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Nucleosome positioning is not only related to genomic DNA compaction but also to other biological functions. After the chromatin
is digested by micrococcal nuclease, nucleosomal (nucleosome-bound) DNA fragments can be sequenced and mapped on the
genomic DNA sequence. Due to the development of modern DNA sequencing technology, genome-wide nucleosome mapping
has been performed in a wide range of eukaryotic species. Comparative analyses of the nucleosome positions have revealed that
the nucleosome is more frequently formed in exonic than intronic regions, and that most of transcription start and translation
(or transcription) end sites are located in nucleosome linker DNA regions, indicating that nucleosome positioning influences
transcription initiation, transcription termination, and gene splicing. In addition, nucleosomal DNA contains guanine and
cytosine (G + C)-rich sequences and a high level of cytosine methylation. Thus, the nucleosome positioning system has been
conserved during eukaryotic evolution.

1. Introduction

Eukaryotic genomic DNA is packaged with histone proteins
to form chromatin [1, 2]. The most fundamental repeating
unit of chromatin is the nucleosome, which consists of
an octamer of histones (2 copies of each histone protein:
H2A, H2B, H3, and H4) and the genomic DNA wrapped
around the octamer [3, 4]. Modification (e.g., acetylation,
methylation, and phosphorylation) of the nucleosomal core
histones influences chromatin structure and biological func-
tions [5–7]. The modified nucleosome should be formed
at the genomic position or in the genomic region. In this
paper, I will focus on nucleosome positioning (not histone
modification), because nucleosome positioning is not only
related to compacting the genomic DNA but also to gene
regulation [8–17].

Due to the development of DNA sequencing technol-
ogy and genomic tiling array technology, genome-wide
nucleosome mapping has been performed in a wide range
of eukaryotic species, including the budding ascomycetous
yeast, Saccharomyces cerevisiae [19]; the nematode, Caenor-
habditis elegans [20]; the fruit fly, Drosophila melanogaster
[21]; humans, Homo sapiens [22]; the malaria parasite,
Plasmodium falciparum [23]; the filamentous ascomycete,

Aspergillus fumigatus [24]; the fission ascomycetous yeast,
Schizosaccharomyces pombe [25]; the plant, Arabidopsis
thaliana [26]; several ascomycetous yeasts [27]; the mouse,
Mus musculus [28]; the basidiomycete, Mixia osmundae [29];
the amoebozoa, Dictyostelium discoideum [30].

2. Nucleosome Positioning and
DNA Sequence Preference

The DNA sequence plays an important role in nucleosome
positioning [31–37]. Genome-wide analyses of nucleosome
positioning have revealed that DNA sequence preference
exists for nucleosome occupancy [29, 38, 39]. The nucle-
osome occupancy reflects average nucleosome positioning
levels on a given region of DNA in a population of cells
[40–43]. For example, the dinucleotide sequences AA and
TT are depleted in nucleosome-forming regions in different
organisms [29, 39, 44], whereas the G + C content is highly
correlated with nucleosome occupancy [45, 46]. In addition,
it has been reported that nucleosomal DNA cytosines
are more highly methylated than nucleosome linker DNA
cytosines in humans and the plant Arabidopsis [26]. These
results suggest that DNA sequence preference in nucleosome
occupancy has been conserved during eukaryotic evolution.
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Figure 1: Distribution of the genomic G + C content of Bacteria, Archaea, and Eukarya. The G + C content data were obtained from the
Genome Composition Database [18].

Genome-wide nucleosome positioning data suggest that
nucleosome occupancy restricts the range of genomic G +
C content. Bacteria and Archaea, which lack nucleosomes,
have a wide range of G + C content. In contrast, the genomic
G + C content distribution of Eukarya is completely dif-
ferent from that of Bacteria and Archaea (Figure 1). This
distribution difference may be related to the differences in
the conservation level of histones and nucleoid-associated
proteins; although histone proteins are highly conserved
between different organisms, nucleoid-associated proteins
vary among Bacteria and Archaea [47–50].

3. Nucleosome Positioning around the
Transcription Start Site

Nucleosome depletion in the vicinity of the transcrip-
tion start site (TSS) has been indicated [51–53]. Indeed,
nucleosome-free regions are pervasive in the gene promoters
of yeast [26, 54, 55]. Moreover, the nucleosome organization
around TSSs is very similar among different organisms
[20, 29, 30, 39, 54, 55]. The nucleosome position profile is
sharper in the downstream region of the TSS. Nucleosomes
downstream from the nucleosome-free region are well posi-
tioned, with positioning decaying with increasing distance
into the protein-coding region. Nucleosome positioning is
more conserved in gene promoters than in gene bodies,
suggesting that nucleosome positioning in the gene promoter
plays an important role in gene transcription [19, 27, 52, 56,
57].

On the other hand, nucleosome positioning in vivo
differs from that in vitro, indicating that systems other
than DNA sequence preference are involved in nucleosome
positioning [40, 41, 58]. Recently, it was reported that the
most conserved nucleosome position (the +1 nucleosome),

which is the sharpest in the nucleosome position profile, is
maintained by ATP-dependent factors in S. cerevisiae [59,
60]. It remains uncertain whether nucleosome positioning
in the gene promoter has been evolutionarily conserved as
a major driving force in gene expression [15, 27, 36] or not
[57, 61, 62].

4. Nucleosome Positioning around the
Translation (or Transcription) End Site

Genome-wide nucleosome mapping analyses of the asco-
mycete S. cerevisiae revealed that nucleosome depletion is
also found around translation end sites as well as TSSs
[63, 64]. In the basidiomycete M. osmundae, dinucleo-
some—but not mononucleosome—depletion is clearly
found around TSSs and translation end sites [29]. These
results suggest that the nucleosome linker DNA length of M.
osmundae around TSSs and translation end sites is shorter
than that of S. cerevisiae. Nucleosome depletion around
transcription end sites is also found in Drosophila and
Dictyostelium [21, 30]. The regions around both transcrip-
tion start and end sites have DNA sequences rich in adenine
and thymine, which disfavor core histones [21, 30, 54].
Recently, some chromatin remodelers have been reported to
locate around transcription start and end sites in S. cerevisiae
[65].

5. Nucleosome Positioning in Exonic and
Intronic Regions

Chromatin structure may be linked to gene splicing [66, 67].
Genome-wide nucleosome mapping analyses have shown
that the nucleosome occupancy level in exons is higher than
that in introns [68–72]. DNA sequence differences between
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Figure 2: Difference between nucleosome-forming and linker regions.

exons and introns are correlated with nucleosomal DNA
preferences [73], as exon DNA sequences have a higher G
+ C content than intron DNA sequences [70]. As described
above, nucleosomal DNA prefers (G + C)-rich sequences.

6. Conclusions

Although the nucleosome positioning system differs between
the ascomycetous budding yeast S. cerevisiae and the asco-
mycetous fission yeast Sch. pombe [25], genome-wide com-
parative analyses of nucleosome positions have revealed that
nucleosome positioning shares a common feature among
different organisms. Nucleosomal DNA has a higher G +
C content and a higher level of cytosine methylation than
nucleosome linker DNA (Figure 2). In addition, nucleosome
positioning is found more frequently in exonic than in
intronic regions. Transcription start sites and translation
(or transcription) end sites are more frequently located in
nucleosome linker DNA than in nucleosomal DNA. Thus,
not only the structures of core histone proteins but also the
nucleosome positioning systems have been greatly conserved
during eukaryotic evolution.
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