recommended to be used outside
the current optimized model.

All collected experimental data in ReSpecTh XML
data format, the optimized mechanism, and the covari-
ance matrix of the optimized parameters are available
on the ReSpecTh web site (http://respecth.hu).

The authors are grateful for Dr. J. A. Miller for the suggestion
of handling the decomposition reaction of HĊO as being
pressure dependent.
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Turányi, T. Proc Combust Inst 2015, 35, 589–596.
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Höinghaus, K.; Law, C. K.; Qi, F. Prog Energy Combust
Sci 2014, 43, 36–67.

46. Varea, E.; Beeckmann, J.; Pitsch, H.; Chen, Z.; Renou,
B. Proc Combust Inst 2015, 35, 711–719.

47. Dryer, F. L.; Haas, F. M.; Santner, J.; Farouk, T. I.;
Chaos, M. Prog Energy Combust Sci 2014, 44, 19–
39.
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